Regioselective Suzuki Couplings of Non -Symmetric Dibromobenzenes: Alkenes As Regiochemical Control Elements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Elimination Reactions E1, E2, E1cb and Ei
Elimination Reactions Dr. H. Ghosh Surendranath College, Kol-9 ________________________________________________ E1, E2, E1cB and Ei (pyrolytic syn eliminations); formation of alkenes and alkynes; mechanisms (with evidence), reactivity, regioselectivity (Saytzeff/Hofmann) and stereoselectivity; comparison between substitution and elimination. Substitution Reactions Elimination Reactions Elimination happens when the nucleophile attacks hydrogen instead of carbon Strong Base favor Elimination Bulky Nucleophile/Base favor Elimination High Temperature favors Elimination We know- This equation says that a reaction in which ΔS is positive is more thermodynamically favorable at higher temperature. Eliminations should therefore be favoured at high temperature Keep in Mind---- Mechanism Classification E1 Mechanism- Elimination Unimolecular E1 describes an elimination reaction (E) in which the rate-determining step is unimolecular (1) and does not involve the base. The leaving group leaves in this step, and the proton is removed in a separate second step E2 Mechanism- Elimination Bimolecular E2 describes an elimination (E) that has a bimolecular (2) rate-determining step that must involve the base. Loss of the leaving group is simultaneous with removal of the proton by the base Bulky t-butoxide—ideal for promoting E2 as it’s both bulky and a strong base (pKaH = 18). Other Organic Base used in Elimination Reaction These two bases are amidines—delocalization of one nitrogen’s lone pair on to the other, and the resulting stabilization of the protonated amidinium ion, E1 can occur only with substrates that can ionize to give relatively stable carbocations—tertiary, allylic or benzylic alkyl halides, for example. E1-Elimination Reaction not possible here The role of the leaving group Since the leaving group is involved in the rate-determining step of both E1 and E2, in general, any good leaving group will lead to a fast elimination. -
Pd/C-Catalyzed Suzuki Cross- and Self- Couplings &
PD/C-CATALYZED SUZUKI CROSS- AND SELF- COUPLINGS & THE DEVELOPMENT OF A LAB-SCALE HYDROGENATION SYSTEM by JENG-SHIOU CHEN A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Chemical and Biochemical Engineering Written under the direction of Professor Johannes G. Khinast And approved by ________________________ ________________________ ________________________ ________________________ New Brunswick, New Jersey Jan. 2008 ABSTRACT OF THE DISSERTATION PD/C-CATALYZED SUZUKI CROSS- AND SELF- COUPLINGS & THE DEVELOPMENT OF A LAB-SCALE HYDROGENATION SYSTEM By JENG-SHIOU CHEN Dissertation Directors: Professor Johannes G. Khinast Suzuki couplings have become an efficient and clean strategy for the preparation of biologically active functionalized biphenyls, which are important building blocks for pharmaceutical and agricultural compounds. Among all catalysts of choice for Suzuki couplings, palladium on carbon (Pd/C) is most frequently used for industrial applications due to its high catalytic activity, low cost and easy removal from the reaction mixture. Using a model coupling reaction of biphenylacetic acid, we intended to provide a thorough understanding of Pd/C-catalyzed Suzuki couplings for a straightforward industrial implementation. A detailed investigation of the reaction parameters was carried out in Chapter 2. The experimental observations indicate that excess amount of the borate is helpful to accelerate the reaction and 2 moles eq. of a strong base is the best choice for the reaction. Furthermore, our results suggest that transmetalation is the rate-limiting step of the Pd/C-catalyzed Suzuki couplings and also show that [OH-] is a critical factor affecting the reaction rate. -
Electrochemistry and Photoredox Catalysis: a Comparative Evaluation in Organic Synthesis
