Impact of Retreatment with an Artemisinin-Based Combination On
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ceftazidime for Injection) PHARMACY BULK PACKAGE – NOT for DIRECT INFUSION
PRESCRIBING INFORMATION FORTAZ® (ceftazidime for injection) PHARMACY BULK PACKAGE – NOT FOR DIRECT INFUSION To reduce the development of drug-resistant bacteria and maintain the effectiveness of FORTAZ and other antibacterial drugs, FORTAZ should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION Ceftazidime is a semisynthetic, broad-spectrum, beta-lactam antibacterial drug for parenteral administration. It is the pentahydrate of pyridinium, 1-[[7-[[(2-amino-4 thiazolyl)[(1-carboxy-1-methylethoxy)imino]acetyl]amino]-2-carboxy-8-oxo-5-thia-1 azabicyclo[4.2.0]oct-2-en-3-yl]methyl]-, hydroxide, inner salt, [6R-[6α,7β(Z)]]. It has the following structure: The molecular formula is C22H32N6O12S2, representing a molecular weight of 636.6. FORTAZ is a sterile, dry-powdered mixture of ceftazidime pentahydrate and sodium carbonate. The sodium carbonate at a concentration of 118 mg/g of ceftazidime activity has been admixed to facilitate dissolution. The total sodium content of the mixture is approximately 54 mg (2.3 mEq)/g of ceftazidime activity. The Pharmacy Bulk Package vial contains 709 mg of sodium carbonate. The sodium content is approximately 54 mg (2.3mEq) per gram of ceftazidime. FORTAZ in sterile crystalline form is supplied in Pharmacy Bulk Packages equivalent to 6g of anhydrous ceftazidime. The Pharmacy Bulk Package bottle is a container of sterile preparation for parenteral use that contains many single doses. The contents are intended for use in a pharmacy admixture program and are restricted to the preparation of admixtures for intravenous use. THE PHARMACY BULK PACKAGE IS NOT FOR DIRECT INFUSION, FURTHER DILUTION IS REQUIRED BEFORE USE. -
Eurartesim, INN-Piperaquine & INN-Artenimol
ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Eurartesim 160 mg/20 mg film-coated tablets. 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each film-coated tablet contains 160 mg piperaquine tetraphosphate (as the tetrahydrate; PQP) and 20 mg artenimol. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Film-coated tablet (tablet). White oblong biconvex film-coated tablet (dimension 11.5x5.5mm / thickness 4.4mm) with a break-line and marked on one side with the letters “S” and “T”. The tablet can be divided into equal doses. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Eurartesim is indicated for the treatment of uncomplicated Plasmodium falciparum malaria in adults, adolescents, children and infants 6 months and over and weighing 5 kg or more. Consideration should be given to official guidance on the appropriate use of antimalarial medicinal products, including information on the prevalence of resistance to artenimol/piperaquine in the geographical region where the infection was acquired (see section 4.4). 4.2 Posology and method of administration Posology Eurartesim should be administered over three consecutive days for a total of three doses taken at the same time each day. 2 Dosing should be based on body weight as shown in the table below. Body weight Daily dose (mg) Tablet strength and number of tablets per dose (kg) PQP Artenimol 5 to <7 80 10 ½ x 160 mg / 20 mg tablet 7 to <13 160 20 1 x 160 mg / 20 mg tablet 13 to <24 320 40 1 x 320 mg / 40 mg tablet 24 to <36 640 80 2 x 320 mg / 40 mg tablets 36 to <75 960 120 3 x 320 mg / 40 mg tablets > 75* 1,280 160 4 x 320 mg / 40 mg tablets * see section 5.1 If a patient vomits within 30 minutes of taking Eurartesim, the whole dose should be re-administered; if a patient vomits within 30-60 minutes, half the dose should be re-administered. -
Taking Artemisinin to Clinical Anticancer Applications: Design, Synthesis and Characterization
