Global Questions for Evolution Equations Landau-Lifshitz Flow and Dirac Equation

Total Page:16

File Type:pdf, Size:1020Kb

Global Questions for Evolution Equations Landau-Lifshitz Flow and Dirac Equation Global questions for evolution equations Landau-Lifshitz flow and Dirac equation by Meijiao Guan M.Sc., Huazhong University of Science and Technology, 2003 Ph.D., The University of British Columbia, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Mathematics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) July 2009 © Meijiao Guan 2009 Abstract This thesis concerns the stationary solutions and their stability for some evolution equations from physics. For these equations, the basic questions regarding the solutions concern existence, uniqueness, stability and singular ity formation. In this thesis, we consider two different classes of equations: the Landau-Lifshitz equations, and nonlinear Dirac equations. There are two different definitions of stationary solutions. For the Landau-Lifshitz equation, the stationary solution is time-independent, while for the Dirac equation, the stationary solution, also called solitary wave solution or ground state solution, is a solution which propagates without changing its shape. The class of Landau-Lifshitz equations (including harmonic map heat flow and Schrödinger map equations) arises in the study of ferromagnets (and anti-ferromagnets), liquid crystals, and is also very natural from a geometric standpoint. Harmonic maps are the stationary solutions to these equations. My thesis concerns the problems of singularity formation vs. global regu larity and long time asymptotics when the target space is a 2-sphere. We consider maps with some symmetry. I show that for m-equivariant maps with energy close to the harmonic map energy, the solutions to Landau Lifshitz equations are global in time and converge to a specific family of harmonic maps for big m, while for m = 1, a finite time blow up solution is constructed for harmonic map heat flow. A model equation for Schrödinger map equations is also studied in my thesis. Global existence and scattering for small solutions and local well-posedness for solutions with finite energy are proved. The existence of standing wave solutions for the nonlinear Dirac equation is studied in my thesis. I construct a branch of solutions which is a con tinuous curve by a perturbation method. It refines the existing results that infinitely many stationary solutions exist, but with uniqueness and continu ity unknown. The ground state solutions of nonlinear Schrodinger equations yield solutions to nonlinear Dirac equations. We also show that this branch of solutions is unstable. This leads to a rigorous proof of the instability of the ground states, confirming non-rigorous results in the physical literature. 11 Table of Contents Abstract ii Table of Contents iii Acknowledgements v Statement of Co-Authorship vi 1 Introduction and main results . 1 1.1 Introduction 1 1.1.1 Landau-Lifshitz flow 2 1.1.2 Model equation for Schrodinger maps 9 1.1.3 Nonlinear Dirac equations 10 1.2 Objectives 13 1.2.1 Global well posedness and blow up for Landau-Lifshitz flow 14 1.2.2 Well-posedness and scattering of a model equation for Schrodinger maps 15 1.2.3 Solitary wave solutions for a class of nonlinear Dirac equations 16 1.2.4 Instability of standing waves for the nonllnear Dirac equations 16 Bibliography 17 2 Global existence and blow up for Landau-Lifshitz flow . 23 2.1 Introduction and main results 23 2.2 Derived nonlinear heat equation 29 2.3 Proof of the main theorem 38 2.4 Finite time blow up 44 Bibliography 48 II’ Table of Contents 3 Well-posedness and scattering for a model equation for Schrödinger maps 50 3.1 Introduction and main results 50 3.2 Local weilposedness 56 3.3 Global small solutions and scattering states 62 Bibliography 67 4 Solitary wave solutions for a class of nonlinear Dirac equa tions 69 4.1 Introduction 69 4.2 Preliminary lemmas 73 4.3 Proof of the main theorems 76 Bibliography 88 5 Instability of solitary waves for nonlinear Dirac equations 90 5.1 Introduction 90 5.2 Spectral analysis for the linearized operator 95 Bibliography 107 6 Conclusions 109 6.1 Summary 109 6.2 Future research 111 6.2.1 Blow up for 1-equivariant harmonic map heat flow . 