Terence Tao Analysis I Third Edition Texts and Readings in Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Terence Tao Analysis I Third Edition Texts and Readings in Mathematics Texts and Readings in Mathematics 37 Terence Tao Analysis I Third Edition Texts and Readings in Mathematics Volume 37 Advisory Editor C.S. Seshadri, Chennai Mathematical Institute, Chennai Managing Editor Rajendra Bhatia, Indian Statistical Institute, New Delhi Editor Manindra Agrawal, Indian Institute of Technology Kanpur, Kanpur V. Balaji, Chennai Mathematical Institute, Chennai R.B. Bapat, Indian Statistical Institute, New Delhi V.S. Borkar, Indian Institute of Technology Bombay, Mumbai T.R. Ramadas, Chennai Mathematical Institute, Chennai V. Srinivas, Tata Institute of Fundamental Research, Mumbai The Texts and Readings in Mathematics series publishes high-quality textbooks, research-level monographs, lecture notes and contributed volumes. Undergraduate and graduate students of mathematics, research scholars, and teachers would find this book series useful. The volumes are carefully written as teaching aids and highlight characteristic features of the theory. The books in this series are co-published with Hindustan Book Agency, New Delhi, India. More information about this series at http://www.springer.com/series/15141 Terence Tao Analysis I Third Edition 123 Terence Tao Department of Mathematics University of California, Los Angeles Los Angeles, CA USA This work is a co-publication with Hindustan Book Agency, New Delhi, licensed for sale in all countries in electronic form only. Sold and distributed in print across the world by Hindustan Book Agency, P-19 Green Park Extension, New Delhi 110016, India. ISBN: 978-93-80250-64-9 © Hindustan Book Agency 2015. ISSN 2366-8725 (electronic) Texts and Readings in Mathematics ISBN 978-981-10-1789-6 (eBook) DOI 10.1007/978-981-10-1789-6 Library of Congress Control Number: 2016940817 © Springer Science+Business Media Singapore 2016 and Hindustan Book Agency 2015 This work is subject to copyright. All rights are reserved by the Publishers, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publishers, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publishers nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. This Springer imprint is published by Springer Nature The registered company is Springer Science+Business Media Singapore Pte Ltd. To my parents, for everything Contents Preface to the second and third editions xi Preface to the first edition xiii About the Author xix 1 Introduction 1 1.1 Whatisanalysis?...................... 1 1.2 Whydoanalysis?...................... 2 2 Starting at the beginning: the natural numbers 13 2.1 ThePeanoaxioms...................... 15 2.2 Addition........................... 24 2.3 Multiplication........................ 29 3 Set theory 33 3.1 Fundamentals ........................ 33 3.2 Russell’s paradox (Optional) ................ 46 3.3 Functions........................... 49 3.4 Imagesandinverseimages................. 56 3.5 Cartesianproducts..................... 62 3.6 Cardinalityofsets...................... 67 4 Integers and rationals 74 4.1 Theintegers......................... 74 4.2 Therationals......................... 81 4.3 Absolutevalueandexponentiation............. 86 4.4 Gapsintherationalnumbers................ 90 5 The real numbers 94 5.1 Cauchysequences...................... 96 5.2 EquivalentCauchysequences................100 5.3 Theconstructionoftherealnumbers...........102 5.4 Orderingthereals......................111 vii viii Contents 5.5 Theleastupperboundproperty..............116 5.6 Realexponentiation,partI.................121 6 Limits of sequences 126 6.1 Convergenceandlimitlaws.................126 6.2 TheExtendedrealnumbersystem.............133 6.3 Suprema and Infima of sequences .............137 6.4 Limsup,Liminf,andlimitpoints..............139 6.5 Somestandardlimits....................148 6.6 Subsequences.........................149 6.7 Realexponentiation,partII................152 7 Series 155 7.1 Finiteseries.........................155 7.2 Infinite series .........................164 7.3 Sumsofnon-negativenumbers...............170 7.4 Rearrangementofseries...................174 7.5 Therootandratiotests...................178 8 Infinite sets 181 8.1 Countability .........................181 8.2 Summation on infinite sets .................188 8.3 Uncountablesets.......................195 8.4 Theaxiomofchoice.....................198 8.5 Orderedsets.........................202 9 Continuous functions on R 211 9.1 Subsetsoftherealline...................211 9.2 The algebra of real-valued functions ............217 9.3 Limiting values of functions ................220 9.4 Continuous functions ....................227 9.5 Leftandrightlimits.....................231 9.6 Themaximumprinciple...................234 9.7 Theintermediatevaluetheorem..............238 9.8 Monotonic functions .....................241 9.9 Uniformcontinuity.....................243 9.10 Limits at infinity .......................249 10 Differentiation of functions 251 10.1Basicdefinitions.......................251 Contents ix 10.2Localmaxima,localminima,andderivatives.......257 10.3 Monotone functions and derivatives ............260 