Linear stability and instability of self-interacting spinor field ANDREW COMECH Texas A&M University, College Station, TX, USA October, 2013

Einstein: E2 = p2 + m2, Schrodinger:¨ (i∂ )2ψ = ( i )2ψ + m2ψ t − ∇ 2 E = m2 + p2 m + p , [Schrodinger¨ 26]: i∂ ψ = 1 ( i )2ψ ≈ 2m t 2m − ∇ p [Dirac28]: E = p2 + m2 = α p + βm, p i∂ ψ = ( iα + βm) ψ, ψ(x,t) C4, x R3 t − ∇ ∈ ∈ Dm | {z }

2 2 α (1≤j≤3) and β are self-adjoint and such that D = ∆+ m j m − 0 σj I2 0 Standard choice: αj = (Pauli matrices), β = σj 0   0 I2 −

1 Self-interacting spinors

Models of self-interacting spinor field: [Ivanenko38, Finkelstein et al.51, Finkelstein et al.56, Heisenberg57] [...]

Massive [Thirring58] in (n+1)D:

k+1 µ µ 2 LMTM = ψ¯(iγ ∂ m)ψ + ψγ¯ ψ ψγ¯ ψ k > 0 (V-V) µ − µ 

Soler model [Soler70] in (n+1)D: µ k+1 LSoler = ψ¯(iγ ∂ m)ψ +(ψψ¯ ) (S-S) µ − In (1+1)D: massive Gross-Neveu model [Gross & Neveu74, Lee & Gavrielides75]

2 Soler model: NLD with scalar-scalar self-interaction

i∂ ψ = ( iα + mβ) ψ (ψψ¯ )kβψ, ψ CN , x Rn t − ∇ − ∈ ∈ Dm | {z } [Soler70, Cazenave & Vazquez´ 86]: existence of solitary waves in R3, •

ψ(x,t) = φ (x)e−iωt, ω (0,m) ω ∈

Attempts at stability: [Bogolubsky79, Alvarez & Soler86, Strauss & Vazquez´ 86] ... • Numerics [Alvarez & Carreras81, Alvarez & Soler83, Berkolaiko & Comech12] suggest that •(all?) solitary waves in 1D cubic Soler model are stable

Assuming linear stability, one tries to prove asymptotic stability • [Pelinovsky & Stefanov12, Boussaid & Cuccagna12]

3 Nonrelativistic limit of NLD: ω m → φ(x) Solitary wave: ψ(x,t) = e−iωt; φ, ρ C2 ρ(x) ∈ 0 σ iψ˙ = i ∇ + mβ ψ (ψψ¯ )kβψ, − σ 0  −  ∇  φ ρ φ φ ω iσ + m φ 2k ρ ≈ − ∇ φ  ρ −| |  ρ − − If ω . m: 2mρ iσ φ, φ satisfies NLS: ≈ − ∇ 1 (m ω)φ = ∆φ φ 2kφ. − − −2m −| |

Scaling: φ(x) = ǫ1/kΦ(ǫx), ǫ = √m ω − 1 Φ = ∆Φ Φ 2kΦ − −2m −| |

4 NLD: linearization at a solitary wave

−iωt −iωt Given φω(x)e , consider ψ(x,t) = φω(x)+ r(x,t) e Linearized eqn on r(x,t) CN , i∂ r = D r ωr + ... (m + ω)i ∈ t m −

Re r 0 Dm ω + ... Re r ∂t = − Im r  Dm + ω + ... 0  Im r − (m − ω)i Aω | {z } -

σ(D ω) m − σess(Aω) r0 m ω m ω − − −

5 σ(Aω)

Linear instability of NLD 2mi (m + ω)i

Theorem 1 ([Comech & Guan & Gustafson12]).

If NLSk is linearly unstable, then for ω . m, λ σ (A ), (m − ω)i ∃ ± ω ∈ d ω t tt - - Re λω > 0, λω 0 ω−→→m −λω λω

1D, above quintic 2D, above cubic

3D cubic and above −2mi

ω < m ω = m

Proof: Rescale; use Rayleigh-Schrodinger¨ perturbation theory. 2

6 σ(Aω)

Linear stability of NLD 2mi m ω i 12 ( + ) Theorem 2 ([Boussaid & Comech ]). t 2ωi Assume λ σ (A ), ω . m ω ∈ p ω

1. λω 0; 2mi . ω−→→m { ± } (m − ω)i t tt - - 2. If Re λω = 0, then λω 0, ω−→→m −λω λω

λω Λ:= lim σp(NLSk) ω→m (m ω) ∈ − 3. Λ = 0 unless critical case: t 2D quintic; 3D cubic −2mi

ω < m ω = m

Proof: Limiting absorption principle [Agmon75, Berthier & Georgescu87] 2

7 σ(Aω)

Linear stability of NLD 2mi (m + ω)i

Corollary 3 ([Boussaid & Comech12]). 1D cubic: (m − ω)i φ e−iωt are linearly stable for ω . m t - - ω t

−2mi Remark 4. Also true for 1D cubic and 2D quintic ω < m ω m (“charge-critical NLS”) =

8 1

0.8

0.6

0.4

0.2

0 0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0 -1 -0.5 0 0.5 1

Figure 1: Upper half of the spectral gap. TOP: 1D cubic Soler BOTTOM: 1D cubic massive Thirring 9 1

