Battery Waste Management Life Cycle Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Battery Waste Management Life Cycle Assessment Battery Waste Management Life Cycle Assessment Final Report for Publication 18 October 2006 Delivering sustainable solutions in a more competitive world Defra Battery Waste Management Life Cycle Assessment Final Report for Publication 18 October 2006 Prepared by: Karen Fisher, Erika Wallén, Pieter Paul Laenen and Michael Collins For and on behalf of Environmental Resources Management Approved by: Simon Aumônier___________ Signed: ________________________________ Position: Partner ________________________ Date: 18 October 2006 ________________ This report has been prepared by Environmental Resources Management the trading name of Environmental Resources Management Limited, with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk. CONTENTS 1 BATTERY WASTE MANAGEMENT LIFE CYCLE ASSESSMENT 1 1.1 ACKNOWLEDGEMENTS 1 1.2 INTRODUCTION 1 1.3 ISO 14040: GOAL AND SCOPE REQUIREMENTS 2 1.4 GOAL OF STUDY 2 1.5 FUNCTION AND FUNCTIONAL UNIT 3 1.6 SYSTEMS TO BE STUDIED 5 1.7 COLLECTION SCENARIOS 6 1.8 RECYCLING SCENARIOS 17 1.9 RESIDUAL WASTE MANAGEMENT SYSTEM 27 1.10 IMPLEMENTATION SCENARIOS 28 1.11 SYSTEM BOUNDARIES 28 1.12 ALLOCATION PROCEDURES 35 1.13 INVENTORY ANALYSIS 35 1.14 IMPACT ASSESSMENT 35 1.15 SENSITIVITY ANALYSIS 38 1.16 DATA REQUIREMENTS 39 1.17 KEY ASSUMPTIONS AND LIMITATIONS 40 1.18 CRITICAL REVIEW 40 2 INVENTORY ANALYSIS: LIFE CYCLE INVENTORY DATA 42 2.1 COLLECTION SYSTEMS 42 2.2 BATTERY MATERIAL COMPOSITION 55 2.3 RECYCLING SYSTEMS 58 2.4 RESIDUAL WASTE MANAGEMENT 72 2.5 SECONDARY DATASETS 73 2.6 IMPLEMENTATION SYSTEMS 84 3 LIFE CYCLE INVENTORY ANALYSIS: RESULTS 85 4 LIFE CYCLE IMPACT ASSESSMENT 96 5 SENSITIVITY ANALYSIS 109 5.1 BATTERY WASTE ARISINGS 109 5.2 COLLECTION TARGETS 110 5.3 DIRECTIVE IMPLEMENTATION YEAR 111 5.4 DISPOSAL ASSUMPTIONS 112 5.5 INSTITUTIONAL COLLECTION POINTS 113 5.6 ELECTRICITY INPUT TO RECYCLING 114 6 FINANCIAL COSTS 116 6.1 COLLECTION COSTS 116 6.2 SORTING COSTS 119 6.3 RECYCLING COSTS 120 6.4 DISPOSAL COSTS 122 6.5 TOTAL COSTS FOR IMPLEMENTATION SCENARIOS 124 6.6 EVALUATING THE EXTERNAL COST OF ENVIRONMENTAL IMPACTS 127 7 CONCLUSIONS 130 8 REFERENCES 133 ANNEXES ANNEX A UK Battery Collection Schemes ANNEX B Impact Assessment Method (Includes Characterisation Factors) ANNEX C Assessment of Alternative Growth Scenarios ANNEX D Inventories ANNEX E Critical Review ANNEX F ERM Response to Critical Review Executive Summary 1 EXECUTIVE SUMMARY 1.1 INTRODUCTION At the end of 2004, the EU Council of Ministers reached agreement on a draft Directive on Batteries and Accumulators. This Common Position text includes a number of requirements: • a partial ban on portable nickel-cadmium batteries (with some exclusions); • a collection target of 25% of all spent portable batteries 4 years after transposition of the Directive; • a collection target of 45% of all spent portable batteries 8 years after transposition of the Directive; and • recycling targets for collected portable batteries of between 50% and 75%. The aim of this study is to inform readers of the costs and benefits of various options for implementing these collection and recycling requirements in the UK. The study uses a life cycle assessment (LCA) approach with a subsequent economic valuation of the options. The LCA methods undertaken comply with those laid down in international standards (ISO14040). The study has been commissioned by the UK Department for Environment Food and Rural Affairs (Defra). Its intended purpose is to assist policy by estimating the financial cost of different collection and recycling routes and to estimate the environmental return for that expenditure. Findings will be used to inform the development of a regulatory impact assessment (RIA) for the implementation of the proposed Directive in the UK. The study, in accordance with the international standard for LCA, ISO14040, has been critically reviewed by a third party, Dr Anders Schmidt from FORCE Technology. 