inorganics Review Exploring Mechanisms in Ni Terpyridine Catalyzed C–C Cross-Coupling Reactions—A Review Yulia H. Budnikova 1,2,* ID , David A. Vicic 3,* and Axel Klein 4,* ID 1 A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, 8, Arbuzov Str., 420088 Kazan, Russia 2 A. M. Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russia 3 Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA 4 Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany * Correspondence:
[email protected] (Y.H.B.);
[email protected] (D.A.V.);
[email protected] (A.K.); Tel.: +49-221-470-4006 (A.K.) Received: 9 November 2017; Accepted: 18 January 2018; Published: 23 January 2018 Abstract: In recent years, nickel has entered the stage for catalyzed C–C cross-coupling reactions, replacing expensive palladium, and in some cases enabling the use of new substrate classes. Polypyridine ligands have played an important role in this development, and the prototypical tridentate 2,20:60,200-terpyridine (tpy) stands as an excellent example of these ligands. This review summarizes research that has been devoted to exploring the mechanistic details in catalyzed C–C cross-coupling reactions using tpy-based nickel systems. Keywords: nickel; 2,20:60,200-terpyridine; catalysis; mechanism; electrosynthesis; cross-coupling 1. Introduction Polypyridine ligands such as 2,20-bipyridine (bpy) and 2,20:60,200-terpyridine (tpy) are common ligands in coordination chemistry and molecular catalysis, and they generally generate stable well-defined complexes [1–3].