0.8

0.6

0.4

0.2

0 0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0 -1 -0.5 0 0.5 1

Figure 2: 1D quintic (“charge critical”). TOP: Soler; BOTTOM: massive Thirring

10 1

0.8

0.6

0.4

0.2

0 0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0 -1 -0.5 0 0.5 1

Figure 3: 1D, seventh order. Soler and MTM

11 σ(AΩ) Bifurcations from σess (m + Ω)i

Let Ω (0,m) λ λΩ ω r r r rvr ∈ r r r r Theorem 5 ([Boussaid & Comech12]). (m − Ω)i If λω σp(Aω), Re λω = 0, ∈ t - λω λΩ iR ω−→→Ω ∈

then λΩ σp(AΩ), λΩ m +Ω r r r r ∈ | | ≤ r r rvr r Moreover, λ σ iR λ m + Ω ∈ p ∩ ⇒ | | ≤ | |

12 Theorem 6 ( [[Berkolaiko & Comech & Sukhtyaev13]). Q′(ω) = 0 and E(ω) = 0 correspond to the boundary of the linear instability region

15

10

5

0

−5 1

0.8

0.6

0.4

0.2

0 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Figure 4: quadratic MTM. TOP: Charge (······) and energy ( ) as functions of ω. −− BOTTOM: Purely imaginary eigenvalues (•, ) of the linearized equation in the spectral gap.

13 References

[Agmon75] S. Agmon, Spectral properties of Schrodinger¨ operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), pp. 151–218. [Alvarez & Carreras81] A. Alvarez & B. Carreras, Interaction dynamics for the solitary waves of a nonlinear Dirac model, Phys. Lett. A, 86 (1981), pp. 327–332. [Alvarez & Soler83] A. Alvarez & M. Soler, Energetic stability criterion for a nonlinear spinorial model, Phys. Rev. Lett., 50 (1983), pp. 1230–1233. [Alvarez & Soler86] A. Alvarez & M. Soler, Stability of the minimum solitary wave of a nonlinear spinorial model, Phys. Rev. D, 34 (1986), pp. 644–645. [Berkolaiko & Comech12] G. Berkolaiko & A. Comech, On spectral stability of solitary waves of nonlinear in 1D, Math. Model. Nat. Phenom., 7 (2012), pp. 13–31. [Berthier & Georgescu87] A. Berthier & V. Georgescu, On the point spectrum of Dirac op- erators, J. Funct. Anal., 71 (1987), pp. 309–338. [Bogolubsky79] I. L. Bogolubsky, On spinor stability, Phys. Lett. A, 73 (1979), pp. 87–90.

14 [Boussaid & Comech12] N. Boussaid & A. Comech, On spectral stability of , ArXiv e-prints, (2012). [Boussaid & Cuccagna12] N. Boussaid & S. Cuccagna, On stability of standing waves of nonlinear Dirac equations, Comm. Partial Differential Equations, 37 (2012), pp. 1001– 1056. [Cazenave & Vazquez´ 86] T. Cazenave & L. Vazquez,´ Existence of localized solutions for a classical nonlinear Dirac field, Comm. Math. Phys., 105 (1986), pp. 35–47. [Dirac28] P. Dirac, The quantum theory of the , Proc. R. Soc. A, 117 (1928), pp. 610–624. [Finkelstein et al.56] R. Finkelstein, C. Fronsdal, & P. Kaus, Nonlinear spinor field, Phys. Rev., 103 (1956), pp. 1571–1579. [Finkelstein et al.51] R. Finkelstein, R. LeLevier, & M. Ruderman, Nonlinear spinor fields, Phys. Rev., 83 (1951), pp. 326–332. [Gross & Neveu74] D. J. Gross & A. Neveu, Dynamical symmetry breaking in asymptoti- cally free field theories, Phys. Rev. D, 10 (1974), pp. 3235–3253. [Heisenberg57] W. Heisenberg, Quantum theory of fields and elementary particles, Rev. Mod. Phys., 29 (1957), pp. 269–278.

15 [Ivanenko38] D. D. Ivanenko, Notes to the theory of interaction via particles, Zh. Eksp.´ Teor. Fiz, 8 (1938), pp. 260–266.

[Lee & Gavrielides75] S. Y. Lee & A. Gavrielides, Quantization of the localized solutions in two-dimensional field theories of massive fermions, Phys. Rev. D, 12 (1975), pp. 3880–3886.

[Pelinovsky & Stefanov12] D. E. Pelinovsky & A. Stefanov, Asymptotic stability of small gap in nonlinear Dirac equations, J. Math. Phys., 53 (2012), pp. 073705, 27.

[Schrodinger¨ 26] E. Schrodinger,¨ Quantisierung als Eigenwertproblem, Ann. Phys., 386 (1926), pp. 109–139.

[Soler70] M. Soler, Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, 1 (1970), pp. 2766–2769.

[Strauss & Vazquez´ 86] W. A. Strauss & L. Vazquez,´ Stability under dilations of nonlinear spinor fields, Phys. Rev. D (3), 34 (1986), pp. 641–643.

[Thirring58] W. E. Thirring, A soluble relativistic field theory, Ann. Physics, 3 (1958), pp. 91–112.

16