10.4 Inverse functions and derivatives ..............261 10.5 L’Hˆopital’srule.......................264 11 The Riemann integral 267 11.1Partitions...........................268 11.2 Piecewise constant functions ................272 11.3UpperandlowerRiemannintegrals............276 11.4BasicpropertiesoftheRiemannintegral.........280 11.5 Riemann integrability of continuous functions ......285 11.6 Riemann integrability of monotone functions .......289 11.7 A non-Riemann integrable function ............291 11.8TheRiemann-Stieltjesintegral...............292 11.9 The two fundamental theorems of calculus ........295 11.10 Consequences of the fundamental theorems ........300 A Appendix: the basics of mathematical logic 305 A.1 Mathematicalstatements..................306 A.2 Implication..........................312 A.3 Thestructureofproofs...................317 A.4 Variablesandquantifiers..................320 A.5 Nestedquantifiers......................324 A.6 Someexamplesofproofsandquantifiers.........327 A.7 Equality...........................329 B Appendix: the decimal system 331 B.1 The decimal representation of natural numbers ......332 B.2 The decimal representation of real numbers ........335 Index 339 Texts and Readings in Mathematics 349 Preface to the second and third editions Since the publication of the first edition, many students and lectur- ers have communicated a number of minor typos and other corrections to me. There was also some demand for a hardcover edition of the texts. Because of this, the publishers and I have decided to incorporate the corrections and issue a hardcover second edition of the textbooks. The layout, page numbering, and indexing of the texts have also been changed; in particular the two volumes are now numbered and indexed separately. However, the chapter and exercise numbering, as well as the mathematical content, remains the same as the first edition, and so the two editions can be used more or less interchangeably for homework and study purposes. The third edition contains a number of corrections that were reported for the second edition, together with a few new exercises, but is otherwise essentially the same text. xi Preface to the first edition This text originated from the lecture notes I gave teaching the honours undergraduate-level real analysis sequence at the University of Califor- nia, Los Angeles, in 2003. Among the undergraduates here, real anal- ysis was viewed as being one of the most difficult courses to learn, not only because of the abstract concepts being introduced for the first time (e.g., topology, limits, measurability, etc.), but also because of the level of rigour and proof demanded of the course. Because of this percep- tion of difficulty, one was often faced with the difficult choice of either reducing the level of rigour in the course in order to make it easier, or to maintain strict standards and face the prospect of many undergradu- ates, even many of the bright and enthusiastic ones, struggling with the course material. Faced with this dilemma, I tried a somewhat unusual approach to the subject. Typically, an introductory sequence in real analysis assumes that the students are already familiar with the real numbers, with math- ematical induction, with elementary calculus, and with the basics of set theory, and then quickly launches into the heart of the subject, for in- stance the concept of a limit. Normally, students entering this sequence do indeed have a fair bit of exposure to these prerequisite topics, though in most cases the material is not covered in a thorough manner. For in- stance, very few students were able to actually define arealnumber,or
Recommended publications
  • Nieuw Archief Voor Wiskunde
    Nieuw Archief voor Wiskunde Boekbespreking Kevin Broughan Equivalents of the Riemann Hypothesis Volume 1: Arithmetic Equivalents Cambridge University Press, 2017 xx + 325 p., prijs £ 99.99 ISBN 9781107197046 Kevin Broughan Equivalents of the Riemann Hypothesis Volume 2: Analytic Equivalents Cambridge University Press, 2017 xix + 491 p., prijs £ 120.00 ISBN 9781107197121 Reviewed by Pieter Moree These two volumes give a survey of conjectures equivalent to the ber theorem says that r()x asymptotically behaves as xx/log . That Riemann Hypothesis (RH). The first volume deals largely with state- is a much weaker statement and is equivalent with there being no ments of an arithmetic nature, while the second part considers zeta zeros on the line v = 1. That there are no zeros with v > 1 is more analytic equivalents. a consequence of the prime product identity for g()s . The Riemann zeta function, is defined by It would go too far here to discuss all chapters and I will limit 3 myself to some chapters that are either close to my mathematical 1 (1) g()s = / s , expertise or those discussing some of the most famous RH equiv- n = 1 n alences. Most of the criteria have their own chapter devoted to with si=+v t a complex number having real part v > 1 . It is easily them, Chapter 10 has various criteria that are discussed more brief- seen to converge for such s. By analytic continuation the Riemann ly. A nice example is Redheffer’s criterion. It states that RH holds zeta function can be uniquely defined for all s ! 1.