111 6.2.2 Construction of unique ground states for nonlinear Dirac equation when 0 < 8 < 1 112 6.2.3 Asymptotic stability for the model equation for Schrödinger maps 113 6.2.4 Nonlinear instability of the ground states 113 Bibliography 115 iv Acknowledgements I wish to express my sincere gratitude to my supervisors (in alphabetical order), professor Stephen Gustafson and professor Tai-Peng Tsai for their continued encouragement and invaluable suggestions during my studies at UBC. Without their inspiration and financial support, I could not finish my degree. Also I acknowledge my debt to Dr. Kyungkeun Kang and professor Dmitry Pelinovsky for their useful communications for my research. I would like to thank the department of Mathematics at UBC. Special thanks is devoted to our department secretary Lee Yupitun. Furthermore, I am deeply indebted to my friends at UBC. Throughout my thesis-writing period, they provided good advice to help get my thesis done and shared their experiences in many different ways. Lastly, I express my special thanks to my parents and my husband. Thanks for their encouragement and support during these years. This thesis is particularly devoted to the birth of my daughter. v Statement of Co-Authorship The second chapter of my thesis is co-written with my supervisors Stephen Gustafson and Tai-Peng Tsai. Inspired by their study on Schrödinger maps with energy near the harmonic map energy, we want to extend the anal ysis to harmonic map heat flow. Harmonic maps are the stationary solu tions to Landau-Lifshitz equations, including harmonic map heat flow and Schrödinger maps. These map equations should share some common proper ties. For this paper I obtained the key space-time estimates for the nonlinear heat-type equation in section (2.2). In section (2.3), the technical lemmas are proved by my supervisors. The manuscript was finished by me, and my supervisors made the correction. Chapter 5 is also a co-written with my supervisor Stephen Gustafson. The problem arose from the previous chapter on the nonlinear Dirac equa tion. I conjectured that the ground states are unstable. But we needed to verify it through the analysis of the linearized operator. Together with my supervisor Stephen Gustafson, we determined how to relate the eigenvalue to the linearized operator of nonlinear Schrodinger equation at its ground states (see Theorem 5.2.3). Finally I finished the manuscript. vi Chapter 1 Introduction and main results 1.1 Introduction Nonlinear evolution equations (partial differential equations with a time vari able) arise throughout the sciences as descriptions of dynamics in various sys tems. The classical examples include nonlinear heat, wave and Schrödinger equations. Recently, evolution equations have emerged as an important tool in geometry. A prime example is the application of the Ricci flow to the Poincaré conjecture. For the evolution equations, once the existence of a local in time solu tion for the Cauchy problem is established, the most basic global questions concern the existence of stationary solutions and their stability. Another important question is whether or not solutions can form singularities, which may prevent the solutions from existing for all times, and may represent a breakdown of the model. This thesis addresses these basic questions for two classes of equations: Landau-Lifshitz equations which arise both in physics and geometry, and nonlinear Dirac equations coming from physics. These equations share a common feature: they are equations not for typically scalar valued functions, but rather for maps into manifolds and vector space respectively. Then the analysis of these equations become more challenging. For Landau-Lifshitz equations, the target space is a manifold, more precisely the 2-sphere. It is the nontrivial geometry of the target which creates the nonlinearity and provides many of the interesting and difficult features of this problem. In the Dirac case, the map is a four-dimensional complex vector C4. Although this is a linear space, the vector map significantly complicates the construction of stationary solutions and the analysis of their stability. In what follows in this chapter, a brief review, including the physical and mathematical backgrounds, as well as the most recent known results related to my thesis are provided in Section 1.1. In Section 1.2, the main objectives 1 1.1. Introduction and methodologies in my thesis are introduced. 1.1.1 Landau-Lifshitz flow The principle assumption of the macroscopic theory of ferromagnetism is that the state of a magnetic crystal is describable by the magnetization vector m, which is a function of space and time. Magnetization m is the quantity of magnetic moment per unit volume. Suppose in a small region dV C , there is a number N of magnetic moments then the magnetization is defined as m= It is known from quantum mechanics that the magnetic moment is propor tional to the angular moment of electrons. By the momentum theorem, the rate of change of the angular momentum is equal to the torque exerted on the particle by the magnetic field H. Thus one ends up with a model which describes the precession of the magnetic moment j around the field H = — x H, where -y is the absolute value of the gyromagnetic ratio. By taking the volume average of both sides, one has the following continuum gyromagnetic precession model 8m = —‘ym x H. In 1935 Landau and Lifshitz proposed the Landau-Lifshitz equation [51] as a model for the precessional motion of the magnetization, in which H is replaced by the effective field Heff.