1.2 COMPARING SCENARIOS FOR DIRECTIVE IMPLEMENTATION To compare options for implementing the proposed Batteries Directive, the study considered the environmental impacts associated with the management of forecast consumer portable battery waste arisings in the UK between 2006 and 2030. This included the collection and recycling of all portable battery chemistries, with the exception of industrial and automotive batteries. The scope of the assessment has included the collection, sorting, recycling and residual waste management of the waste batteries. Impacts relating to the production and use of batteries were excluded from the study. Therefore, the options compared differ only in method of collection and subsequent treatment or recycling. Three collection scenarios were assessed, as follows: ENVIRONMENTAL RESOURCES MANAGEMENT DEFRA - BATTERY LCA 1 • Collection Scenario 1 where kerbside collection schemes are favoured; • Collection Scenario 2 where CA site collection schemes are favoured; and • Collection Scenario 3 where bring receptacle collection schemes, located in business/school/public/WEEE dismantler premises, are favoured. These were matched with three scenarios describing the main alternative options for recycling alkaline and saline batteries (these account for more that 80% of battery sales in the UK) which were as follows: • Recycling Scenario 1 - UK provision of hydrometallurgical recycling; • Recycling Scenario 2 - UK and EU provision of hydrometallurgical recycling (50:50); and • Recycling Scenario 3 - EU provision of pyrometallurgical recycling. In combination, a total of nine implementation scenarios were created (for example collection scenario 1 plus recycling scenario 1 etc.). These were compared with a tenth, baseline, scenario that assumed all batteries are managed as residual waste (89% landfill, 11% incineration). For each scenario, all of the materials, chemicals and energy consumed during the manufacture of collection containers, sorting of batteries into separate chemistries and processing for recycling or disposal were identified, together with all of the emissions to the environment at each stage. All these ‘flows’ were quantified and traced back to the extraction of raw materials that were required to supply them. For example, polymer materials used in collection containers were linked to the impacts associated with crude oil extraction. Any ‘avoided’ flows resulting from the recovery of metals in recycling processes (and reducing the need for virgin metals production) were also quantified. Figure 1.1 shows the system that was studied for each implementation scenario. The total flows of each substance were compiled for each stage of the life cycle and used to assess the environmental impacts of each system. For example, flows of methane, carbon dioxide and other greenhouse gases were aggregated for each system in total. Internationally agreed equivalents that quantify the relative global warming effect of each gas were then used to assess the overall global warming impact of each implementation scenario. This ‘impact assessment’ was carried out for a number of categories of environmental impact, for which there are well-described methods: abiotic resource depletion; global warming; ozone layer depletion; human, aquatic and terrestrial toxicity; acidification; and eutrophication. Key players in the battery waste management industry provided data on the materials and energy requirements of collection, sorting and recycling operations shown in Figure 1.1 (including materials recovery). Published life cycle inventory data were, in turn, used to describe the production (and avoided production) of these material and energy inputs. It is acknowledged ENVIRONMENTAL RESOURCES MANAGEMENT DEFRA - BATTERY LCA 2 that a key limitation of the study was the use of secondary data in this way. However, it was not within the scope of the project to collect primary data for these processes. The increasing age of secondary data suggest a need for a Europe wide programme to maintain and to improve LCI data for use in studies such as this. Figure 1.1 System Boundary of Scenarios 1.3 THE STUDY FINDINGS The study shows that increasing recycling of batteries is beneficial to the environment, due to the recovery of metals and avoidance of virgin metal production. However, it is achieved at significant financial cost when compared with disposal. Table 1.1 displays the net environmental benefit associated with implementation scenarios (1-9), over and above the baseline scenario (10). Table 1.2 displays the waste management and average environmental and social costs that have been estimated for each implementation scenario. Estimates show that implementation of the proposed Directive will result in a significant increase in battery waste management costs, with some savings in ENVIRONMENTAL RESOURCES MANAGEMENT DEFRA - BATTERY LCA 3 the financial costs quantified for environmental and social aspects (1). At the same time, the CO2 savings that can be achieved amount to between 198kg and 248kg CO2-equivalents avoided per tonne of battery waste arisings, in comparison