    [Show full text]
  • TWAS Fellowships Worldwide
    CDC Round Table, ICTP April 2016 With science and engineering, countries can address challenges in agriculture, climate, health TWAS’s and energy. guiding principles 2 Food security Challenges Water quality for a Energy security new era Biodiversity loss Infectious diseases Climate change 3 A Globally, 81 nations fall troubling into the category of S&T- gap lagging countries. 48 are classified as Least Developed Countries. 4 The role of TWAS The day-to-day work of TWAS is focused in two critical areas: •Improving research infrastructure •Building a corps of PhD scholars 5 TWAS Research Grants 2,202 grants awarded to individuals and research groups (1986-2015) 6 TWAS’ AIM: to train 1000 PhD students by 2017 Training PhD-level scientists: •Researchers and university-level educators •Future leaders for science policy, business and international cooperation Rapidly growing opportunities P BRAZIL A K I N D I CA I RI A S AF TH T SOU A N M KENYA EX ICO C H I MALAYSIA N A IRAN THAILAND TWAS Fellowships Worldwide NRF, South Africa - newly on board 650+ fellowships per year PhD fellowships +460 Postdoctoral fellowships +150 Visiting researchers/professors + 45 17 Programme Partners BRAZIL: CNPq - National Council MALAYSIA: UPM – Universiti for Scientific and Technological Putra Malaysia WorldwideDevelopment CHINA: CAS - Chinese Academy of KENYA: icipe – International Sciences Centre for Insect Physiology and Ecology INDIA: CSIR - Council of Scientific MEXICO: CONACYT– National & Industrial Research Council on Science and Technology PAKISTAN: CEMB – National INDIA: DBT - Department of Centre of Excellence in Molecular Biotechnology Biology PAKISTAN: ICCBS – International Centre for Chemical and INDIA: IACS - Indian Association Biological Sciences for the Cultivation of Science PAKISTAN: CIIT – COMSATS Institute of Information INDIA: S.N.
    [Show full text]
  • Millennium Prize for the Poincaré
    FOR IMMEDIATE RELEASE • March 18, 2010 Press contact: James Carlson: [email protected]; 617-852-7490 See also the Clay Mathematics Institute website: • The Poincaré conjecture and Dr. Perelmanʼs work: http://www.claymath.org/poincare • The Millennium Prizes: http://www.claymath.org/millennium/ • Full text: http://www.claymath.org/poincare/millenniumprize.pdf First Clay Mathematics Institute Millennium Prize Announced Today Prize for Resolution of the Poincaré Conjecture a Awarded to Dr. Grigoriy Perelman The Clay Mathematics Institute (CMI) announces today that Dr. Grigoriy Perelman of St. Petersburg, Russia, is the recipient of the Millennium Prize for resolution of the Poincaré conjecture. The citation for the award reads: The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman. The Poincaré conjecture is one of the seven Millennium Prize Problems established by CMI in 2000. The Prizes were conceived to record some of the most difficult problems with which mathematicians were grappling at the turn of the second millennium; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; to emphasize the importance of working towards a solution of the deepest, most difficult problems; and to recognize achievement in mathematics of historical magnitude. The award of the Millennium Prize to Dr. Perelman was made in accord with their governing rules: recommendation first by a Special Advisory Committee (Simon Donaldson, David Gabai, Mikhail Gromov, Terence Tao, and Andrew Wiles), then by the CMI Scientific Advisory Board (James Carlson, Simon Donaldson, Gregory Margulis, Richard Melrose, Yum-Tong Siu, and Andrew Wiles), with final decision by the Board of Directors (Landon T.
