Lead Recycling in the United States in 1998

Total Page:16

File Type:pdf, Size:1020Kb

Lead Recycling in the United States in 1998 FLOW STUDIES FOR RECYCLING METAL COMMODITIES IN THE UNITED STATES Lead Recycling in the United States in 1998 By Gerald R. Smith CONTENTS Abstract ..................................................................................................1 Introduction ...............................................................................................1 History and use patterns ...............................................................................1 Global geologic occurrence of lead ......................................................................2 Lead production process and global production ............................................................4 Lead market prices ...................................................................................5 Sources of lead scrap ........................................................................................5 Old scrap generated ..................................................................................5 New scrap .........................................................................................6 Disposition ................................................................................................6 Old scrap recycling efficiency .................................................................................6 Secondary lead infrastructure ..................................................................................7 Battery scrap collection system .........................................................................7 Trade .............................................................................................7 Processing of lead scrap .....................................................................................7 Spent battery scrap ...................................................................................7 Battery fabrication ...................................................................................8 Outlook for lead recycling ....................................................................................8 References cited ...........................................................................................8 Appendix—Recycling definitions ..............................................................................9 FIGURES 1. U.S. lead recycling flow in 1998 .............................................................................2 2. U.S. lead consumption, in batteries, 1978-98 ...................................................................3 3. U.S. lead consumption, by end use, nonbattery uses, 1978-98 ......................................................4 TABLE 1. U.S. salient lead scrap statistics in 1998 ....................................................................... 6 i FLOW STUDIES FOR RECYCLING METAL COMMODITIES IN THE UNITED STATES Lead Recycling in the United States in 1998 By Gerald R. Smith ABSTRACT This materials flow study includes a description of lead supply and demand factors for the United States to illustrate the extent of lead recycling and to identify recycling trends. Understanding the system of materials flow from source to ultimate disposition can assist in improving the management of the use of natural resources in a manner that is compatible with sound environmental practices. The quantity of lead recycled in 1998, as a percentage of apparent lead supply, was estimated to be about 63%, and recycling efficiency, to be 95%. Of the total lead consumed in products for the U.S. market in 1998, an estimated 10% was consumed in products in which the lead was not readily recyclable. INTRODUCTION Figure 1 illustrates the flow of lead in the United States during 1998. The sources of lead supply and the distribution of these supplies are quantified in this illustration so as to determine specific information on recycling, including lead scrap recycling efficiency and lead scrap recycling rate. As an introduction prior to specific discussion of the components of figure 1, the following background on lead, including its history, important uses and use trends, geological occurrence, production processes and market prices is discussed. HISTORY AND USE PATTERNS Lead is a very corrosion-resistant, dense, ductile, and malleable blue-gray metal that has been used for at least 5,000 years. Early uses of lead included building materials, pigments for glazing ceramics, and pipes for transporting water. The castles and cathedrals of Europe contain considerable quantities of lead in decorative fixtures, roofs, pipes, and windows (Shea, 1996, p. 1). Lead scrap has represented a portion of lead supply in the United States since the 1800’s. The earliest known report of consumption of lead scrap was between 1867 and 1889, when a total of about 11,000 metric tons (t) of lead scrap were imported for unspecified uses in the United States (Kirchhoff, 1894). Actual U.S. production of lead from scrap was first reported in 1907. In the following 2 years, about 77,000 t of recycled lead were recovered (Siebenthal, 1911, p. 187). The recovery of lead from scrap increased significantly in the United States during the next 18 years, and by 1927, nearly 252,000 t of lead was recovered from scrap; this represented an estimated 27% of the total refined lead consumed (Smith, 1930, p. 341). By 1980, the quantity recovered had reached 675,000 t, which was about 63% of the total refined lead consumed (Rathjen, 1981, p. 480), and by 1998, it had risen to 1.12 million metric tons (Mt), which was 69% of consumption (Smith, 2000). Prior to the early 1900’s, uses of lead in the United States were primarily for ammunition, brass, burial vault liners, ceramic