molecules Review Electrochemistry and Photoredox Catalysis: A Comparative Evaluation in Organic Synthesis Rik H. Verschueren and Wim M. De Borggraeve * Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3001 Leuven, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-16-32-7693 Received: 30 March 2019; Accepted: 23 May 2019; Published: 5 June 2019 Abstract: This review provides an overview of synthetic transformations that have been performed by both electro- and photoredox catalysis. Both toolboxes are evaluated and compared in their ability to enable said transformations. Analogies and distinctions are formulated to obtain a better understanding in both research areas. This knowledge can be used to conceptualize new methodological strategies for either of both approaches starting from the other. It was attempted to extract key components that can be used as guidelines to refine, complement and innovate these two disciplines of organic synthesis. Keywords: electrosynthesis; electrocatalysis; photocatalysis; photochemistry; electron transfer; redox catalysis; radical chemistry; organic synthesis; green chemistry 1. Introduction Both electrochemistry as well as photoredox catalysis have gone through a recent renaissance, bringing forth a whole range of both improved and new transformations previously thought impossible. In their growth, inspiration was found in older established radical chemistry, as well as from cross-pollination between the two toolboxes. In scientific discussion, photoredox catalysis and electrochemistry are often mentioned alongside each other. Nonetheless, no review has attempted a comparative evaluation of both fields in organic synthesis. Both research areas use electrons as reagents to generate open-shell radical intermediates. Because of the similar modes of action, many transformations have been translated from electrochemical to photoredox methodology and vice versa. -
Reactions of Alkenes and Alkynes
05 Reactions of Alkenes and Alkynes Polyethylene is the most widely used plastic, making up items such as packing foam, plastic bottles, and plastic utensils (top: © Jon Larson/iStockphoto; middle: GNL Media/Digital Vision/Getty Images, Inc.; bottom: © Lakhesis/iStockphoto). Inset: A model of ethylene. KEY QUESTIONS 5.1 What Are the Characteristic Reactions of Alkenes? 5.8 How Can Alkynes Be Reduced to Alkenes and 5.2 What Is a Reaction Mechanism? Alkanes? 5.3 What Are the Mechanisms of Electrophilic Additions HOW TO to Alkenes? 5.1 How to Draw Mechanisms 5.4 What Are Carbocation Rearrangements? 5.5 What Is Hydroboration–Oxidation of an Alkene? CHEMICAL CONNECTIONS 5.6 How Can an Alkene Be Reduced to an Alkane? 5A Catalytic Cracking and the Importance of Alkenes 5.7 How Can an Acetylide Anion Be Used to Create a New Carbon–Carbon Bond? IN THIS CHAPTER, we begin our systematic study of organic reactions and their mecha- nisms. Reaction mechanisms are step-by-step descriptions of how reactions proceed and are one of the most important unifying concepts in organic chemistry. We use the reactions of alkenes as the vehicle to introduce this concept. 129 130 CHAPTER 5 Reactions of Alkenes and Alkynes 5.1 What Are the Characteristic Reactions of Alkenes? The most characteristic reaction of alkenes is addition to the carbon–carbon double bond in such a way that the pi bond is broken and, in its place, sigma bonds are formed to two new atoms or groups of atoms. Several examples of reactions at the carbon–carbon double bond are shown in Table 5.1, along with the descriptive name(s) associated with each. -
2D Porous Polymers with Sp2-Carbon Connections
