Recent Advances of Modern Protocol for C-C Bonds—The Suzuki Cross-Coupling

Total Page:16

File Type:pdf, Size:1020Kb

Recent Advances of Modern Protocol for C-C Bonds—The Suzuki Cross-Coupling Advances in Chemical Engineering and Science, 2013, 3, 19-32 http://dx.doi.org/10.4236/aces.2013.33A1003 Published Online July 2013 (http://www.scirp.org/journal/aces) Recent Advances of Modern Protocol for C-C Bonds—The Suzuki Cross-Coupling Jadwiga Sołoducho*, Kamila Olech, Agnieszka Świst, Dorota Zając, Joanna Cabaj Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland Email: *[email protected] Received April 30, 2013; revised May 30, 2013; accepted June 30, 2013 Copyright © 2013 Jadwiga Sołoducho et al. This is an open access article distributed under the Creative Commons Attribution Li- cense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Over the past 20 years, small molecule solid phase synthesis has become a powerful tool in the discovery of novel mol- ecular materials. In the development of organic chemistry, the carbon-carbon bond formation has always been one of the most useful and fundamental reaction. The current review summarizes recent developments in metal-catalyzed cou- pling reactions. The following method is discussed in detail—the cross-coupling of aryl halides with aryl boronic acids (the Suzuki coupling), and the others C-C bond formation reactions as the palladium-catalyzed reaction between an aryl and (or) alkyl halide and a vinyl functionality (the Heck reaction); and the palladium-catalyzed cross-coupling reaction of organostannyl reagents with a variety of organic electrophiles (the Stille reaction)—are mentioned. Keywords: C-C Bond Formation; Coupling Reactions; Palladium Catalysts; Suzuki Coupling; Heterocyclic Copolymers 1. Introduction [4] reported that cross-coupling reactions between al- kenylboranes and organic halides were efficiently cata- Recently, small-molecule solid-phase synthesis has beco- lyzed by a catalytic amount of tetrakis (triphenylphoshine) me a powerful tool in the discovery of new drugs or mo- palladium (Pd(PPh ) ) in the presence of a suitable base. lecular materials. The methods are investigated by the 3 4 In this context, using the conventional bridged deri- time in details: the cross-coupling of aryl halides with vatives of phenoxazine [5], phenothiazine, fluorene, car- aryl boronic acids (the Suzuki coupling); the palladium- catalyzed reaction between an aryl and (or) alkyl halide bazole as a functional segments, the palladium-catalyzed and a vinyl functionality (the Heck reaction); and the condensation halide arylenes by Suzuki-, and other cou- palladium-catalyzed cross-coupling reaction of organ- pling reactions were used as well-established procedure ostannyl reagents with a variety of organic electrophiles in modern organic synthesis [6]. The coupling products (the Stille reaction) [1]. find good applications as intermediates in the preparation Organic transformations in aqueous media have re- of materials (Figure 1). However, the Suzuki-type reac- ceived also much attention because water is mainly tions catalyzed by heterogeneous palladium involving harmless to the environment. The cross-coupling reaction bromoarenes are relatively unexplored. In this context, of alkenyl and aryl halides with organoborane derivatives polymer-supported catalysts have become valuable tools in the presence of a palladium catalyst and a base (Su- offering many advantages such as simplification of zuki reaction) has often been carried out in an organic- product synthesis. aqueous mixed solvent. Although Davidson and Triggs Nowadays, palladium-catalyzed Suzuki-Miyaura co- [2] discovered in 1968 that arylboronic acids reacted upling reaction [7,8] of aryl halides is one of the most with palladium(II) acetate to give corresponding biaryls, effective methods for the construction of biaryls or sub- and Garves [3] in 1970 that arylsulfinic acids could be stituted aromatic moieties in organic synthesis. Although coupled to biaryls using Pd(II) in aqueous solvents, it was homogeneous palladium catalysts have been extensively not until 1979 when biaryls could efficiently be prepared investigated [9-14], their industrial applications remained by a palladium-catalyzed reaction. Miyaura and Suzuki limited due to the difficulty in the separation process from the products for recycling [9-15]. Heterogenization * Corresponding author. of the existing homogeneous palladium catalysts offers Copyright © 2013 SciRes. ACES 20 J. SOŁODUCHO ET AL. Figure 1. Applications of molecular materials synthesized by Suzuki coupling. an attractive solution to this problem [16-19]. From a In general, transition metals, and in particular pall- practical point of view, the use of aryl chlorides is highly adium, have been of importance for the development of desirable compared with the more expensive aryl iodides, reactions for the formation of carbon-carbon bonds. In aryl bromides and aryl triflates. 