glazes, leaded glass and crystal, paints or other protective coatings, pewter, and water lines and pipes. The advent of the electrical age and communications, which were accelerated by technological developments in World War I, resulted in the addition of bearing metals, cable covering, caulking lead, solders, and type metal to the list of lead uses. With the growth in production of public and private motorized vehicles and the associated use of starting-lighting-ignition (SLI) lead-acid storage batteries and terne metal for gas tanks after World War I, demand for lead increased. Most of these uses for lead continued to increase with the growth in population and the national economy. Contributing to the increase in demand for lead was the use of lead as radiation shielding in medical analysis and video display equipment and as an additive in gasoline, the latter use peaking in the late 1970’s when environmental bans on leaded gasoline were introduced. Figures 2 and 3 show the trends in consumption of lead in the United States since 1978. By the mid-1980’s, a significant shift in lead end-use patterns had taken place. The demand for lead in SLI-type batteries grew rapidly, and this growth continued into the 1990’s (fig. 2). In addition, the demand for lead in non-SLI battery applications also grew. Non-SLI battery applications include motive sources of power for airport ground equipment, industrial forklifts, mining equipment, and a variety of nonroad utility vehicles, as well as stationary sources of power in uninterruptible electric power systems for computer and telecommunications networks, and hospitals, and load-leveling equipment for electric utility companies. The use of lead in nonbattery products declined as battery demand increased (fig. 3). DOMESTIC SUPPLY OF UNWROUGHT DISTRIBUTION OF DOMESTIC SUPPLY OF UNWROUGHT PRIMARY AND SECONDARY LEAD PRIMARY AND SECONDARY LEAD Release of industry and Government stocks 63 of refined metal: Government...........50 Industry.................13 1,790 267 Imports of refined 24 lead metal Exports of refined lead metal 343 Domestic production of 1,770 primary lead metal 7 Fabrication Net exports of 7 Home 1 semifabricated Processing scrap Old scrap generated: 1,770 products losses Batteries...........1,170 Other.....................50 Home 5 Lead 55 scrap Domestic production of products secondary lead metal reservoir 1,120 1,220 1,060 Old scrap supply net change 1,700 Old scrap consumed: New (prompt) scrap Batteries..........1,010 7 Old scrap generated: 1,230 + 300 Lead 178 Solder...................12 stock Dissipative Drosses and residues...46 products to Other..... ...............42 103 decrease uses Copper-base scrap.........9 55 U.S. market 63 Old scrap exports New (prompt) scrap consumed: 1,520 Drosses and residues.........46 Copper-base scrap...............9 55 Unrecovered old scrap Figure 1. U.S. lead material flow in 1998 (thousand metric tons). Much of the decline in nonbattery use of lead was a result of the U.S. lead consumers compliance with environmental regulations that significantly reduced or eliminated the use of lead in products that included gasoline, paints, solders, and water systems. Data for consumption of lead as chemical additives in gasoline were estimated for the period 1987 through 1995. The U.S. Environmental Protection Agency (EPA) issued a direct final rule that prohibits the use of such additives in highway vehicles effective January 1, 1996 (U.S. Environmental Protection Agency, 1996). By 1998, the total demand for all types of lead-acid storage batteries represented a record high 88% of apparent U.S. lead consumption. Other significant uses included ammunition (3%), oxides in glass and ceramics (3%), casting metals (2%), and sheet lead (1%). The remainder was consumed in bearing metals, brass and bronze billets, covering for cable, caulking lead, extruded
Recommended publications
  • A Sustainable Process for the Recovery of Anode and Cathode Materials Derived from Spent Lithium-Ion Batteries
    sustainability Article A Sustainable Process for the Recovery of Anode and Cathode Materials Derived from Spent Lithium-Ion Batteries Guangwen Zhang 1, Zhongxing Du 1, Yaqun He 1,2,*, Haifeng Wang 1, Weining Xie 2,3 and Tao Zhang 4 1 School of Chemical Engineering and Technology, China University of Mining and Technology, No.1 Daxue Road, Xuzhou 221116, China; [email protected] (G.Z.); [email protected] (Z.D.); [email protected] (H.W.) 2 Advanced Analysis and Computation Center, China University of Mining and Technology, No.1 Daxue Road, Xuzhou 221116, China; [email protected] 3 Jiangsu Huahong Technology Stock Limited Company, Wuxi 214400, China 4 Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China; [email protected] * Correspondence: [email protected]; Tel.: +86-516-8359-2928; Fax: +86-516-8399-5026 Received: 15 March 2019; Accepted: 15 April 2019; Published: 20 April 2019 Abstract: The recovery of cathode and anode materials plays an important role in the recycling process of spent lithium-ion batteries (LIBs). Organic binders reduce the liberation efficiency and flotation efficiency of electrode materials derived from spent LIBs. In this study, pyrolysis technology is used to improve the recovery of cathode and anode materials from spent LIBs by removing organic binders. Pyrolysis characteristics of organics in electrode materials are investigated, and on this basis, the effects of pyrolysis parameters on the liberation efficiency of electrode materials are studied. Afterwards, flotation technology is used to separate cathode material from anode material. The results indicate that the optimum liberation efficiency of electrode materials is obtained at a pyrolysis temperature of 500 ◦C, a pyrolysis time of 15 min and a pyrolysis heating rate of 10 ◦C/min.