Recommended publications
  • Fortum Recycling & Waste
    Fortum Recycling & Waste Public affair priorities 06/2021 Fortum Recycling & Waste Public affair priorities FORTUM RECYCLING & WASTE Public affair priorities As part of Fortum corporation, our Recycling & Waste business area leads the change towards a low-emission energy system and the optimal use of resources. Our goal is to support our customers’ businesses by conserving natural resources and promoting a circular economy. We work together with our customers to build smart and sustainable solutions to ensure the circulation of valuable materials and the removal of harmful substances from the material cycle. Fortum Recycling & Waste employs approximately 650 employees in about 30 offices and treatment centers in Finland, Sweden, Denmark and Norway. Megatrends like climate change, urbanisation, population growth and limited natural resources are shaping the world. They are pushing us to maximise the efficient use of resources. Reliable waste management and resource efficiency are fundamental in a society based on sustainable practices for a cleaner world. Our aim is to promote the transition towards a more extensive circular economy. For us, a successful circular economy means that materials are recycled as much as possible and hazardous substances are removed from circulation. Our circular economy approach receives, processes and reuses customer waste for material recycling and energy production. Policy objectives should aim to ensure a clean circular economy model and a stronger market for high-quality recycled raw materials. Ultimately, Fortum’s aim is for as much of the waste stream as possible to be recycled, recovered or reused. Waste that is unsuitable for recycling or reuse is incinerated in waste-to-energy plants or in dedicated plants for hazardous waste.
    [Show full text]
  • EU Sustainability Legislation on Batteries: Batteries Directive Revision RECHARGE Comments to EU Commission Stakeholder Consultation from April 27 to May 5, 2020
    EU Sustainability Legislation on Batteries: Batteries Directive revision RECHARGE Comments to EU Commission stakeholder consultation from April 27 to May 5, 2020 EU Sustainability Legislation on Batteries: Batteries Directive I 2 EU SUSTAINABILITY LEGISLATION ON BATTERIES In October 2017, the European Commission launched the EU Batteries Alliance to create a competitive and sustainable battery manufacturing activity in the European Union, contributing to both growth and sustainability objectives. In parallel, the Commission has initiated the review of Directive 2006/66/EC (the “Batteries Directive”). Under the EU Sustainability Legislation on Batteries initiative, the Commission intends to complement the existing legislation with key sustainability measures as set out by the European Green Deal, and the respective Industrial Strategy, Circular Economy Action Plan and Chemicals Strategy for Sustainability. By the end of 2020, the Commission will publish a proposal for a new battery legislation. The improved regulatory framework for batteries will be pivotal to address the high goal of establishing a sustainable battery industry and deployment in Europe, while ensuring that the European market can remain competitive at global scale. A strong supporter of the European sustainability agenda, RECHARGE participates with strong evidence and industry knowledge in the respective institutional work programs to help establish a regulatory framework that will enable European actors to execute on the technological, environmental and social leadership ambitions of the Strategic Action Plan on Batteries. To this end, we need: • INTERNATIONAL LEVEL PLAYING FIELD: Ensure a level-playing field for the European battery industry by providing legislation supportive of the European Battery Alliance and the Strategic Action Plan for Batteries.