    [Show full text]
  • The Modal Logic of Potential Infinity, with an Application to Free Choice
    The Modal Logic of Potential Infinity, With an Application to Free Choice Sequences Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ethan Brauer, B.A. ∼6 6 Graduate Program in Philosophy The Ohio State University 2020 Dissertation Committee: Professor Stewart Shapiro, Co-adviser Professor Neil Tennant, Co-adviser Professor Chris Miller Professor Chris Pincock c Ethan Brauer, 2020 Abstract This dissertation is a study of potential infinity in mathematics and its contrast with actual infinity. Roughly, an actual infinity is a completed infinite totality. By contrast, a collection is potentially infinite when it is possible to expand it beyond any finite limit, despite not being a completed, actual infinite totality. The concept of potential infinity thus involves a notion of possibility. On this basis, recent progress has been made in giving an account of potential infinity using the resources of modal logic. Part I of this dissertation studies what the right modal logic is for reasoning about potential infinity. I begin Part I by rehearsing an argument|which is due to Linnebo and which I partially endorse|that the right modal logic is S4.2. Under this assumption, Linnebo has shown that a natural translation of non-modal first-order logic into modal first- order logic is sound and faithful. I argue that for the philosophical purposes at stake, the modal logic in question should be free and extend Linnebo's result to this setting. I then identify a limitation to the argument for S4.2 being the right modal logic for potential infinity.
    [Show full text]
  • Discussion Notes for Aristotle's Politics
    Sean Hannan Classics of Social & Political Thought I Autumn 2014 Discussion Notes for Aristotle’s Politics BOOK I 1. Introducing Aristotle a. Aristotle was born around 384 BCE (in Stagira, far north of Athens but still a ‘Greek’ city) and died around 322 BCE, so he lived into his early sixties. b. That means he was born about fifteen years after the trial and execution of Socrates. He would have been approximately 45 years younger than Plato, under whom he was eventually sent to study at the Academy in Athens. c. Aristotle stayed at the Academy for twenty years, eventually becoming a teacher there himself. When Plato died in 347 BCE, though, the leadership of the school passed on not to Aristotle, but to Plato’s nephew Speusippus. (As in the Republic, the stubborn reality of Plato’s family connections loomed large.) d. After living in Asia Minor from 347-343 BCE, Aristotle was invited by King Philip of Macedon to serve as the tutor for Philip’s son Alexander (yes, the Great). Aristotle taught Alexander for eight years, then returned to Athens in 335 BCE. There he founded his own school, the Lyceum. i. Aside: We should remember that these schools had substantial afterlives, not simply as ideas in texts, but as living sites of intellectual energy and exchange. The Academy lasted from 387 BCE until 83 BCE, then was re-founded as a ‘Neo-Platonic’ school in 410 CE. It was finally closed by Justinian in 529 CE. (Platonic philosophy was still being taught at Athens from 83 BCE through 410 CE, though it was not disseminated through a formalized Academy.) The Lyceum lasted from 334 BCE until 86 BCE, when it was abandoned as the Romans sacked Athens.
    [Show full text]
  • A Pragmatic Stylistic Framework for Text Analysis
    International Journal of Education ISSN 1948-5476 2015, Vol. 7, No. 1 A Pragmatic Stylistic Framework for Text Analysis Ibrahim Abushihab1,* 1English Department, Alzaytoonah University of Jordan, Jordan *Correspondence: English Department, Alzaytoonah University of Jordan, Jordan. E-mail: [email protected] Received: September 16, 2014 Accepted: January 16, 2015 Published: January 27, 2015 doi:10.5296/ije.v7i1.7015 URL: http://dx.doi.org/10.5296/ije.v7i1.7015 Abstract The paper focuses on the identification and analysis of a short story according to the principles of pragmatic stylistics and discourse analysis. The focus on text analysis and pragmatic stylistics is essential to text studies, comprehension of the message of a text and conveying the intention of the producer of the text. The paper also presents a set of standards of textuality and criteria from pragmatic stylistics to text analysis. Analyzing a text according to principles of pragmatic stylistics means approaching the text’s meaning and the intention of the producer. Keywords: Discourse analysis, Pragmatic stylistics Textuality, Fictional story and Stylistics 110 www.macrothink.org/ije International Journal of Education ISSN 1948-5476 2015, Vol. 7, No. 1 1. Introduction Discourse Analysis is concerned with the study of the relation between language and its use in context. Harris (1952) was interested in studying the text and its social situation. His paper “Discourse Analysis” was a far cry from the discourse analysis we are studying nowadays. The need for analyzing a text with more comprehensive understanding has given the focus on the emergence of pragmatics. Pragmatics focuses on the communicative use of language conceived as intentional human action.