    [Show full text]
  • On the Path to Zero Waste at ISTC
    On the path to Zero Waste at ISTC 1 What is Zero Waste? “Zero Waste is a goal that is ethical, economical, efficient and visionary, to guide people in changing their lifestyles and practices to emulate sustainable natural cycles, where all discarded materials are designed to become resources for others to use. 2 What is Zero Waste? Zero Waste means designing and managing products and processes to systematically avoid and eliminate the volume and toxicity of waste and materials, conserve and recover all resources, and not burn or bury them. 3 What is Zero Waste? Implementing Zero Waste will eliminate all discharges to land, water or air that are a threat to planetary, human, animal or plant health.” As adopted by the Zero Waste International Alliance on August 12, 2009 4 What is Zero Waste? The idea that there is no such place as “AWAY” Nature has no trash can. 5 How can we do that? • Reduce • Rethink / Redesign • Reuse • Repair • Rot • Recycle 6 Where do we start? • Baseline waste stream characterization study – Building walkthrough – Document waste management system – Collect, sort, and categorize waste – Weigh and document waste – Examine data 7 Why? • Buckshot vs. laser scope • Know your waste • Provides a metric to compare 8 Building walkthrough • How is waste collected? – Container types & locations – Frequency – Responsible parties • What waste is collected? – Are there any known hazards? 9 How is waste collected? • Trash – (78) metal 7 gallon can in each office / lab – (8) metal 5 gallon can in each bathroom – (5) plastic 55 gallon
    [Show full text]
  • Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials
    sustainability Review Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials Alexandre Beaudet 1 , François Larouche 2,3, Kamyab Amouzegar 2,*, Patrick Bouchard 2 and Karim Zaghib 2,* 1 InnovÉÉ, Montreal, QC H3B 2E3, Canada; [email protected] 2 Center of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, Varennes, QC J3X 1S1, Canada; [email protected] (F.L.); [email protected] (P.B.) 3 Mining and Materials Engineering, McGill University, Montréal, QC H3A 0C5, Canada * Correspondence: [email protected] (K.A.); [email protected] (K.Z.) Received: 8 June 2020; Accepted: 15 July 2020; Published: 20 July 2020 Abstract: The development and deployment of cost-effective and energy-efficient solutions for recycling end-of-life electric vehicle batteries is becoming increasingly urgent. Based on the existing literature, as well as original data from research and ongoing pilot projects in Canada, this paper discusses the following: (i) key economic and environmental drivers for recycling electric vehicle (EV) batteries; (ii) technical and financial challenges to large-scale deployment of recycling initiatives; and (iii) the main recycling process options currently under consideration. A number of policies and strategies are suggested to overcome these challenges, such as increasing the funding for both incremental innovation and breakthroughs on recycling technology, funding for pilot projects (particularly those contributing to fostering collaboration along the entire recycling value chain), and market-pull measures to support the creation of a favorable economic and regulatory environment for large-scale EV battery recycling. Keywords: battery materials; recycling; electric vehicle (EV); life-cycle analysis (LCA); sustainability; policy 1.