2005 the Nobel Prize in chemistry was awarded to This short review summarizes the advantages of the metal-catalyzed reactions for the formation of car- Suzuki protocol over other similar cross-coupling reac- bon-carbon double bonds. The 2010 year the Nobel Prize tions, several structurally different ligands that promote in chemistry is awarded to the formation of car- the reaction in water [20-23], recent results from ligan- bon-carbon single bonds through palladium-catalyzed dless Suzuki procedure, and target molecules mainly cross-coupling reactions. produced by the method. 3. Suzuki Coupling 2. Transition Metals in Synthetic Organic The Scheme 1 shows the first published Suzuki coupling, Chemistry which is the palladium-catalyzed cross-coupling between During the second half of the 20th century, transition organoboronic acid and halides. Recent catalyst and metals have come to play an important role in organic methods developments have broadened the possible ap- chemistry and this has led to the development of a large plications enormously, so that the scope of the reaction number of transition metal-catalyzed reactions for creat- partners is not restricted to aryls, but includes alkyls, ing organic molecules. Transition metals have a unique alkenyls and alkynyls. Potassium trifluoroborates and ability to activate various organic compounds and th- organoboranes or boronate esters may be used in place of rough this activation they can catalyze the formation of boronic acids. Some pseudohalides (for example triflates) new bonds. One metal that was used early on for cata- may also be used as coupling partners. lytic organic transformations was palladium. One event that stimulated research into the use of palladium in or- 4. Mechanism of the Suzuki Coupling ganic chemistry was the discovery that ethylene is oxi- In the Suzuki (Scheme 2) as well as Stille mechanism is dized to acetaldehyde by air in a palladium-catalyzed reaction and this became the industrially important Wacker process. Subsequent research on palladium-ca- talyzed carbonylation led to new reactions for the forma- tion of carbon-carbon bonds. Scheme 1. Typical Suzuki procedure. Copyright © 2013 SciRes. ACES J. SOŁODUCHO ET AL. 21 need of activation, and in the Suzuki coupling the bo- tion of R1Pd-OR from R1Pd-X (Scheme 4). Reaction ronic acid must be activated, for example with base. The does not occur in the absence of base. Exact mechanism activation of the boron atom features the polarization of is unclear. the organic ligand, and facilitates transmetalation. If starting materials are substituted with base labile groups 4.3. Reductive Elimination (i.e., esters), powdered KF effects this activation while This final step of catalytic cycle gives the desired product leaving base labile groups unaffected. It is worth to men- and it also regenerates the palladium catalyst so that it tion, that F- is also advantageous in Stille reaction. can participate again in the catalytic cycle (Scheme 5). Due to the stability, ease of preparation and low toxi- Require the complex to revert back to the cis conforma- city of the boronic acid compounds, there is currently tion before reductive elimination can occur. widespread interest in applications of the Suzuki cou- pling, with new developments and refinements being 5. Suzuki Cross-Coupling as Synthetic reported constantly. Protocol for Branched Heterocyclic Units 4.1. Oxidative Addition Suzuki reactions are very useful tool for the formation of Csp2-Csp2 bonds. This procedure is, however, convenient Attaching of the palladium catalyst to the alkyl halide in the synthesis of conducting polymers. Suzuki reaction gives rise to the organopalladium complex (Scheme 3). is also a powerful method for the formation of Csp2-Csp3 The complex is at the beginning in the cis conformation bond. This coupled protocols was also used in our previ- but isomerizes to the trans conformation. Stereochemis- ous work for obtaining branched or hyper-branched try with vinyl halides are retained but inversion of sterically crowded heterocyclic structures [24,25] (Scheme stereochemistry occurs with allylic or benzylic halides. 