    [Show full text]
  • Waste Batteries
    Waste Batteries 16. September 2015 Dr. Michael Oberdörfer Overview 1. Introduction 2. European Battery Directive 2006/66 3. Implementation in German 4. Recovery technologies for waste batteries 2 1. Introduction Main chemical systems Primary batteries (not rechargeable) • Zinc-carbon • Alkaline-manganese • Lithium • Silver oxide; Zinc Air • Mercury-oxide Secondary batteries or accumulators (rechargeable) • Lead-acid • Lithium-Ion, Lithium-polymer • NiMH • NiCd 3 1. World-market Portable rechargeable 16% Primary batteries 37% Industrial rechargeable 17% Automotive batteries 30% 4 2. The Batteries Directive 2006/66/EC Aims: Prohibition on the placing on the market of batteries and accumulators containing hazardous substances. Promotion of a high level of collection and recycling of waste batteries and accumulators. What is new? Applies to all battery types Ban on mercury and cadmium Producer responsibility: collection schemes and recycling Collection targets and recycling efficiency 5 2. The Batteries Directive 2006/66/EC Definitions Portable battery: - is sealed and - can be hand-carried and - is neither an industrial nor an automotive battery. Industrial battery: - designed for exclusively industrial or professional uses or used in any type of electric vehicle. Automotive battery: - used for automotive starter, lighting or ignition power. Producer: - any person in a Member State that places batteries or accumulators, including those incorporated into appliances or vehicles, on the market for the first time within the territory
    [Show full text]
  • Directive 2006/66/EC by QNET LLC Directive 1) Batteries + Goes Into Effect 26 September 2008 2006/66/EC Accumulators
    What manufacturers need to know and do about Battery Directive 2006/66/EC By QNET LLC Directive 1) Batteries + Goes into effect 26 September 2008 2006/66/EC accumulators 2) Waste Batteries + Accumulators Directive objective Minimize negative Prohibits hazardous content: cadmium and mercury impact on environment Harmonize heavy Promotes high level of collection and recycling metal content and Improvement by operators involved in life cycle: labeling throughout - producers the EU. - distributors - end-users - recyclers with specific rules Parties affected Producer Definition of producer: Any person in a member state that irrespective of the selling technique used, including by means of distance selling communication, places batteries or accumulators, including those incorporated into appliances or vehicles, on the market for the first time within the territory of that member state on a professional basis Distributor Definition of distributor: Any person that provides batteries and accumulators on a professional basis to an end-user. Economic Operators Definition of economic operator: Any producer, distributor, collector, recycler, or other treatment © QNET LLC 2007 – All Rights Reserved QNET LLC – PO Box 527- Elk River, MN 55330 Email: [email protected] www.ce-mark.com www.ce-authorizedrepresentative.eu 1 What manufacturers need to know and do about Battery Directive 2006/66/EC A Doing It Once! service By QNET LLC operator. Member States Definition of member states: All EU countries Directive scope All types of batteries and Regardless of shape, volume, weight, material composition or accumulators. Includes: use. Battery or accumulators Exemptions: Battery packs - Equipment connected with the protection of Portable battery Member States essential security interests, arms, Button cell munitions, and war material, with the exclusion of Automotive battery products that are not intended for specifically Industrial battery military purposes.
    [Show full text]
  • A Sustainable Process for the Recovery of Anode and Cathode Materials Derived from Spent Lithium-Ion Batteries
    sustainability Article A Sustainable Process for the Recovery of Anode and Cathode Materials Derived from Spent Lithium-Ion Batteries Guangwen Zhang 1, Zhongxing Du 1, Yaqun He 1,2,*, Haifeng Wang 1, Weining Xie 2,3 and Tao Zhang 4 1 School of Chemical Engineering and Technology, China University of Mining and Technology, No.1 Daxue Road, Xuzhou 221116, China; [email protected] (G.Z.); [email protected] (Z.D.); [email protected] (H.W.) 2 Advanced Analysis and Computation Center, China University of Mining and Technology, No.1 Daxue Road, Xuzhou 221116, China; [email protected] 3 Jiangsu Huahong Technology Stock Limited Company, Wuxi 214400, China 4 Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China; [email protected] * Correspondence: [email protected]; Tel.: +86-516-8359-2928; Fax: +86-516-8399-5026 Received: 15 March 2019; Accepted: 15 April 2019; Published: 20 April 2019 Abstract: The recovery of cathode and anode materials plays an important role in the recycling process of spent lithium-ion batteries (LIBs). Organic binders reduce the liberation efficiency and flotation efficiency of electrode materials derived from spent LIBs. In this study, pyrolysis technology is used to improve the recovery of cathode and anode materials from spent LIBs by removing organic binders. Pyrolysis characteristics of organics in electrode materials are investigated, and on this basis, the effects of pyrolysis parameters on the liberation efficiency of electrode materials are studied. Afterwards, flotation technology is used to separate cathode material from anode material. The results indicate that the optimum liberation efficiency of electrode materials is obtained at a pyrolysis temperature of 500 ◦C, a pyrolysis time of 15 min and a pyrolysis heating rate of 10 ◦C/min.