    [Show full text]
  • Disposal of End-Of-Life Lithium-Ion Plug-In Electric Vehicle Batteries
    Disposal of End-of-Life Lithium-Ion Plug-In Electric Vehicle Batteries - Challenges and Open Questions GO-Biz Zero-Emission Vehicle Infrastructure Unit March 26, 2018 Introduction We are at the cusp of urgently needing to address disposal of lithium-ion plug-in electric vehicle (PEV) batteries.1 Current PEV batteries have a lifespan of about 8-10 years, which means that the batteries from the first boom in PEVs will be reaching end-of-life in their primary application around 2020, and continuing on an exponential growth pattern through to 2050.2 Bloomberg New Energy estimates that 311,000 metric tons of PEV batteries will have stopped working by 2025 alone — the same weight as almost 200,000 2018 Nissan Leafs.3 With massive PEV growth as a central component of our electric transportation future, end-of-life solutions for their lithium-ion batteries is necessary. Their size, and potential risks if mishandled, necessitate responsible disposal, recycling, and repurposing. Dumping these batteries into landfills is an unacceptable option, so feasible alternatives for disposal must be identified. Re-purposing of PEV batteries in home and commercial energy storage is being explored through case studies, and holds some promise, but has yet to be proven at the large scale that will be necessary. No large-scale specialized recycling facilities currently exist for lithium-ion PEV batteries, and current recycling processes have not been proven capable of extracting enough materials to make a profit. Re-purposing and recycling both have potential, but challenges include a lack of standardization across battery manufacturers, logistical and economic challenges, and an uncertain regulatory climate.
    [Show full text]
  • Recycling Used Lead-Acid Batteries: Health Considerations
    Recycling used lead-acid batteries: health considerations Recycling used lead-acid batteries: health considerations Recycling used lead-acid batteries: health considerations ISBN 978-92-4-151285-5 © World Health Organization 2017 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Recycling used lead acid batteries: health considerations. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders.
    [Show full text]
  • Call2recycle Battery Recycling Program
    BATTERIES: ENVIRONMENTAL AND SOCIAL BEST PRACTICES MAG SOLID WASTE ADVISORY COMMITTEE Presented by: Sean Finney/ Robb Thomas Western Regional Team September 15, 2020 1 | ©2019call2recycle.org Call2Recycle, Inc. All rights reserved. ©2019 Call2Recycle, Inc. All rights reserved. Call2Recycle, Inc. Overview • Non-profit founded in 1994 by industry to address the emergence of producer responsibility regulations for batteries. • In the U.S., funded primarily by rechargeable battery stewards and, more recently, fee-based services. • In the U.S., we’re primarily a voluntary program except in certain states (e.g., Vermont, Minnesota, New York) where collections of some (but not always all) chemistries is mandated. • In Canada, Call2Recycle® is primarily a mandatory program financed via Environmental Handling Fees (EHFs) applied at point of sale. • Collected over 160 million pounds of consumer batteries since from over 20,000 publicly accessible sites. 2 | ©2019 Call2Recycle, Inc. All rights reserved. Why focus on batteries in the first place? • Heavy Metals. Some batteries contain heavy metals and the end-of-life handling, and subsequent impact of that, came into the “cross-hairs” of regulators. • “Drop the Hammer”. The U.S. EPA passed the “Battery Act” which 1) phased out the use of mercury in single use batteries and 2) paved the way for cost-effective collection for rechargeable batteries. • Passing of Battery Stewardship Laws. A patch work of State’s began passing laws requiring manufacturers and/or brand owners to finance a collection and recycling program for rechargeable batteries ONLY. • Call2Recycle Created! Industry created Call2Recycle, Inc. to take on their compliance responsibility to collect used rechargeable batteries.
    [Show full text]
  • Household Battery Recycling Batteries Power Many Items We Use in Our Daily Lives, and Can Pile up When They Are No Longer Useful
    Household Battery Recycling Batteries power many items we use in our daily lives, and can pile up when they are no longer useful. This guide provides an overview of requirememnts and explains how to safely store and dispose of common types of household batteries. Battery recycling requirements for households Wisconsin has no legal requirements, with the exception of lead-acid batteries, for disposal of household-generated batteries. These include alkaline, lithium, lithium ion, metal hydride, mercury oxide, nickel- cadmium, silver oxide and zinc-air batteries. Batteries come in many sizes and can be rechargeable or single use. While not required, the DNR recommends recycling many battery types. For more information, review the chart on the back of this publication, or go to to dnr.wi.gov and search “batteries.” Household battery recycling locations Lead-acid batteries, or “automotive type batteries,” are banned from disposal. Consumers may bring lead-acid batteries to any Wisconsin retailer that sells these batteries for recycling. This service is free to customers who buy a new battery. Customers may be charged a fee if they bring in a used battery without buying a new one. For drop-off locations that accept other battery types, visit WisconsinRecyclingDirectory.com or Call2Recycle.org or contact your local recycling program. Some sites may charge a fee or accept only certain battery types. Electronics with Know the risk: how to prepare and store rechargable batteries for recycling batteries banned from Many batteries, especially lithium ion, pose a fi re risk due to their chemistries and Wisconsin landfi lls ability to hold a charge.