6). Phenothiazine, as well as phenoxazine, is a well- 4.2. Transmetalation known very strong electron donor and has high HOMO energy level because of sulfur atom. Therefore, it was The role of base in the Suzuki coupling is to activate the expected phenothiazine ring to be an excellent building boron-containing reagent, and also facilitate the forma- block for lowering the ionization potential of conjugated polymers. However, efficient electrogenerated chemilu- minescence was observed in co-oligomers of methyl-
Recommended publications
  • Advancing Conjugated Polymer Synthesis Through Catalyst Design
    Advancing Conjugated Polymer Synthesis Through Catalyst Design by Kendra Delaine Souther A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry) in the University of Michigan 2018 Doctoral Committee: Professor Anne J. McNeil, Chair Professor Jinsang Kim Professor John P. Wolfe Associate Professor Paul M. Zimmerman Kendra D. Souther [email protected] ORCID iD: 0000-0002-2373-1434 DEDICATION To my mother and father, Idalene and Garrison, for instilling the power of hardwork in me from a very young age and being a constant fountain of encouragement; lifting me up when I forget how. To my sister, Deidre, for making my world a brighter place; always making me laugh and for always having a prayer ready to fill me up with love. I love you all. MBT. ii ACKNOWLEDGEMENTS I must first begin by thanking my advisor and mentor, Professor Anne J. McNeil. Her commitment to pursuing challenging problems with integrity and fervor gave me a role model throughout my grad school experience and was a constant motivator. She encouraged me to be the best version of myself, for myself, and helped shape me into an independent scientist and problem solver. Next, I must thank my labmates past and present who made coming to work every day easy: Dr. Se Ryeon Lee, Dr. Kelsey Carter, Dr. Edmund Palermo, Dr. Fei Cheng, Dr. Zachary Bryan, Dr. Danielle Zurcher, Dr. Gesine Veits, Dr. Mitchell Smith, Dr. Peter Goldberg, Dr. Ariana Hall, Dr. Chen Kong, Amanda Leone, Matthew Hannigan, Justin Harris, Emily Mueller, Han Kim, Takunda Chazovachii, Dr.
    [Show full text]
  • Palladium-Catalysed Coupling Chemistry Palladium-Catalysed Coupling Chemistry
    Palladium-Catalysed Coupling Chemistry Palladium-Catalysed Coupling Chemistry Palladium catalysis has gained widespread use in industrial and academic synthetic chemistry laboratories as a powerful methodology for the formation of C-C and C-Heteroatom bonds. Several coupling reactions have been developed with different substrates: 1. SUZUKI-MIYAURA 2. STILLE 3. NEGISHI 4. KUMADA 5. HIYAMA 6. SONOGASHIRA 7. HECK 8. BUCHWALD-HARTWIG 9. CYANATION 10. CARBONYLATION 2 Understanding the catalytic cycle Most palladium catalysed reactions are believed to follow a similar catalytic cycle. The catalytic species can be formed in situ using a palladium source, such as Pd2(dba)3 or Pd(OAc)2 and the necessary ligand, or introduced as a preformed catalyst such as t Pd(PPh3)4 or Pd(P Bu3)2. Careful choice of ligand can facilitate two steps of the catalytic cycle. The use of strong σ-donating ligands, such as trialkylphosphines, increases electron density around the metal, accelerating the oxidative addition of the catalyst to the substrate. This is most commonly believed to be the rate determining step. Choice of ligand also determines the mechanism by which oxidative addition occurs.1 The elimination step is accelerated by the use of bulky ligands, in particular phosphine ligands exhibiting a large cone angle (also known as Tolman angle).2 Ligand Cone Angle (deg) Cat. No. dppm 121 29361 dppe 125 14791 dppp 127 31005 dcpe 142 36385 PPh3 145 14042 P(c-hex)3 170 42161 t P( Bu)3 182 36089 P(C6F5)3 184 31316 P(2,4,6-Me3C6H2)3 212 32113 3 Phosphine ligands have recently been replaced in a number of palladium cataly sed reactions with N-heterocyclic carbenes (NHCs).3 These ligands offer similar electronic properties to phosphines, being strongly σ-donating and weakly π-acidic.