2D Porous Polymers with sp2-Carbon Connections and Sole sp2-Carbon Skeletons Jialing Kang, Senhe Huang, Kaiyue Jiang, Chenbao Lu, Zhenying Chen, Jinhui Zhu, Chongqing Yang, Artur Ciesielski, Feng Qiu, Xiaodong Zhuang To cite this version: Jialing Kang, Senhe Huang, Kaiyue Jiang, Chenbao Lu, Zhenying Chen, et al.. 2D Porous Polymers with sp2-Carbon Connections and Sole sp2-Carbon Skeletons. Advanced Functional Materials, Wiley, 2020, 30 (27), pp.2000857. 10.1002/adfm.202000857. hal-03117175 HAL Id: hal-03117175 https://hal.archives-ouvertes.fr/hal-03117175 Submitted on 20 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Two-Dimensional Porous Polymers with sp2-Carbon Connections and Sole sp2-Carbon Skeletons Jialing Kang, Senhe Huang, Kaiyue Jiang, Chenbao Lu, Zhenying Chen, Jinhui Zhu, Chongqing Yang,* Artur Ciesielski, Feng Qiu,* and Xiaodong Zhuang* J. Kang, S. Huang, K. Jiang, C. Lu, Z. Chen, Dr. J. Zhu, Dr. C. Yang, Prof. X. Zhuang The Meso-Entropy Matter Lab, SChool of Chemistry and ChemiCal Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China E-mail: [email protected], [email protected] J. Kang, Prof. -
Desperately Seeking for the Catalytic Species in Suzuki-Miyaura Reaction Amine Bourouina
Desperately Seeking For The Catalytic Species In Suzuki-Miyaura Reaction Amine Bourouina To cite this version: Amine Bourouina. Desperately Seeking For The Catalytic Species In Suzuki-Miyaura Reaction. Chemical and Process Engineering. Université de Lyon, 2019. English. NNT : 2019LYSE1258. tel-02482607 HAL Id: tel-02482607 https://tel.archives-ouvertes.fr/tel-02482607 Submitted on 18 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°d’ordre NNT : 2019LYSE1258 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée au sein de l’Université Claude Bernard Lyon 1 Ecole Doctorale ED206 Ecole Doctorale de Chimie de Lyon Spécialité de doctorat : Discipline : Procédés Soutenue publiquement le 28/11/2019, par : Amine BOUROUINA Desperately Seeking For The Catalytic Species In Suzuki-Miyaura Reaction Devant le jury composé de : FERRIGNO Rosaria, Professeure des Universités, Université Lyon Présidente HII King Kuok (Mimi), Professeure, L'Imperial College de Londres Rapporteuse RIANT Olivier, Professeur ordinaire, Université Catholique de Louvain Rapporteur -
Organic Chemistry-I (Nature of Bonding and Stereochemistry
Subject Chemistry Paper No and Title 1; Organic Chemistry-I (Nature of bonding and Stereochemistry Module No and 25; Regioselectivity Title Module Tag CHE_P1_M25 CHEMISTRY Paper No. 1: Organic Chemistry-I (Nature of bonding and Stereochemistry Module no. 25: Regioselectiveity TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 2.1 Different Examples of Regioselective Reactions 2.1.1 Regioselectivity in Addition Reactions 2.1.2 Addition of HBr to Alkenes 2.1.3 Hydroboration Reaction and Addition of Hydrogen and Bromine to Alkenes 2.1.4 Baeyer Villiger Oxidation 2.1.5 Birch Reduction 2.1.6 Electrophilic Aromatic Substitution 2.1.7 Diels Alder Reaction 2.1.8 Friedal Crafts Reaction 2.1.9 Regioselectivity of Elimination 2.2 How to Determine the Regioselectivity? 3. Summary CHEMISTRY Paper No. 1: Organic Chemistry-I (Nature of bonding and Stereochemistry Module no. 25: Regioselectiveity 1. Learning Outcomes After studying this module, you shall be able to Know what is regioselectivity. Understand the basic difference between regioselectivity and chemoselectivity. Identify the regioselectivity in various reactions. Calculate the regioselectivity for a particular reaction. 2. Introduction 2. What is Regioselectivity? Regioselectivity is known as the preference chemical bond breaking or making in one direction of over all other possible directions. It is certainly applicable to positions which many reagents affect during the course of the reaction. An example to consider is which proton a strong base will abstract from an organic molecule, or where on a substituted benzene ring a further substituent will add. If there occurs a preponderance over which regioisomer will be formed, then that reaction can be termed as regioselective. -
[4 + 2] Annulation and Enyne Cross Metathesis