    [Show full text]
  • Mathematics: Analysis and Approaches First Assessments for SL and HL—2021
    International Baccalaureate Diploma Programme Subject Brief Mathematics: analysis and approaches First assessments for SL and HL—2021 The Diploma Programme (DP) is a rigorous pre-university course of study designed for students in the 16 to 19 age range. It is a broad-based two-year course that aims to encourage students to be knowledgeable and inquiring, but also caring and compassionate. There is a strong emphasis on encouraging students to develop intercultural understanding, open-mindedness, and the attitudes necessary for them LOMA PROGRA IP MM to respect and evaluate a range of points of view. B D E I DIES IN LANGUA STU GE ND LITERATURE The course is presented as six academic areas enclosing a central core. Students study A A IN E E N D N DG two modern languages (or a modern language and a classical language), a humanities G E D IV A O L E I W X S ID U IT O T O G E U or social science subject, an experimental science, mathematics and one of the creative IS N N C N K ES TO T I A U CH E D E A A A L F C T L Q O H E S O R I I C P N D arts. Instead of an arts subject, students can choose two subjects from another area. P G E A Y S A E R S It is this comprehensive range of subjects that makes the Diploma Programme a O S E A Y H T demanding course of study designed to prepare students effectively for university entrance.
    [Show full text]
  • 4. a Close Call: How a Near Failure Propelled Me to Succeed By
    Early Career When I entered graduate study at Princeton, I brought A Close Call: How a my study habits (or lack thereof) with me. At the time in Princeton, the graduate classes did not have any home- Near Failure Propelled work or tests; the only major examination one had to pass (apart from some fairly easy language requirements) were Me to Succeed the dreaded “generals’’—the oral qualifying exams, often lasting over two hours, that one would take in front of Terence Tao three faculty members, usually in one’s second year. The questions would be drawn from five topics: real analysis, For as long as I can remember, I was always fascinated by complex analysis, algebra, and two topics of the student’s numbers and the formal symbolic operations of mathe- choice. For most of the other graduate students in my year, matics, even before I knew the uses of mathematics in the preparing for the generals was a top priority; they would real world. One of my earliest childhood memories was read textbooks from cover to cover, organise study groups, demanding that my grandmother, who was washing the and give each other mock exams. It had become a tradition windows, put detergent on the windows in the shape of for every graduate student taking the generals to write up numbers. When I was particularly rowdy as a child, my the questions they received and the answers they gave for parents would sometimes give me a math workbook to future students to practice. There were even skits performed work on instead, which I was more than happy to do.
    [Show full text]
  • Program of the Sessions San Diego, California, January 9–12, 2013
    Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes.