    [Show full text]
  • Palladium-Catalyzed Cross-Couplings in Organic Synthesis
    Palladium-Catalyzed Cross-Couplings in Organic Synthesis 2010 Nobel Prize in Chemistry Professor Sambasivarao Kotha Department of Chemistry IIT-Bombay 400 076 http/www.chem.iitb.ac.in/~srk 12/28/10 1 "palladium-catalyzed cross couplings in organic synthesis” Richard F. Heck Ei-ichi Negishi Akira Suzuki University of Delaware Purdue University Hokkaido University USA West Lafayette Sapporo, Japan IN, USA B 1931 B 1935 B 1930 12/28/10 2 Heck, Negishi and Suzuki coupling in synthesis of fine chemicals Heck reaction O Si Si DVS-bis-BCM (electronic resin monomer) N O N Negishi Cl coupling N Cl HN O HN Suzuki coupling Serotonin agonist Boscalid 12/28/10 (fungiside) 3 Facts on the Nobel Prize in Chemistry On 27 November 1895, Alfred Nobel signed his last will and testament, giving the largest share of his fortune to a series of prizes, the Nobel Prizes. As described in Nobel's will one part was dedicated to “ the person who shall have made the most important chemical discovery or improvement”. http://nobelprize.org/nobel_prizes/chemistry/ 4 Number of Nobel Prizes in Chemistry 102 Nobel Prizes in Chemistry have been awarded since 1901. It was not awarded on eight occasions: in 1916, 1917, 1919, 1924, 1933, 1940, 1941 and 1942. Why were the Chemistry Prizes not awarded in those years? In the statutes of the Nobel Foundation it says: "If none of the works under consideration is found to be of the importance indicated in the first paragraph, the prize money shall be reserved until the following year. If, even then, the prize cannot be awarded, the amount shall be added to the Foundation's restricted funds." During World War I and II, fewer Nobel Prizes were awarded.