    [Show full text]
  • CERTIFICATE of COMPLIANCE Battery Directive
    CERTIFICATE OF COMPLIANCE with EU Battery Directive 2006/66/EC from 6 September 2006 and its amendment (Dir. 2008/12/EC, 2008/103/EC, 2013/56/EU) Renata SA's range of 3V Lithium Manganese Dioxide coin cells: Renata CR1025 1) Renata CR2016.MFR 8) Renata CR2320 1) Renata CR1216 1) Renata CR2025 MFR 2) Renata CR2325 1) Renata CR1216 MFR 6) Renata CR2025 1) Renata CR2430 1) Renata CR1220 1) Renata CR2032 MFR 2) Renata CR2430 MFR 5) Renata CR1220 MFR 6) Renata CR2032 1) Renata CR2450N 1) Renata CR1225 1) Renata CR2032.MFR 10) Renata CR2450N.MFR 11) Renata CR1616 1) Renata CR2045 3) Renata CR2450HT 4) Renata CR1620 1) Renata CR2025.MFR 9) Renata CR2477N 1) Renata CR1632 1) Renata CR2045HT 4) Renata CR2450N-MFR 7) Renata CR2016 MFR 2) Renata CR2046A 4) Renata CR2477N.MFR 12) Renata CR2016 1) This document certifies that the battery models as stated above and provided by Renata SA are in compliance with the above mentioned EU Battery Directive. January 11, 2021 Eric Weber CTO Weight limits according to 2006/66/EC Substance Weight limit (ppm) Lead (Pb) 40 Cadmium (Cd) 20 Mercury (Hg) 5 1) SGS Test Report EC405623000 dated Feb 16, 2007 2) SGS Test Report EC405697500 dated March 14, 2007 3) SGS Test Report CANEC0904976701 dated October 12, 2009 4) SGS Test Report CANEC0904976702 dated October 12, 2009 5) SGS Test Report CE/2009/45328 dated April 22, 2009 6) SGS Test Report CE/2013/72260 dated September 2, 2013 7) CTI Test Report RLSZD001049480001 dated October 10, 2011 8) CTI Test Report SCL01H064838001 9) CTI Test Report SCL01H064838002 10) CTI Test Report SCL01H064838003 11) CTI Test Report SCL01H064838004 12) CTI Test Report SCL01H064838005 Applicability of RoHS / WEEE / End of Life Vehicles Directives on Batteries: • The RoHS Directive Directive 2011/65/EU (including amendment 2015/863/EU) of the European Parliament and of the Council of June 08, 2011 on the restriction of the use of certain hazardous substances in electrical and electronics equipment (RoHS Directive).