    [Show full text]
  • Scientific Discovery in the Era of Big Data: More Than the Scientific Method
    Scientific Discovery in the Era of Big Data: More than the Scientific Method A RENCI WHITE PAPER Vol. 3, No. 6, November 2015 Scientific Discovery in the Era of Big Data: More than the Scientific Method Authors Charles P. Schmitt, Director of Informatics and Chief Technical Officer Steven Cox, Cyberinfrastructure Engagement Lead Karamarie Fecho, Medical and Scientific Writer Ray Idaszak, Director of Collaborative Environments Howard Lander, Senior Research Software Developer Arcot Rajasekar, Chief Domain Scientist for Data Grid Technologies Sidharth Thakur, Senior Research Data Software Developer Renaissance Computing Institute University of North Carolina at Chapel Hill Chapel Hill, NC, USA 919-445-9640 RENCI White Paper Series, Vol. 3, No. 6 1 AT A GLANCE • Scientific discovery has long been guided by the scientific method, which is considered to be the “gold standard” in science. • The era of “big data” is increasingly driving the adoption of approaches to scientific discovery that either do not conform to or radically differ from the scientific method. Examples include the exploratory analysis of unstructured data sets, data mining, computer modeling, interactive simulation and virtual reality, scientific workflows, and widespread digital dissemination and adjudication of findings through means that are not restricted to traditional scientific publication and presentation. • While the scientific method remains an important approach to knowledge discovery in science, a holistic approach that encompasses new data-driven approaches is needed, and this will necessitate greater attention to the development of methods and infrastructure to integrate approaches. • New approaches to knowledge discovery will bring new challenges, however, including the risk of data deluge, loss of historical information, propagation of “false” knowledge, reliance on automation and analysis over inquiry and inference, and outdated scientific training models.
    [Show full text]
  • Tao Awarded Nemmers Prize
    Tao Awarded Nemmers Prize Northwestern University has announced that numerous other awards, including the Terence Chi-Shen Tao has received the 2010 Salem Prize (2000), the Bôcher Prize Frederic Esser Nemmers Prize in Mathematics, be- (2002), the Clay Research Award of the lieved to be one of the largest monetary awards in Clay Mathematics Institute (2003), the mathematics in the United States, for outstanding SASTRA Ramanujan Prize (2006), the achievements in the discipline. Awarded to schol- Ostrowski Prize (2007), the Waterman ars who made major contributions to new knowl- Award (2008), and the King Faisal Prize edge or to the development of significant new (cowinner, 2010). He is a Fellow of the modes of analysis, the prize carries a US$175,000 Royal Society, the Australian Academy stipend. of Sciences (corresponding member), Tao, a professor of mathematics at University the U.S. National Academy of Sciences of California, Los Angeles, was honored “for math- (foreign member), and the American ematics of astonishing breadth, depth and original- Academy of Arts and Sciences. ity”. In connection with the award, Tao will deliver Tao’s research interests include Terence Tao public lectures and participate in other scholarly harmonic analysis, partial dif- activities at Northwestern during the 2010–2011 ferential equations, combinatorics, and num- and 2011–2012 academic years. ber theory. He is an associate editor of the Tao, who has been dubbed the “Mozart of American Journal of Mathematics (2002–) and Math”, was born in Adelaide, Australia, in 1975. of Dynamics of Partial Differential Equations He started to learn calculus when he was seven (2003–) and an editor of the Journal of the Ameri- years old.
    [Show full text]
  • Aristotle's Prime Matter: an Analysis of Hugh R. King's Revisionist
    Abstract: Aristotle’s Prime Matter: An Analysis of Hugh R. King’s Revisionist Approach Aristotle is vague, at best, regarding the subject of prime matter. This has led to much discussion regarding its nature in his thought. In his article, “Aristotle without Prima Materia,” Hugh R. King refutes the traditional characterization of Aristotelian prime matter on the grounds that Aristotle’s first interpreters in the centuries after his death read into his doctrines through their own neo-Platonic leanings. They sought to reconcile Plato’s theory of Forms—those detached universal versions of form—with Aristotle’s notion of form. This pursuit led them to misinterpret Aristotle’s prime matter, making it merely capable of a kind of participation in its own actualization (i.e., its form). I agree with King here, but I find his redefinition of prime matter hasty. He falls into the same trap as the traditional interpreters in making any matter first. Aristotle is clear that actualization (form) is always prior to potentiality (matter). Hence, while King’s assertion that the four elements are Aristotle’s prime matter is compelling, it misses the mark. Aristotle’s prime matter is, in fact, found within the elemental forces. I argue for an approach to prime matter that eschews a dichotomous understanding of form’s place in the philosophies of Aristotle and Plato. In other words, it is not necessary to reject the Platonic aspects of Aristotle’s philosophy in order to rebut the traditional conception of Aristotelian prime matter. “Aristotle’s Prime Matter” - 1 Aristotle’s Prime Matter: An Analysis of Hugh R.
    [Show full text]