    [Show full text]
  • 2-Pyrone A: Novel 2-Pyrone Chemistry
    Towards the Total synthesis of Phacelocarpus- 2-pyrone A: Novel 2-pyrone chemistry Michael J. Burns Supervisors: Prof. Ian Fairlamb and Prof. Richard Taylor 2010 Authors Declaration I declare that all of the work detailed within this thesis is my own, and that any material not my own is clearly referenced or acknowledged in the main body of the text. All work was conducted between October 2006 and May 2010. Michael John Burns 1st June 2010 i Contents Authors Declaration i Acknowledgements iv Abstract v Abbreviations vi Chapter 1: Introduction 1.1 − Introduction to natural products 1 1.2 – Introduction to pyrones and natural products containing the 3 pyrone motif 1.3 – Introduction to 1,4-skipped dienes and natural products 8 containing the 1,4-skipped diene motif 1.4 – Introduction to palladium catalysis in natural product synthesis 11 1.5 – Introduction to phacelocarpus pyrones 13 1.6 – RSA of phacelocarpus-2-pyrone A 15 1.7 – Proposed forward synthesis of phacelocarpus-2-pyrone A 16 1.8 – Aims and objectives 19 Chapter 2: Synthetic studies towards phacelocarpus-2-pyrone A 2.1 – Suzuki-Miyaura cross-coupling reactions 20 2.1.1 – Suzuki-Miyaura cross-coupling reactions of benzyl bromides 2.1.2 – Suzuki-Miyaura cross-couplings of prenyl and terpenyl substrates 2.2 – Initial studies towards phacelocarpus-2-pyrone A 23 2.2.1 – Alkylation/ lithiation strategy to AB fragment 2.2.2 – Synthesis of fragment B 2.2.3 – Synthesis of AB fragment 2.2.4 – Synthesis of fragment C 2.2.5 – Buchwald-Hartwig etherifications 2.2.6 – Synthesis of functionalised
    [Show full text]
  • Pharmacomodulation of Positions Two & Four of Nucleus Five
    Al Saadi et al (2019): Pharmacomodulation using palladium catalyze November 2019 Vol. 22(7) Pharmacomodulation of positions two & four of nucleus five-nitroimidazole by using palladium catalyze Noor Thamer Abbas Al Saadi 1* Marwah Thamer Abbas Al Saadi1, Zina Tahsin Ali1 1. College of pharmacy, Almuthanna University *Corresponding Author: Dr. Noor Thamer Abbas Al Saadi, College of pharmacy, Almuthanna University Email: [email protected] Abstract: Cross-coupling reactions consist of reactions between an electrophilic organic species such as a halide or a pseudohalide (triflate, tosylate, mesylate) (R1-X) and an organometallic reagent (R2-M; M = Mg, Li, Cu, Zn, Al, B and Si). These reactions are catalyzed by a metal transition complex based on nickel or palladium, and result in the formation of new CClO.sub.2 bonds. Many cross-coupling reactions have thus been developed in about twenty years, by varying the nature of the electrophile, organometallic reagent and transition metal (Scheme 1). The most commonly used coupling reactions involve palladium as a transition metal, and the diversity of these reactions is based on the type of organometallic used, based on aluminum, zinc or zirconium (Negishi coupling), [1] boron (Suzuki coupling), [2] magnesium (Kumada coupling), [3] tin (Stille coupling) , [4] or silicon (coupling of Hiyama) .[5] The development of this type of reaction allowed Richard Heck, Ei-ichi Negishi and Akira Suzuki to be awarded the Nobel Prize for Chemistry in 2010.[1]. Key words: Pharmacomodulation, nitromidazole, palladiumcatalyz, cross-coupling, reactions How to cite this article: Al Saadi NTA, Al Saadi MTA, Ali ZT (2019): Pharmacomodulation of positions two & four of nucleus five-nitroimidazole by using palladiumcatalyz, Ann Trop Med Pub Health; 22: S202.