    [Show full text]
  • The E-Stewards® Standard for Ethical and Responsible Reuse, Recycling, and Disposition of Electronic Equipment and Information Technology
    The e-Stewards® Standard for Ethical and Responsible Reuse, Recycling, and Disposition of Electronic Equipment and Information Technology Version 4.0© February 25, 2020 i e-Stewards Copyright and Control The e-Stewards® Standard for Ethical and Responsible Reuse, Recycling, and Disposition of Electronic Equipment and Information Technology Version 4.0© is copyrighted as of the publication date by the Basel Action Network (BAN). This document is proprietary and its use is strictly controlled by the Basel Action Network. This document may not be copied, shared, or excerpted including via an electronic retrieval system, or be made available on the Internet, a public network, by satellite, or otherwise used or reproduced, in part or whole, without the prior written permission from or under license with the Basel Action Network. Use of the e-Stewards® Standard Logo The e-Stewards® name and logo are registered trademarks of the Basel Action Network (BAN). Use of these marks by any entity other than BAN is only allowed by written permission and controlled by a License Agreement with BAN. This edition of the e-Stewards® Standard for Ethical and Responsible Reuse, Recycling, and Disposition of Electronic Equipment and Information Technology© Version 4.0 is available at www.e-stewards.org. The current trademarked logo of e-Stewards is shown below: ii Table of Content e-Stewards Copyright and Control..................................................................................................................................... ii Use of the
    [Show full text]
  • Austin Resource Recovery
    Recharging the planet. Recycling your batteries.™ RECYCLING MADE EASY FOR MUNICIPALITIES: AUSTIN RESOURCE RECOVERY ustin took an important step to move toward a more As part of these goals, residents of Austin and Travis Asustainable future by adopting Texas’ first Zero County can bring all types of batteries – along with other Waste Plan. The City’s Zero Waste goal is to reduce materials such as paint, electronics, automotive products the amount of waste its one million households send and chemicals – to the Household Hazardous Waste to landfill by 90 percent by the year 2040. The Plan Facility (HHW Facility), operated by Austin Resource addresses both upstream and downstream policy and Recovery (a City of Austin service), for safe disposal and/ program options; green business, green buildings, and or recycling. There are a number of locations around jobs; and regional coordination. town to drop off household batteries free of charge. To facilitate disposal of the collected batteries, the City Austin’s Zero Waste Plan takes into consideration its has been working with Call2Recycle®, recycling over current and planned public and private solid waste 40,000 pounds of rechargeable batteries since joining infrastructure, as well as the city’s Climate Protection the program in 2004. Program. Recommendations developed through the process are integral to attaining the United Nations Urban Environmental Accord’s goal to reduce by 20% the per capita solid waste disposal to landfills by 2012, divert 75% of waste from landfills by 2020, and 90% by
    [Show full text]
  • Battery Recycling Batteries Are Essential to Our Mobile Lifestyle
    Battery Recycling Batteries are essential to our mobile lifestyle. Phones, music Davis Street Resource DID YOU KNOW? Recovery Complex players, cameras and more make our lives convenient Davis Street collects over 2615 Davis Street because of the power supplied by batteries. However, the 125,000 batteries each year San Leandro, CA 94577 chemicals that give batteries their “juice” are considered for recycling. Hours of Operation: hazardous materials under California’s Universal Waste MON - FRI: 7:00 am - 5:00 pm SAT: 8:00 am - 4:00 pm Rule and are banned from the California landfills. MATERIAL MATTErs SUN: Closed The “juice” for batteries includes lead acid, nickel-cad- Today, 97% of automotive lead acid batteries are recycled in mium, and nickel-metal-hydride. These are found in the USA. As a result, over 50% common household items like surge protectors, batteries, of the lead supply comes from (AAA, AA, B, C, D), cell phones, and button batteries for recycled batteries. davisstreet.wm.com cameras. Rechargeable batteries, while less hazardous, contain lithium-ion and are also recyclable. The main objective for recycling batteries is to prevent hazardous materials from entering landfills. Some residents have curbside services for recycling household batteries. Check with your city to find out if this recycling program is available in your community. Regardless, all residents of Alameda County can recycle their batteries at the Household Hazardous Waste facilities in Oakland, Hayward and Fremont. Once collected, recyclers sort batteries into like chemis- tries. The batteries are then broken apart and materials are separated for recycling. To learn more about the recycling process of each of these materials, visit: www.batteryrecycling.com/Battery+Recycling+Process.