Recommended publications
  • What Is the Dirac Equation?
    What is the Dirac equation? M. Burak Erdo˘gan ∗ William R. Green y Ebru Toprak z July 15, 2021 at all times, and hence the model needs to be first or- der in time, [Tha92]. In addition, it should conserve In the early part of the 20th century huge advances the L2 norm of solutions. Dirac combined the quan- were made in theoretical physics that have led to tum mechanical notions of energy and momentum vast mathematical developments and exciting open operators E = i~@t, p = −i~rx with the relativis- 2 2 2 problems. Einstein's development of relativistic the- tic Pythagorean energy relation E = (cp) + (E0) 2 ory in the first decade was followed by Schr¨odinger's where E0 = mc is the rest energy. quantum mechanical theory in 1925. Einstein's the- Inserting the energy and momentum operators into ory could be used to describe bodies moving at great the energy relation leads to a Klein{Gordon equation speeds, while Schr¨odinger'stheory described the evo- 2 2 2 4 lution of very small particles. Both models break −~ tt = (−~ ∆x + m c ) : down when attempting to describe the evolution of The Klein{Gordon equation is second order, and does small particles moving at great speeds. In 1927, Paul not have an L2-conservation law. To remedy these Dirac sought to reconcile these theories and intro- shortcomings, Dirac sought to develop an operator1 duced the Dirac equation to describe relativitistic quantum mechanics. 2 Dm = −ic~α1@x1 − ic~α2@x2 − ic~α3@x3 + mc β Dirac's formulation of a hyperbolic system of par- tial differential equations has provided fundamental which could formally act as a square root of the Klein- 2 2 2 models and insights in a variety of fields from parti- Gordon operator, that is, satisfy Dm = −c ~ ∆ + 2 4 cle physics and quantum field theory to more recent m c .
    [Show full text]
  • Dirac Equation - Wikipedia
    Dirac equation - Wikipedia https://en.wikipedia.org/wiki/Dirac_equation Dirac equation From Wikipedia, the free encyclopedia In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it 1 describes all spin-2 massive particles such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity,[1] and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine details of the hydrogen spectrum in a completely rigorous way. The equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved and which was experimentally confirmed several years later. It also provided a theoretical justification for the introduction of several component wave functions in Pauli's phenomenological theory of spin; the wave functions in the Dirac theory are vectors of four complex numbers (known as bispinors), two of which resemble the Pauli wavefunction in the non-relativistic limit, in contrast to the Schrödinger equation which described wave functions of only one complex value. Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation. Although Dirac did not at first fully appreciate the importance of his results, the entailed explanation of spin as a consequence of the union of quantum mechanics and relativity—and the eventual discovery of the positron—represents one of the great triumphs of theoretical physics.