    [Show full text]
  • A Robust Nickel Catalyst with an Unsymmetrical Propyl-Bridged Diphosphine Ligand for Catalyst-Transfer Polymerization
    Polymer Journal (2020) 52:83–92 https://doi.org/10.1038/s41428-019-0259-3 ORIGINAL ARTICLE A robust nickel catalyst with an unsymmetrical propyl-bridged diphosphine ligand for catalyst-transfer polymerization 1 1 1 2 1 Matthew A. Baker ● Josué Ayuso-Carrillo ● Martin R. M. Koos ● Samantha N. MacMillan ● Anthony J. Varni ● 1 1 Roberto R. Gil ● Kevin J. T. Noonan Received: 7 June 2019 / Revised: 9 July 2019 / Accepted: 30 July 2019 / Published online: 3 September 2019 © The Society of Polymer Science, Japan 2019 Abstract A new nickel diphosphine catalyst has been synthesized in which the bidentate ligand has two different phosphine donors, a typical PPh2 group and a stronger σ-donating PEt2 group. The catalyst was highly effective for the chain-growth polymerization of a 3-alkylthiophene monomer using a Suzuki–Miyaura cross-coupling. The catalyst is particularly effective for this polymerization in the presence of excess free ligand. The unsymmetrical diphosphine nickel complex reported here represents a new approach to tuning metal-ligand reactivity in the chain-growth polymerization of aromatic monomers. In addition, this new nickel catalyst exhibited increased hydrolytic resistance in the polymerization as compared to 1234567890();,: 1234567890();,: commercially available 1,3-bis(diphenylphosphino)propane nickel dichloride. Introduction relatively mild reaction conditions needed to promote C–C bond formation. While palladium complexes are often used Metal-catalyzed cross-couplings continue to be among the to catalyze this transformation [12–24], nickel catalysts most powerful strategies for forming C–C bonds, and they such as Ni(dppp)Cl2 and Ni(IPr)(PPh3)Cl2 can also be are commonly employed to synthesize π-conjugated poly- employed to polymerize X-Ar-B(OR)2 monomers [25, 26].
    [Show full text]
  • 1 Kumada Coupling [Mg]
    P. Wipf 1/30/2007 Kumada Coupling [Mg] Huang, J.; Nolan, S. P., "Efficient cross-coupling or aryl chlorides with aryl Grignard reagents (Kumada reaction) mediated by a palladium/imidazolium chloride system." J. Am. Chem. Soc. 1999, 121, 9889-9890. Stille Coupling [Sn] JOC 1991, 56, 2883. TH 1992, 48, 2957. Organometallics 1991, 10, 1993. 1 P. Wipf 1/30/2007 JACS 1984, 106, 7500: capnellene Negishi Coupling [Zn] Tius, M. A.; Gomez-Galeno, J.; Gu, X.; Zaidi, J. H., "C-glycosylanthraquinone synthesis: Total synthesis of vineomycinone B2 methyl ester." J. Am. Chem. Soc. 1991, 113, 5775-5783. 2 P. Wipf 1/30/2007 Wipf, P.; Lim, S. J. Am. Chem. Soc. 1995, 117, 558; Wipf, P.; Lim, S. Chimia 1996, 50, 157. Mori, Y.; Seki, M., "Highly efficient phosphine-free Pd(OAc)2-catalyzed Fukuyama coupling reaction: Synthesis of a key intermediate for (+)-biotin under low catalyst loading." Synlett 2005, 2233-2235. 3 P. Wipf 1/30/2007 Suzuki Coupling [B] esp. for biaryl couplings: Ligand selection: It is often crucial to optimize ligand selection by empirical screening of ligands and catalyst/ligand ratios: 4 P. Wipf 1/30/2007 For difficult substrates in the Suzuki coupling, it is useful to apply the following conditions: Review: Frisch, A. C.; Beller, M., "Catalysts for cross-coupling reactions with non-activated alkyl halides." Angew. Chem., Int. Ed. 2005, 44, 674-688. As the C(sp3)-X bond in alkyl halides is more electron rich than the C(sp2)-X bond in aryl and vinyl halides, the propensity of alkyl halides to undergo oxidative addition to a low-valent transition-metal complex (i.e.