    [Show full text]
  • Lead Recycling in the United States in 1998
    FLOW STUDIES FOR RECYCLING METAL COMMODITIES IN THE UNITED STATES Lead Recycling in the United States in 1998 By Gerald R. Smith CONTENTS Abstract ..................................................................................................1 Introduction ...............................................................................................1 History and use patterns ...............................................................................1 Global geologic occurrence of lead ......................................................................2 Lead production process and global production ............................................................4 Lead market prices ...................................................................................5 Sources of lead scrap ........................................................................................5 Old scrap generated ..................................................................................5 New scrap .........................................................................................6 Disposition ................................................................................................6 Old scrap recycling efficiency .................................................................................6 Secondary lead infrastructure ..................................................................................7 Battery scrap collection system .........................................................................7 Trade .............................................................................................7
    [Show full text]
  • Part I Battery Recycling
    ISSN: 2692-5397 DOI: 10.33552/MCMS.2020.03.000555 Modern Concepts in Material Science Review Article Copyright © All rights are reserved by Farouk Tedjar “Urban Mine” A Modern Source of Materials: Part I Battery Recycling Farouk Tedjar* Energy Research Institute, Nanyang Technological University, Singapore *Corresponding author: Farouk Tedjar, Energy Research Institute, Nanyang Received Date: May 04, 2020 Published Date: May 22, 2020 Technological University, 1 Cleantech Loop, 637141, Singapore. Introduction fact, the development of electric and electronic devices is giving Today world population increase and related economy expands now the model of consumption to “a wireless age”. The growth of are accompanied with important growth of substantial need for miniaturization in one hand and energy density need lead to rapid natural resources. Consequently, in order to sustain same level development of new chemistry for batteries as observed during last of economic activities a great amount of energy and resource are decade particularly in secondary systems. However, dark side of the consumed [1]. The energy preoccupation linked to a potential progress is always in environment impact and scarcity of resources. “peak oil” introduces a strong actions on fuel saving and utilization Bit implementation of collection and recycling processes could lead of clean energy. In particular emerging of climate changing to a large decrease of environment impact and important recovery problematic and global warming issues from Kyoto protocol [2,3] of resources. To maintain a sustainable and safe supply chain to with impact of greenhouse gases and CO2 are the most important the economic cycle of the battery segment, it is critical to operate challenges the last 3 decades.
    [Show full text]
  • Waste Management Policies and Policy Instruments in Europe
    IIIEE Reports 2008:2 Waste management policies and policy instruments in Europe An overview Naoko Tojo International Institute for Industrial Environmental Economics at Lund University, Sweden Alexander Neubauer and Ingo Bräuer Ecologic - Institute for International and European Environmental Policy, Germany Report written as part of project HOLIWAST: Holistic Assessment of Waste Management Technologies © You may use the contents of the IIIEE publications for informational purposes only. You may not copy, lend, hire, transmit or redistribute these materials for commercial purposes or for compensation of any kind without written permission from IIIEE. When using this material you must include the following copyright notice for the authors to the respective parts of the report:: Copyright © Naoko Tojo, IIIEE, Lund University and Alexander Neubauer and Ingo Bräuer. Ecologic - Institute for International and European Environmental Policy, Germany . All rights reserved in any copy that you make in a clearly visible position. You may not modify the materials without the permission of the author. Published in 2006 by IIIEE, Lund University, P.O. Box 196, S-221 00 LUND, Sweden, Tel: +46 46 222 02 00, Fax: +46 46 222 02 10, e-mail: [email protected]. ISSN 1650-1675 Research European Commission PRIORITY [policy-oriented research priority SSP/8.1] SPECIFIC TARGETED RESEARCH OR INNOVATION PROJECT HOLIWAST Holistic assessment of waste management technologies. Contract number: 006509 Deliverable n° 1-1 Title: Waste Management Policy and Policy Instruments
    [Show full text]
  • On the Path to Zero Waste at ISTC