    [Show full text]
  • Transverse Instability of Line Solitary Waves in Massive Dirac Equations
    J Nonlinear Sci (2016) 26:365–403 DOI 10.1007/s00332-015-9278-1 Transverse Instability of Line Solitary Waves in Massive Dirac Equations Dmitry Pelinovsky1 · Yusuke Shimabukuro1 Received: 7 November 2014 / Accepted: 23 October 2015 / Published online: 6 November 2015 © Springer Science+Business Media New York 2015 Abstract Working in the context of localized modes in periodic potentials, we con- sider two systems of the massive Dirac equations in two spatial dimensions. The first system, a generalized massive Thirring model, is derived for the periodic stripe poten- tials. The second one, a generalized massive Gross–Neveu equation, is derived for the hexagonal potentials. In both cases, we prove analytically that the line solitary waves are spectrally unstable with respect to periodic transverse perturbations of large periods. The spectral instability is induced by the spatial translation for the general- ized massive Thirring model and by the gauge rotation for the generalized massive Gross–Neveu model. We also observe numerically that the spectral instability holds for the transverse perturbations of any period in the generalized massive Thirring model and exhibits a finite threshold on the period of the transverse perturbations in the generalized massive Gross–Neveu model. Keywords Massive Thirring model · Massive Gross-Neveu equation · Line solitary waves · Transverse instability · Lyapunov-Schmidt reduction method · Chebyshev interpolation method Mathematics Subject Classification 35Q41 · 37K40 · 37K45 Communicated by Michael I. Weinstein. B Dmitry Pelinovsky [email protected] 1 Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4K1, Canada 123 366 J Nonlinear Sci (2016) 26:365–403 1 Introduction Starting with pioneer contributions of V.E.
    [Show full text]
  • International Centre for Theoretical Physics
    INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS OUTLINE OF A NONLINEAR, RELATIVISTIC QUANTUM MECHANICS OF EXTENDED PARTICLES Eckehard W. Mielke INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION 1981 MIRAMARE-TRIESTE IC/81/9 International Atomic Energy Agency and United Nations Educational Scientific and Cultural Organization 3TERKATIOHAL CENTRE FOR THEORETICAL PHTSICS OUTLINE OF A NONLINEAR, KELATIVXSTTC QUANTUM HECHAHICS OF EXTENDED PARTICLES* Eckehard W. Mielke International Centre for Theoretical Physics, Trieste, Italy. MIRAHABE - TRIESTE January 198l • Submitted for publication. ABSTRACT I. INTRODUCTION AMD MOTIVATION A quantum theory of intrinsically extended particles similar to de Broglie's In recent years the conviction has apparently increased among most theory of the Double Solution is proposed, A rational notion of the particle's physicists that all fundamental interactions between particles - including extension is enthroned by realizing its internal structure via soliton-type gravity - can be comprehended by appropriate extensions of local gauge theories. solutions of nonlinear, relativistic wave equations. These droplet-type waves The principle of gauge invarisince was first formulated in have a quasi-objective character except for certain boundary conditions vhich 1923 by Hermann Weyl[l57] with the aim to give a proper connection between may be subject to stochastic fluctuations. More precisely, this assumption Dirac's relativistic quantum theory [37] of the electron and the Maxwell- amounts to a probabilistic description of the center of a soliton such that it Lorentz's theory of electromagnetism. Later Yang and Mills [167] as well as would follow the conventional quantum-mechanical formalism in the limit of zero Sharp were able to extend the latter theory to a nonabelian gauge particle radius.
    [Show full text]
  • Unified Equations of Boson and Fermion at High Energy and Some
    Unified Equations of Boson and Fermion at High Energy and Some Unifications in Particle Physics Yi-Fang Chang Department of Physics, Yunnan University, Kunming, 650091, China (e-mail: [email protected]) Abstract: We suggest some possible approaches of the unified equations of boson and fermion, which correspond to the unified statistics at high energy. A. The spin terms of equations can be neglected. B. The mass terms of equations can be neglected. C. The known equations of formal unification change to the same. They can be combined each other. We derive the chaos solution of the nonlinear equation, in which the chaos point should be a unified scale. Moreover, various unifications in particle physics are discussed. It includes the unifications of interactions and the unified collision cross sections, which at high energy trend toward constant and rise as energy increases. Key words: particle, unification, equation, boson, fermion, high energy, collision, interaction PACS: 12.10.-g; 11.10.Lm; 12.90.+b; 12.10.Dm 1. Introduction Various unifications are all very important questions in particle physics. In 1930 Band discussed a new relativity unified field theory and wave mechanics [1,2]. Then Rojansky researched the possibility of a unified interpretation of electrons and protons [3]. By the extended Maxwell-Lorentz equations to five dimensions, Corben showed a simple unified field theory of gravitational and electromagnetic phenomena [4,5]. Hoffmann proposed the projective relativity, which is led to a formal unification of the gravitational and electromagnetic fields of the general relativity, and yields field equations unifying the gravitational and vector meson fields [6].