    [Show full text]
  • Exploring Mechanisms in Ni Terpyridine Catalyzed C–C Cross-Coupling Reactions—A Review
    inorganics Review Exploring Mechanisms in Ni Terpyridine Catalyzed C–C Cross-Coupling Reactions—A Review Yulia H. Budnikova 1,2,* ID , David A. Vicic 3,* and Axel Klein 4,* ID 1 A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, 8, Arbuzov Str., 420088 Kazan, Russia 2 A. M. Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russia 3 Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA 4 Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany * Correspondence: [email protected] (Y.H.B.); [email protected] (D.A.V.); [email protected] (A.K.); Tel.: +49-221-470-4006 (A.K.) Received: 9 November 2017; Accepted: 18 January 2018; Published: 23 January 2018 Abstract: In recent years, nickel has entered the stage for catalyzed C–C cross-coupling reactions, replacing expensive palladium, and in some cases enabling the use of new substrate classes. Polypyridine ligands have played an important role in this development, and the prototypical tridentate 2,20:60,200-terpyridine (tpy) stands as an excellent example of these ligands. This review summarizes research that has been devoted to exploring the mechanistic details in catalyzed C–C cross-coupling reactions using tpy-based nickel systems. Keywords: nickel; 2,20:60,200-terpyridine; catalysis; mechanism; electrosynthesis; cross-coupling 1. Introduction Polypyridine ligands such as 2,20-bipyridine (bpy) and 2,20:60,200-terpyridine (tpy) are common ligands in coordination chemistry and molecular catalysis, and they generally generate stable well-defined complexes [1–3].
    [Show full text]
  • From Noble Metal to Nobel Prize.Pdf
    Angewandte Chemie DOI: 10.1002/anie.201006374 Nobel Prize in Chemistry 2010 From Noble Metal to Nobel Prize: Palladium-Catalyzed Coupling Reactions as Key Methods in Organic Synthesis Xiao-Feng Wu, Pazhamalai Anbarasan, Helfried Neumann, and Matthias Beller* cross-coupling · Heck reaction · Negishi coupling · palladium · Suzuki coupling Palladium is known to a broad audience as a beautiful, but afforded styrene in 80% yield and 10% trans-stilbene,[2a] he expensive jewellery metal. In addition, it is nowadays found in described in 1972 a protocol for the coupling of iodobenzene nearly every car as part of the automotive catalysts, where with styrene, which today is known as the “Heck reaction”.[3] palladium is used to eliminate harmful emissions produced by A very similar reaction had already been published by internal combustion engines. On the other hand, and not Tsutomo Mizoroki in 1971.[4] However, Mizoroki didnt known to the general public, is the essential role of palladium follow up on the reaction and died too young from cancer. catalysts in contemporary organic chemistry, a topic which has The coupling protocol for aryl halides with olefins can be now been recognized with the Nobel Prize for Chemistry considered as a milestone for the development and applica- 2010. tion of organometallic catalysis in organic synthesis and set Have a look at any recent issue of a chemical journal the stage for numerous further applications. Hence, palla- devoted to organic synthesis and you will discover the broad dium-catalyzed coupling reactions were disclosed continu- utility of palladium-based catalysts. Among these different ously during the 1970s (Scheme 1).
    [Show full text]
  • Organometallic Chemistry
    ORGANOMETALLIC CHEMISTRY 1 Organometallic Chemistry (Prelude) What is Organometallic Chemistry? Organometallic chemistry refers to reactions that use the classes of compounds (R-M) that contain a covalent bond between carbon and a metal. They are prepared either by direct reaction of the metal with an organic compound (metallation) or by replacement of a metal in an organometallic compound with another metal (transmetallation). 12:44 PM 2 Organometallic Chemistry Why Go Organometallic Chemistry What is so special about the Organometallic approach to organic synthesis? Classical organic syntheses that proceed by the SN2 pathway require a strong nucleophile attacking an electrophilic site to be effective. Such reactions are of limited scope. For instance, the formation of biaryl systems via the classical substitution reaction is difficult to achieve. 12:44 PM 3 Organometallic Chemistry Applications Organometallic chemistry offers a way out of this dilemma. Through special organometallic reactions, a variety of carbon-carbon bonds can be formed and even biaryl systems can be readily synthesized. This possibility has expanded the scope of their use in organic synthesis since bonds that were hitherto difficult to form through the classical syntheses can almost now be routinely formed. Organometallic chemistry can make possible the synthesis of 12:44 PM pharmacologically relevant natural products containing biaryl units. 4 Organomagnesium or Grignard Reagents R-Mg-X The use of organometallic reagents in organic synthesis began around 1899 when Victor Grignard discovered that alkyl halides reacted with magnesium metal in diethylether to give homogenous solutions. The Grignard reagents proved to be very reactive carbanion nucelophiles and strong bases capable of abstracting highly acidic protons attached to heteroatoms such as O, N and S, and have remained very useful synthetic reagents ever since.