Communication pubs.acs.org/JACS Gold-Catalyzed Intermolecular Reactions of Propiolic Acids with Alkenes: [4 + 2] Annulation and Enyne Cross Metathesis † † † ‡ ‡ ‡ Hyun-Suk Yeom, Jaeyoung Koo, Hyun-Sub Park, Yi Wang, Yong Liang, Zhi-Xiang Yu,*, † and Seunghoon Shin*, † Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea ‡ Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China *S Supporting Information Scheme 1. Propiolic Acid as a Functional Equivalent of 1,4- ABSTRACT: A gold-catalyzed intermolecular reaction of C,O-Dipole or Biscarbene propiolic acids with alkenes led to a [4 + 2] annulation or enyne cross metathesis. The [4 + 2] annulation proceeds with net cis-addition with respect to alkenes and provides an expedient route to α,β-unsaturated δ-lactones, for which preliminary asymmetric reactions were also demonstrated. For 1,2-disubstituted alkenes, unprecedented enyne cross metathesis occurred to give 1,3-dienes in a completely stereospecific fashion. DFT calculations and experiments indicated that the cyclobutene derivatives are not viable We commenced our study using propiolic acid (4a) and intermediates and that the steric interactions during 10 concerted σ-bond rearrangements are responsible for the styrene derivatives as substrates. After extensive optimization, observed unique stereospecificity. we found that treating styrene 3a with 4a -
Regioselectivity in the [2 + 2] Cyclo-Addition Reaction of Triplet Carbonyl Compounds to Substituted Alkenes
J. Chem. Sci., Vol. 117, No. 5, September 2005, pp. 561–571. © Indian Academy of Sciences. Regioselectivity in the [2 + 2] cyclo-addition reaction of triplet carbonyl compounds to substituted alkenes (Paterno–Büchi reaction): A spin-polarized conceptual DFT approach B PINTÉR,1 F DE PROFT,2 T VESZPRÉMI1 and P GEERLINGS2,* 1Inorganic Chemistry Department, Budapest University of Technology and Economics (BUTE), Szent Gellért tér 4, H-1521, Budapest, Hungary 2Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Faculteit, Wetenschappen, Pleinlaan 2, 1050 Brussels, Belgium e-mail: [email protected] Abstract. Regioselectivity of the photochemical [2 + 2] cyclo-addition of triplet carbonyl compounds with a series of ground state electron-rich and electron-poor alkenes, the Paterno–Büchi reaction, is studied. Activation barriers for the first step of the triplet reaction are computed in the case of the O-attack. Next, the observed regioselectivity is explained using a series of DFT-based reactivity indices. In the first step, we use the local softness and the local HSAB principle within a softness matching approach, and explain the relative activation barriers of the addition step. In the final step, the regioselectivity is assessed within the framework of spin-polarized conceptual density functional theory, considering response functions of the system’s external potential v, number of electrons N and spin number Ns, being the difference between the number of a and b electrons in the spin-polarized system. Although the concept of local spin philicity, in- troduced recently within this theory, appears less suited to predict the regioselectivity in this reaction, the correct regioselectivity emerges from considering an interaction between the largest values of the generalized Fukui functions fss on both interacting molecules. -
Application of Enzymes in Regioselective and Stereoselective Organic Reactions
catalysts Review Application of Enzymes in Regioselective and Stereoselective Organic Reactions Ruipu Mu 1,*, Zhaoshuai Wang 2,3,* , Max C. Wamsley 1, Colbee N. Duke 1, Payton H. Lii 1, Sarah E. Epley 1, London C. Todd 1 and Patty J. Roberts 1 1 Department of Chemistry, Centenary College of Louisiana, Shreveport, LA 71104, USA; [email protected] (M.C.W.); [email protected] (C.N.D.); [email protected] (P.H.L.); [email protected] (S.E.E.); [email protected] (L.C.T.); [email protected] (P.J.R.) 2 Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA 3 Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA * Correspondence: [email protected] (R.M.); [email protected] (Z.W.) Received: 22 June 2020; Accepted: 21 July 2020; Published: 24 July 2020 Abstract: Nowadays, biocatalysts have received much more attention in chemistry regarding their potential to enable high efficiency, high yield, and eco-friendly processes for a myriad of applications. Nature’s vast repository of catalysts has inspired synthetic chemists. Furthermore, the revolutionary technologies in bioengineering have provided the fast discovery and evolution of enzymes that empower chemical synthesis. This article attempts to deliver a comprehensive overview of the last two decades of investigation into enzymatic reactions and highlights the effective performance progress of bio-enzymes exploited in organic synthesis. Based on the types of enzymatic reactions and enzyme commission (E.C.) numbers, the enzymes discussed in the article are classified into oxidoreductases, transferases, hydrolases, and lyases. -