    [Show full text]
  • The Nonlinear Dirac Equation in Bose-Einstein Condensates
    The Nonlinear Dirac Equation in Bose-Einstein Condensates: Foundation and Symmetries L. H. Haddad and L. D. Carr Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA Abstract We show that Bose-Einstein condensates in a honeycomb optical lattice are described by a nonlinear Dirac equation in the long wavelength, mean field limit. Unlike nonlinear Dirac equations posited by particle theorists, which are designed to preserve the principle of relativity, i.e., Poincar´ecovariance, the nonlinear Dirac equation for Bose-Einstein condensates breaks this symmetry. We present a rigorous derivation of the nonlinear Dirac equation from first principles. We provide a thorough discussion of all symmetries broken and maintained. Key words: Nonlinear Dirac equation, Nonlinear Schrodinger equation, Bose-Einstein condensates, Ultra-cold atoms, Optical lattices, Graphene PACS: 05.45.-a, 03.75.-b, 67.85.Hj 1. Introduction perature and interaction sign, magnitude, and symmetry can be controlled externally. Moreover, 2D physics has Recently the first truly two-dimensional (2D) solid state recently been of great interest in this context, in the form material, graphene, was created in the laboratory [1,2]. One of the Berzinskii-Kosterlitz-Thouless crossover [5], and 2D of the most exciting aspects of this novel material is that systems underpinned by lattices are immediately available long wavelength excitations are described by a Dirac equa- in experiments. Instead of considering ultra-cold fermions, tion for massless particles, with a “speed of light” equal to which could be used to produce an near-exact analog of the Fermi velocity vF c/300 [3]. Thus one can study rela- graphene [6], we consider ultra-cold bosons.
    [Show full text]
  • AN OVERVIEW on LINEAR and NONLINEAR DIRAC EQUATIONS 1. Introduction and Basic Properties of the Dirac Operator. in Relativistic
    DISCRETE AND CONTINUOUS Website: http://AIMsciences.org DYNAMICAL SYSTEMS Volume 8, Number 2, April 2002 pp. 381–397 AN OVERVIEW ON LINEAR AND NONLINEAR DIRAC EQUATIONS MARIA J. ESTEBAN AND ERIC SER´ E´ Abstract. In this paper we review the variational treatment of linear and nonlinear eigenvalue problems involving the Dirac operator. These problems arise when searching for bound states and bound energies of electrons sub- mitted to external or self-consistent interactions in a relativistic framework. The corresponding energy functionals are totally indefinite and that creates difficulties to define variational principles related to those equations. Here we describe recent works dealing with this kind of problems. In particular we describe the solutions found to linear Dirac equations with external potential, the Maxwell-Dirac equations, some nonlinear Dirac equations with local non- linear terms and the Dirac-Fock equations arising in the description of atoms and molecules. 1. Introduction and basic properties of the dirac operator. In relativistic quantum mechanics [11], the state of a free electron is represented by a wave func- tion Ψ(t, x) with Ψ(t, .) ∈ L2(IR3, CI 4) for any t. This wave satisfies the free Dirac equation: 3 X 2 i ∂t Ψ = H0Ψ, with H0 = −ic~ αk∂k + mc β, (1.1) k=1 where c denotes the speed of light, m > 0, the mass of the electron, and ~ is Planck’s constant. In the Dirac equation, α1, α2, α3 and β are 4×4 complex matrices, whose standard form (in 2 × 2 blocks) is I 0 0 σk β = , αk = (k = 1, 2, 3), 0 −I σk 0 with 0 1 0 −i 1 0 σ = , σ = , σ = .