    [Show full text]
  • Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Benzylic
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article pubs.acs.org/accounts Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Benzylic Ethers and Esters Published as part of the Accounts of Chemical Research special issue “Earth Abundant Metals in Homogeneous Catalysis”. Emily J. Tollefson, Luke E. Hanna, and Elizabeth R. Jarvo* Department of Chemistry, University of California, Irvine, California 92697-2025, United States CONSPECTUS: This Account presents the development of a suite of stereospecific alkyl−alkyl cross-coupling reactions employing nickel catalysts. Our reactions complement related nickel-catalyzed stereoconvergent cross-coupling reactions from a stereochemical and mechanistic perspective. Most reactions of alkyl electrophiles with low-valent nickel complexes proceed through alkyl radicals and thus are stereoablative; the correct enantioselective catalyst can favor the formation of one enantiomer. Our reactions, in contrast, are stereospecific. Enantioenriched ethers and esters are cleanly converted to cross-coupled products with high stereochemical fidelity. While mechanistic details are still to be refined, our results are consistent with a polar, two-electron oxidative addition that avoids the formation of radical intermediates. This reactivity is unusual for a first-row transition metal. The cross-coupling reactions engage a range of benzylic ethers and esters, including methyl ethers, tetrahydropyrans, tetrahydrofurans, esters, and lactones. Coordination of the arene substituent to the nickel catalyst accelerates the reactions. Arenes with low aromatic stabilization energies, such as naphthalene, benzothiophene, and furan, serve as the best ligands and provide the highest reactivity. Traceless directing groups that accelerate reactions of sluggish substrates are described, providing partial compensation for arene coordination.
    [Show full text]
  • Investigation of PEPPSI Precatalysts for Controlled Polymerization of Π-Conjugated Polymers from Cheap Starting Materials
    Investigation of PEPPSI precatalysts for controlled polymerization of π-conjugated polymers from cheap starting materials Thesis submitted in partial fulfilment of the requirement for a degree of Doctor of Philosophy at the University of London Benjamin John Groombridge Page | 1 Acknowledgements I would firstly like to thank my supervisors, Dr. Igor Larrosa and Dr. Stephen M. Goldup, for giving me the opportunity to carry out the research described in this thesis. Special gratitude to both of you, for the invaluable expert guidance and support during my PhD. I would like to thank the following people for the words of wisdom and practical input during the course of my PhD: Prof. Mike Watkinson, Dr. Chris Bray, Dr. Joby Winn, Dr. Jamie Lewis, Dr. Catherine Fletcher, Dr. Saidul Islam, Dr. Xacobe Couso Cambeiro, Dr. Nanna Ahlsten, Dr. Paolo Ricci, Dr. Carlos Arróniz, Dr. Sara Preciado, Dr. Francisco Juliá-Hernández, Dr. Josep Cornella, Dr. Tanya Boorman, Dr. Saidul Islam, Robert Bordoli, Ed Neal, Jessica Pancholi, Katrina Krämer, Rachel Grainger, Marco Simonetti, Junfei Luo, Adam Johnston, Gregory Perry and Nicky Willis. The research described would not have been possible without the fantastic support from both NMR and analytic services in particular Dr. Harold Toms and Dr. Ian Sanders. Finally, I would like to thank my friends and family for their support and advice throughout my PhD and during the writing up period. Page | 2 Declaration I declare that the scientific work presented in this thesis is my own and was carried out in the School of Biological and Chemical Science at Queen Mary, University of London between September 2010 and September 2014.
    [Show full text]