Linear Stability and Instability of Self-Interacting Spinor Field

Linear Stability and Instability of Self-Interacting Spinor Field

Linear stability and instability of self-interacting spinor field ANDREW COMECH Texas A&M University, College Station, TX, USA October, 2013 Einstein: E2 = p2 + m2, Schrodinger:¨ (i∂ )2ψ = ( i )2ψ + m2ψ t − ∇ 2 E = m2 + p2 m + p , [Schrodinger¨ 26]: i∂ ψ = 1 ( i )2ψ ≈ 2m t 2m − ∇ p [Dirac28]: E = p2 + m2 = α p + βm, · p i∂ ψ = ( iα + βm) ψ, ψ(x,t) C4, x R3 t − ·∇ ∈ ∈ Dm | {z } 2 2 α (1≤j≤3) and β are self-adjoint and such that D = ∆+ m j m − 0 σj I2 0 Standard choice: αj = (Pauli matrices), β = σj 0 0 I2 − 1 Self-interacting spinors Models of self-interacting spinor field: [Ivanenko38, Finkelstein et al.51, Finkelstein et al.56, Heisenberg57] [...] Massive Thirring model [Thirring58] in (n+1)D: k+1 µ µ 2 LMTM = ψ¯(iγ ∂ m)ψ + ψγ¯ ψ ψγ¯ ψ k > 0 (V-V) µ − µ Soler model [Soler70] in (n+1)D: µ k+1 LSoler = ψ¯(iγ ∂ m)ψ +(ψψ¯ ) (S-S) µ − In (1+1)D: massive Gross-Neveu model [Gross & Neveu74, Lee & Gavrielides75] 2 Soler model: NLD with scalar-scalar self-interaction i∂ ψ = ( iα + mβ) ψ (ψψ¯ )kβψ, ψ CN , x Rn t − ·∇ − ∈ ∈ Dm | {z } [Soler70, Cazenave & Vazquez´ 86]: existence of solitary waves in R3, • ψ(x,t) = φ (x)e−iωt, ω (0,m) ω ∈ Attempts at stability: [Bogolubsky79, Alvarez & Soler86, Strauss & Vazquez´ 86] ... • Numerics [Alvarez & Carreras81, Alvarez & Soler83, Berkolaiko & Comech12] suggest that (all?)• solitary waves in 1D cubic Soler model are stable Assuming linear stability, one tries to prove asymptotic stability • [Pelinovsky & Stefanov12, Boussaid & Cuccagna12] 3 Nonrelativistic limit of NLD: ω m → φ(x) Solitary wave: ψ(x,t) = e−iωt; φ, ρ C2 ρ(x) ∈ 0 σ iψ˙ = i ·∇ + mβ ψ (ψψ¯ )kβψ, − σ 0 − ·∇ φ ρ φ φ ω iσ + m φ 2k ρ ≈ − ·∇ φ ρ −| | ρ − − If ω . m: 2mρ iσ φ, φ satisfies NLS: ≈ − ·∇ 1 (m ω)φ = ∆φ φ 2kφ. − − −2m −| | Scaling: φ(x) = ǫ1/kΦ(ǫx), ǫ = √m ω − 1 Φ = ∆Φ Φ 2kΦ − −2m −| | 4 NLD: linearization at a solitary wave −iωt −iωt Given φω(x)e , consider ψ(x,t) = φω(x)+ r(x,t) e Linearized eqn on r(x,t) CN , i∂ r = D r ωr + ... (m + ω)i ∈ t m − Re r 0 Dm ω + ... Re r ∂t = − Im r Dm + ω + ... 0 Im r − (m − ω)i Aω | {z } - σ(D ω) m − σess(Aω) r0 m ω m ω − − − 5 σ(Aω) Linear instability of NLD 2mi (m + ω)i Theorem 1 ([Comech & Guan & Gustafson12]). If NLSk is linearly unstable, then for ω . m, λ σ (A ), (m − ω)i ∃ ± ω ∈ d ω t tt - - Re λω > 0, λω 0 ω−→→m −λω λω 1D, above quintic 2D, above cubic 3D cubic and above −2mi ω < m ω = m Proof: Rescale; use Rayleigh-Schrodinger¨ perturbation theory. 2 6 σ(Aω) Linear stability of NLD 2mi m ω i 12 ( + ) Theorem 2 ([Boussaid & Comech ]). t 2ωi Assume λ σ (A ), ω . m ω ∈ p ω 1. λω 0; 2mi . ω−→→m { ± } (m − ω)i t tt - - 2. If Re λω = 0, then λω 0, ω−→→m −λω λω λω Λ:= lim σp(NLSk) ω→m (m ω) ∈ − 3. Λ = 0 unless critical case: t 2D quintic; 3D cubic −2mi ω < m ω = m Proof: Limiting absorption principle [Agmon75, Berthier & Georgescu87] 2 7 σ(Aω) Linear stability of NLD 2mi (m + ω)i Corollary 3 ([Boussaid & Comech12]). 1D cubic: (m − ω)i φ e−iωt are linearly stable for ω . m t - - ω t −2mi Remark 4. Also true for 1D cubic and 2D quintic ω < m ω m (“charge-critical NLS”) = 8 1 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 1 0.8 0.6 0.4 0.2 0 -1 -0.5 0 0.5 1 Figure 1: Upper half of the spectral gap. TOP: 1D cubic Soler BOTTOM: 1D cubic massive Thirring 9 1 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 1 0.8 0.6 0.4 0.2 0 -1 -0.5 0 0.5 1 Figure 2: 1D quintic (“charge critical”). TOP: Soler; BOTTOM: massive Thirring 10 1 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 1 0.8 0.6 0.4 0.2 0 -1 -0.5 0 0.5 1 Figure 3: 1D, seventh order. Soler and MTM 11 σ(AΩ) Bifurcations from σess (m + Ω)i Let Ω (0,m) λ λΩ ω r r r vr r ∈ r r r r Theorem 5 ([Boussaid & Comech12]). (m − Ω)i If λω σp(Aω), Re λω = 0, ∈ t - λω λΩ iR ω−→→Ω ∈ then λΩ σp(AΩ), λΩ m +Ω r r r r ∈ | | ≤ r r vr r r Moreover, λ σ iR λ m + Ω ∈ p ∩ ⇒ | | ≤ | | 12 Theorem 6 ( [[Berkolaiko & Comech & Sukhtyaev13]). Q′(ω) = 0 and E(ω) = 0 correspond to the boundary of the linear instability region 15 10 5 0 −5 1 0.8 0.6 0.4 0.2 0 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 Figure 4: quadratic MTM. TOP: Charge (······) and energy ( ) as functions of ω. −− BOTTOM: Purely imaginary eigenvalues (•, ) of the linearized equation in the spectral gap. 13 References [Agmon75] S. Agmon, Spectral properties of Schrodinger¨ operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), pp. 151–218. [Alvarez & Carreras81] A. Alvarez & B. Carreras, Interaction dynamics for the solitary waves of a nonlinear Dirac model, Phys. Lett. A, 86 (1981), pp. 327–332. [Alvarez & Soler83] A. Alvarez & M. Soler, Energetic stability criterion for a nonlinear spinorial model, Phys. Rev. Lett., 50 (1983), pp. 1230–1233. [Alvarez & Soler86] A. Alvarez & M. Soler, Stability of the minimum solitary wave of a nonlinear spinorial model, Phys. Rev. D, 34 (1986), pp. 644–645. [Berkolaiko & Comech12] G. Berkolaiko & A. Comech, On spectral stability of solitary waves of nonlinear Dirac equation in 1D, Math. Model. Nat. Phenom., 7 (2012), pp. 13–31. [Berthier & Georgescu87] A. Berthier & V. Georgescu, On the point spectrum of Dirac op- erators, J. Funct. Anal., 71 (1987), pp. 309–338. [Bogolubsky79] I. L. Bogolubsky, On spinor soliton stability, Phys. Lett. A, 73 (1979), pp. 87–90. 14 [Boussaid & Comech12] N. Boussaid & A. Comech, On spectral stability of nonlinear Dirac equation, ArXiv e-prints, (2012). [Boussaid & Cuccagna12] N. Boussaid & S. Cuccagna, On stability of standing waves of nonlinear Dirac equations, Comm. Partial Differential Equations, 37 (2012), pp. 1001– 1056. [Cazenave & Vazquez´ 86] T. Cazenave & L. Vazquez,´ Existence of localized solutions for a classical nonlinear Dirac field, Comm. Math. Phys., 105 (1986), pp. 35–47. [Dirac28] P. Dirac, The quantum theory of the electron, Proc. R. Soc. A, 117 (1928), pp. 610–624. [Finkelstein et al.56] R. Finkelstein, C. Fronsdal, & P. Kaus, Nonlinear spinor field, Phys. Rev., 103 (1956), pp. 1571–1579. [Finkelstein et al.51] R. Finkelstein, R. LeLevier, & M. Ruderman, Nonlinear spinor fields, Phys. Rev., 83 (1951), pp. 326–332. [Gross & Neveu74] D. J. Gross & A. Neveu, Dynamical symmetry breaking in asymptoti- cally free field theories, Phys. Rev. D, 10 (1974), pp. 3235–3253. [Heisenberg57] W. Heisenberg, Quantum theory of fields and elementary particles, Rev. Mod. Phys., 29 (1957), pp. 269–278. 15 [Ivanenko38] D. D. Ivanenko, Notes to the theory of interaction via particles, Zh. Eksp.´ Teor. Fiz, 8 (1938), pp. 260–266. [Lee & Gavrielides75] S. Y. Lee & A. Gavrielides, Quantization of the localized solutions in two-dimensional field theories of massive fermions, Phys. Rev. D, 12 (1975), pp. 3880–3886. [Pelinovsky & Stefanov12] D. E. Pelinovsky & A. Stefanov, Asymptotic stability of small gap solitons in nonlinear Dirac equations, J. Math. Phys., 53 (2012), pp. 073705, 27. [Schrodinger¨ 26] E. Schrodinger,¨ Quantisierung als Eigenwertproblem, Ann. Phys., 386 (1926), pp. 109–139. [Soler70] M. Soler, Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, 1 (1970), pp. 2766–2769. [Strauss & Vazquez´ 86] W. A. Strauss & L. Vazquez,´ Stability under dilations of nonlinear spinor fields, Phys. Rev. D (3), 34 (1986), pp. 641–643. [Thirring58] W. E. Thirring, A soluble relativistic field theory, Ann. Physics, 3 (1958), pp. 91–112. 16.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    16 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us