    [Show full text]
  • Tight-Binding Model and Ab Initio Calculation of Silicene with Strong
    Tight-binding model and ab initio calculation of silicene with strong spin-orbit coupling in low-energy limit Chen-Huan Wu ∗ Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China April 6, 2018 We carry out both the tight-binding model and the ab initio to study the layered silicene, the spin, valley, sublattice degrees of freedom are taken into consider and the effects of electric field, magnetic field, and even the light in finite frequency together with its interesting optical propertice, which are all closely related to the spin-orbit coupling and Rashba coupling and lead to the tunable phase transitions (between the nontrivial topological phase which has nonzero Chern number or nonzero spin Chern number and the trivial phase). An exotic quantum anomalous Hall insulator phase are found which has nonzero spin Chern number and nonzero valley Chern number and as a giant-application-potential spintronic and valleytronics in the two- ternimate devices based on the monolayer silicene for the information transmission. In fact, the gap-out action can be understanded by analyse the Dirac mass as well as the Zeeman splitting or the external-field-induced symmetry-broken, and the changes of gap has a general nonmonotone-variation characteristic under both the effects of electron filed-induced Rashba-coupling R2(E ) and the electron field-induced band gap, and the band inversion related to the spin-orbit⊥ coupling which absorbs both the spin and orbital angular of momentum may happen during this process.
    [Show full text]
  • Variational Methods in Relativistic Quantum Mechanics
    VARIATIONAL METHODS IN RELATIVISTIC QUANTUM MECHANICS MARIA J. ESTEBAN, MATHIEU LEWIN, AND ERIC SER´ E´ Abstract. This review is devoted to the study of stationary solutions of lin- ear and nonlinear equations from relativistic quantum mechanics, involving the Dirac operator. The solutions are found as critical points of an energy func- tional. Contrary to the Laplacian appearing in the equations of nonrelativistic quantum mechanics, the Dirac operator has a negative continuous spectrum which is not bounded from below. This has two main consequences. First, the energy functional is strongly indefinite. Second, the Euler-Lagrange equations are linear or nonlinear eigenvalue problems with eigenvalues lying in a spectral gap (between the negative and positive continuous spectra). Moreover, since we work in the space domain R3, the Palais-Smale condition is not satisfied. For these reasons, the problems discussed in this review pose a challenge in the Calculus of Variations. The existence proofs involve sophisticated tools from nonlinear analysis and have required new variational methods which are now applied to other problems. In the first part, we consider the fixed eigenvalue problem for models of a free self-interacting relativistic particle. They allow to describe the localized state of a spin-1/2 particle (a fermion) which propagates without changing its shape. This includes the Soler models, and the Maxwell-Dirac or Klein- Gordon-Dirac equations. The second part is devoted to the presentation of min-max principles al- lowing to characterize and compute the eigenvalues of linear Dirac operators with an external potential, in the gap of their essential spectrum. Many con- sequences of these min-max characterizations are presented, among them a new kind of Hardy-like inequalities and a stable algorithm to compute the eigenvalues.