    [Show full text]
  • Battery Waste and Recycling
    Battery Waste and Recycling Helen Lewis Chief Executive, Australian Battery Recycling Initiative Increased battery recycling in Australia will help to conserve nonrenewable resources and reduce pollution from landfills. atteries provide a portable power source developed to meet the needs of electric and for many of the products that have hybrid electric vehicles. Bbecome important to our way of life, from The smaller portable batteries used in cars and boats through to laptop computers, electrical and electronic products come in a mobile phones and hearing aids. Like all wider range of shapes, sizes and chemistries. manufactured products, however, batteries have This makes them more complex and expensive impacts on the environment at every stage of to sort and reprocess (Table 1). their life cycle. The metals used to manufacture More than 90% of lead–acid batteries are batteries are non-renewable finite resources, recycled in Australia, although there is some and mining and processing of metal ores is uncertainty about the exact recycling rate. energy-intensive. ABRI recently commissioned a comprehensive Batteries also have environmental impacts at study of battery consumption, disposal and the end of their life. While most automotive recycling in Australia, which will provide more batteries are recycled, the majority of smaller accurate data than has previously been “dry cell” batteries consumed in Australia still available. This study will be completed in late go to landfill. In poorly managed landfills, 2010. batteries have the potential to leach toxic heavy Lead–acid batteries are collected from service metals such as lead, mercury and cadmium into stations, battery retailers and some council the surrounding soil, surface and groundwater.
    [Show full text]
  • Lithium Battery Recycling and Reuse
    Pipeline and Hazardous Materials Safety Administration January 23, 2020 Neal Suchak Lithium Battery Recycling and Reuse Disclaimer: These slides are informational and DOT DOT always advises you use the Hazardous Materials Regulations (HMR; 49 CFR Parts 171-180) when determining compliance Why is this important? Houston, TX - 2017 Agenda • Overview of DOT/PHMSA • DOT/PHMSA’s Role in the Supply Chain • How DOT/PHMSA Regulations Work • Special Topics Overview of DOT/PHMSA Who is PHMSA? OST DOT OIG FAA FHWA FMCSA FRA FTA MARAD NHTSA FHWA SLSDC PHMSA OHMS OPS PHMSA Regional Offices PHMSA MISSION Our mission is to protect people and the environment by advancing the safe transportation of energy and other hazardous materials that are essential to our daily lives Federal Hazmat Law Protect against the risks to life, property, and the environment which are inherent in the transportation of hazardous materials in intrastate, interstate, and U.S. Senate Photo foreign commerce 49 U.S.C. Section 5101 et seq. PHMSA Responsibilities Special Regulations Permits and Approvals Outreach Enforcement and Engagement DOT/PHMSA’s Role in the Supply Chain DOT in the Supply Chain Oversight Over the Transportation Process Identification Packaging and Hazard Movement and Sorting Communication How DOT/PHMSA’s Regulations Work Hazardous Materials Regulations (HMR) • The HMR govern the packaging and safe transportation of hazardous materials by highway, air, rail, and water • Covers: – Identification and Classification – Hazard Communication – Packaging Requirements – Operational Rules Hazardous Materials Regulations (HMR) • Section 173.185 in the HMR addresses requirements for lithium batteries, including the exceptions for recycling lithium batteries: 1. Classification/ 3.
    [Show full text]