    On the path to Zero Waste at ISTC 1 What is Zero Waste? “Zero Waste is a goal that is ethical, economical, efficient and visionary, to guide people in changing their lifestyles and practices to emulate sustainable natural cycles, where all discarded materials are designed to become resources for others to use. 2 What is Zero Waste? Zero Waste means designing and managing products and processes to systematically avoid and eliminate the volume and toxicity of waste and materials, conserve and recover all resources, and not burn or bury them. 3 What is Zero Waste? Implementing Zero Waste will eliminate all discharges to land, water or air that are a threat to planetary, human, animal or plant health.” As adopted by the Zero Waste International Alliance on August 12, 2009 4 What is Zero Waste? The idea that there is no such place as “AWAY” Nature has no trash can. 5 How can we do that? • Reduce • Rethink / Redesign • Reuse • Repair • Rot • Recycle 6 Where do we start? • Baseline waste stream characterization study – Building walkthrough – Document waste management system – Collect, sort, and categorize waste – Weigh and document waste – Examine data 7 Why? • Buckshot vs. laser scope • Know your waste • Provides a metric to compare 8 Building walkthrough • How is waste collected? – Container types & locations – Frequency – Responsible parties • What waste is collected? – Are there any known hazards? 9 How is waste collected? • Trash – (78) metal 7 gallon can in each office / lab – (8) metal 5 gallon can in each bathroom – (5) plastic 55 gallon
    [Show full text]
  • Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials
    sustainability Review Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials Alexandre Beaudet 1 , François Larouche 2,3, Kamyab Amouzegar 2,*, Patrick Bouchard 2 and Karim Zaghib 2,* 1 InnovÉÉ, Montreal, QC H3B 2E3, Canada; [email protected] 2 Center of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, Varennes, QC J3X 1S1, Canada; [email protected] (F.L.); [email protected] (P.B.) 3 Mining and Materials Engineering, McGill University, Montréal, QC H3A 0C5, Canada * Correspondence: [email protected] (K.A.); [email protected] (K.Z.) Received: 8 June 2020; Accepted: 15 July 2020; Published: 20 July 2020 Abstract: The development and deployment of cost-effective and energy-efficient solutions for recycling end-of-life electric vehicle batteries is becoming increasingly urgent. Based on the existing literature, as well as original data from research and ongoing pilot projects in Canada, this paper discusses the following: (i) key economic and environmental drivers for recycling electric vehicle (EV) batteries; (ii) technical and financial challenges to large-scale deployment of recycling initiatives; and (iii) the main recycling process options currently under consideration. A number of policies and strategies are suggested to overcome these challenges, such as increasing the funding for both incremental innovation and breakthroughs on recycling technology, funding for pilot projects (particularly those contributing to fostering collaboration along the entire recycling value chain), and market-pull measures to support the creation of a favorable economic and regulatory environment for large-scale EV battery recycling. Keywords: battery materials; recycling; electric vehicle (EV); life-cycle analysis (LCA); sustainability; policy 1.
    [Show full text]
  • Regulation on Recyclability and Recycling
    Regulation on Recyclability and Recycling EVE Meeting Brussels Nov. 28/29, 2014 Klaus Putzhammer Adam Opel AG RECYCLABILITY An innovative concept Recyclability in Vehicle Type Approval Type Approval Recyclability is dealing with the theoretical reusability, recyclability and recoverability of the WHOLE VEHICLE based on its material composition. Legislation on type approval recyclability is addressing the automobile industry (OEMs and suppliers) In Europe, Type Approval Recyclability has been regulated in Directive 2005/64/EC, amended by Dir. 2009/01/EC. At WP29 meeting Nov. 2013, a UNECE regulation on recyclability of motor vehicle has been approved ensuring GLOBAL ALIGNMENT. Recyclability in the context of EU End-of-Life Regulation Type Directive on Waste 2008/98/EC Approval Sector/Product Specific Regulation Treatment Specific Regulation RRR ELV WEEE Battery Packaging Landfill- Shipment Thermal Directive Directive Directive Directive Directive Directive of Waste Treatment 2000/53/EC 2012/19/EC 2006/66/EC 94/62/EC 2005/64/EC of Waste --------------- 2011/65/EC UNECE Reg. - t + Two Aspects of Vehicle Recycling Type Approval – New Vehicle Types End of Life Vehicles – Treatment o End of Life Vehicles o Waste Treatment of Vehicle fluids & o Recyclability Rate components (incl. Battery) o Waste Treatment o Real Life o Theoretical Approach ELV Battery Directive Directive 2000/53/EC 2006/66/EC t-3 t0 t+15 Recyclability a Visionary Concept! Why we needed it! Inauguration of ELV Directive 2000/53/EC required OEMs to achieve RECYCLING QUOTAS: Year Reuse & Reuse & Recycling Recovery 2006 onwards 80% 85% 2015 onward 85% 95% Recyclability was introduced into regulation as early as 2001 as a bridge instrument to attain recycling performance 14 years later! Both RECYCLABILITY and RECYCLING QUOTA are product specific performance measurements! Battery Directive 2006/66/EC – A Regulatory Summary Recycling Efficiency is NO PRODUCT specific performance criteria! It is a RECYCLING PROCESS oriented performance measurement.
    [Show full text]