Stille and Suzuki-Miyaura Reactions
molecules Article Recoverable Palladium-Catalyzed Carbon-Carbon Bond Forming Reactions under Thermomorphic Mode: Stille and Suzuki-Miyaura Reactions Eskedar Tessema 1,†, Vijayanath Elakkat 1,† , Chiao-Fan Chiu 2,3,*, Zong-Lin Tsai 1, Ka Long Chan 1 , Chia-Rui Shen 4,5, Han-Chang Su 6 and Norman Lu 1,7,* 1 Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan; [email protected] (E.T.); [email protected] (V.E.); [email protected] (Z.-L.T.); [email protected] (K.L.C.) 2 Department of Pediatrics, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan 3 Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan 4 Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; [email protected] 5 Department of Ophthalmology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan 6 Creditable Service Technology Consultants, New Taipei City 235, Taiwan; [email protected] 7 Development Center for Smart Textile, National Taipei University of Technology, Taipei 106, Taiwan * Correspondence: [email protected] (C.-F.C.); [email protected] (N.L.). † These authors contributed equally to this work. Citation: Tessema, E.; Elakkat, V.; 0 0 Chiu, C.-F.; Tsai, Z.-L.; Chan, K.L.; Abstract: The reaction of [PdCl2(CH3CN)2] and bis-4,4 -(RfCH2OCH2)-2,2 -bpy (1a–d), where Rf = n- Shen, C.-R.; Su, H.-C.; Lu, N. C11F23 (a), n-C10F21 (b), n-C9F19 (c) and n-C8F17 (d), respectively, in the presence of dichloromethane 0 0 Recoverable Palladium-Catalyzed (CH2Cl2) resulted in the synthesis of Pd complex, [PdCl2[4,4 -bis-(RfCH2OCH2)-2,2 -bpy] (2a–d). -
The Nobel Prize in Chemistry 2010 the Royal Swedish Academy of Sciences Has Decided to Award the Nobel Prize in Chemistry for 2010 To
PRESSMEDDELANDE Press release 6 October 2010 The Nobel Prize in Chemistry 2010 The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry for 2010 to Richard F. Heck Ei-ichi Negishi and Akira Suzuki University of Delaware, Newark, DE, USA, Purdue University, West Lafayette, Hokkaido University, Sapporo, IN, USA Japan “for palladium-catalyzed cross couplings in organic synthesis”. Great art in a test tube Organic chemistry has developed into an art form hods worked when creating simple molecules, but when where scientists produce marvelous chemical crea- synthesizing more complex molecules chemists ended up tions in their test tubes. Mankind benefits from this in with too many unwanted by-products in their test tubes. the form of medicines, ever-more precise electronics Palladium-catalyzed cross coupling solved that problem and advanced technological materials. The Nobel and provided chemists with a more precise and efficient Prize in Chemistry 2010 awards one of the most tool to work with. In the Heck reaction, Negishi reaction sophisticated tools available to chemists today. and Suzuki reaction, carbon atoms meet on a palladium atom, whereupon their proximity to one another kick- This year’s Nobel Prize in Chemistry is awarded to starts the chemical reaction. Richard F. Heck, Ei-ichi Negishi and Akira Suzuki for the development of palladium-catalyzed cross coupling. This Palladium-catalyzed cross coupling is used in research chemical tool has vastly improved the possibilities for worldwide, as well as in the commercial production of chemists to create sophisticated chemicals, for example for example pharmaceuticals and molecules used in the carbon-based molecules as complex as those created by electronics industry.