    [Show full text]
  • Symmetries of Equations of Quantum Mechanics
    SYMMETRIES OF EQUATIONS OF QUANTUM MECHANICS TABLE OF CONTENTS Chapter I. LOCAL SYMMETRY OF BASIS EQUATIONS OF RELATIVISTIC QUANTUM THEORY 1. Local Symmetry of the Klein-Gordon-Fock Equation 1.1.Introduction ............................................ 1 1.2.TheIAoftheKGFEquation ............................... 3 1.3. Symmetry of the d’Alembert Equation . 5 1.4.LorentzTransformations................................... 6 1.5.ThePoincaréGroup ...................................... 9 1.6.TheConformalTransformations............................ 12 1.7. The Discrete Symmetry Transformations . 14 2. Local Symmetry of the Dirac Equation 2.1.TheDiracEquation...................................... 16 2.2. Various Formulations of the Dirac equation . 17 2.3.AlgebraoftheDiracMatrices ............................. 19 2.4.SOsandIAs ........................................... 19 2.5. The IA of the Dirac Equation in the Class M1 ................. 20 2.6.TheOperatorsofMassandSpin ........................... 22 2.7. Manifestly Hermitian Form of Poincaré Group Generators . 23 2.8. Symmetries of the Massless Dirac Equation . 24 2.9. Lorentz and Conformal Transformations of Solutions of the Dirac Equation............................................... 25 2.10.P-, T-, and C-Transformations............................. 27 3. Maxwell’s Equations 3.1.Introduction .......................................... 28 3.2. Various Formulations of Maxwell’s Equations . 30 i 3.3. The Equation for the Vector-Potential . 32 3.4. The IA of Maxwell’s Equations in the Class M1
    [Show full text]
  • Rigorous Derivation of Nonlinear Dirac Equations for Wave Propagation in Honeycomb Structures
    RIGOROUS DERIVATION OF NONLINEAR DIRAC EQUATIONS FOR WAVE PROPAGATION IN HONEYCOMB STRUCTURES JACK ARBUNICH AND CHRISTOF SPARBER Abstract. We consider a nonlinear Schr¨odingerequation in two spatial di- mensions subject to a periodic honeycomb lattice potential. Using a multi- scale expansion together with rigorous error estimates, we derive an effective model of nonlinear Dirac type. The latter describes the propagation of slowly modulated, weakly nonlinear waves spectrally localized near a Dirac point. 1. Introduction Two-dimensional honeycomb lattice structures have attracted considerable inter- est in both physics and applied mathematics due to their unusual transport prop- erties. This has been particularly stimulated by the recent fabrication of graphene, a mono-crystalline graphitic film in which electrons behave like two-dimensional Dirac fermions without mass, cf. [9] for a recent review. Honeycomb structures also appear in nonlinear optics, modeling laser beam propagation in certain types of photonic crystals, see, e.g., [3, 21] for more details. In both situations, the starting point is a two-dimensional Schr¨odingeroperator 2 (1.1) H = −∆ + Vper(x); x 2 R ; 1 2 where Vper 2 C (R ; R), denotes a smooth potential which is periodic with respect to a honeycomb lattice Λ with fundamental cell Y ⊂ Λ (see Section 2 below for more details). C. L. Fefferman and M. I. Weinstein in their seminal paper [16] proved that the associated quasi-particle dispersion relation generically exhibits conical singularities at the points of degeneracy, the so-called Dirac points. In turn, this yields effective equations of (massless) Dirac type for wave packets spectrally localized around these singularities, see [1, 17, 18].
    [Show full text]
  • LAN-DISSERTATION-2019.Pdf (967.2Kb)
    ON THE SPECTRAL STABILITY OF SOLITARY WAVES A Dissertation by RUOMENG LAN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Andrew Comech Co-Chair of Committee, Alexei Poltoraski Committee Members, Artem Abanov Gregory Berkolaiko Head of Department, Sarah Witherspoon December 2019 Major Subject: Mathematics Copyright 2019 Ruomeng Lan ABSTRACT We study the spectral stability of the solitary wave solutions to the nonlinear Dirac equations. We focus on two types of nonlinearity: the Soler type and the Coulomb type. For the Soler model, we apply the Evans function technique to explore the point spectrum of the linearized operator at a solitary wave solution to the 2D and 3D cases. For the toy Coulomb model, the solitary wave solutions are no longer SU(1; 1) symmetric. We show numerically that there are no eigenvalues near 2!i in the nonrelativistic limit (! . m) and the spectral stability persists in spite of the absence of SU(1; 1) symmetry. ii DEDICATION To my wife Yao and my son Xiao. iii ACKNOWLEDGMENTS I would like to express my deepest gratitude to my advisor, Dr. Andrew Comech, for intro- ducing me to the nonlinear Dirac equation and the spectral theory. I appreciate his patience and encouragement. I cannot complete the dissertation without his guidance and help. I would like to thank the committee member, Dr. Alexei Poltoratski, Dr. Gregory Berkolaiko and Dr. Arterm Abanov for offering their time and support. I thank Dr. Ciprian Foias and Dr.
    [Show full text]