Taking Artemisinin to Clinical Anticancer Applications: Design, Synthesis and Characterization of pH-responsive Artemisinin Dimer Derivatives in Lipid Nanoparticles Yitong Zhang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Tomikazu Sasaki, Chair Rodney J.Y. Ho Champak Chatterjee Program Authorized to Offer Degree: Chemistry i ©Copyright 2015 Yitong Zhang ii University of Washington Abstract Taking Artemisinin to Clinical Anticancer Applications: Design, Synthesis and Characterization of pH-responsive Artemisinin Dimer Derivatives in Lipid Nanoparticles Yitong Zhang Chair of the Supervisory Committee: Professor Tomikazu Sasaki Chemistry iii Abstract Qinghaosu or Artemisinin is an active sesquiterpene lactone isolated from Artemisia annua L. The natural product and its derivatives are known as a first line treatment for malaria. Investigations have also reported that the compound exhibits anti-cancer activities both on cell lines and in animal models. The remarkably stable endoperoxide bridge under ambient conditions is believed to be responsible for the selectivity as well as potency against cells that are rich in iron content. Dimeric derivatives where two artemisinin units are covalently bonded through lactone carbon (C10) show superior efficacies against both malaria parasites and cancer cells. Artemisinin dimer succinate derivative demonstrates a 100-fold enhancement in potency, compared to the natural product, with IC50 values in the low micromolar range. This work focuses on the development of artemisinin dimer derivatives to facilitate their clinical development. Novel pH-responsive artemisinin dimers were synthesized to enhance the aqueous solubility of the pharmacophore motif. Compounds with promising potency against human breast cancer cell lines were selected for lipid and protein based nanoparticle formulations for delivery of the derivatives without the need of organic co-solvents into animal models. -
Despite Improvements, COVID-19'S Health Care Disruptions Persist
News & Analysis Global Health More Comprehensive Care Drug-Resistant Malaria Detected for Miscarriage Needed Worldwide in Africa Will Require Monitoring About 1 in 10 women will have a miscar- Evidence in Africa that the malaria parasite riage over a lifetime—a statistic that repre- Plasmodium falciparum has developed sents 23 million pregnancies lost annually, genetic variants that confer partial resis- or 44 per minute worldwide, according to tance to the antimalarial drug artemisinin is a series of articles in The Lancet. Despite a warning of potential treatment failure on the magnitude, the articles described mis- the horizon, a drug-resistance monitoring carriage as a misunderstood phenomenon study suggested. and called for more comprehensive care to Partial resistance to artemisinin, the cur- prevent and treat miscarriage. rent frontline treatment for malaria, first The 15% of pregnancies that end in a emerged in Cambodia in 2008 and has be- miscarriage can be attributed to risk fac- come common in Southeast Asia, the au- tors including age during pregnancy, smok- thors wrote. Artemisinin is a fast-acting drug ing, stress, air pollution, and exposure to that typically clears the parasite within 3 pesticides, 1 of the studies reported. For days. It’s usually combined with a longer- Miscarriage is a misunderstood phenomenon, repeated miscarriages, which affect about acting drug to kill any remaining parasites. according to a recent series of articles. 2% of women, another study indicated When artemisinin resistance emerged in that progesterone could increase live-birth Asia, resistance to the combination therapy rates and that levothyroxine may decrease soon followed. 2020 when half of essential services had the risk of miscarriage for women with The current study was part of routine been interrupted. -
NINDS Custom Collection II
ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC -
209627Orig1s000
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 209627Orig1s000 MULTI-DISCIPLINE REVIEW Summary Review Office Director Cross Discipline Team Leader Review Clinical Review Non-Clinical Review Statistical Review Clinical Pharmacology Review Reviewers of Multi-Disciplinary Review and Evaluation SECTIONS OFFICE/ AUTHORED/ ACKNOWLEDGED/ DISCIPLINE REVIEWER DIVISION APPROVED Mark Seggel, Ph.D. OPQ/ONDP/DNDP2 Authored: Section 4.2 Digitally signed by Mark R. Seggel -S CMC Lead DN: c=US, o=U.S. Government, ou=HHS, ou=FDA, ou=People, cn=Mark R. Signature: Mark R. Seggel -S Seggel -S, 0.9.2342.19200300.100.1.1=1300071539 Date: 2018.08.08 16:29:15 -04'00' Frederic Moulin, DVM, PhD OND/ODE3/DBRUP Authored: Section 5 Pharmacology/ Digitally signed by Frederic Moulin -S Toxicology DN: c=US, o=U.S. Government, ou=HHS, ou=FDA, ou=People, Reviewer Signature: Frederic Moulin -S 0.9.2342.19200300.100.1.1=2001708658, cn=Frederic Moulin -S Date: 2018.08.08 15:26:57 -04'00' Kimberly Hatfield, PhD OND/ODE3/DBRUP Approved: Section 5 Pharmacology/ Toxicology Digitally signed by Kimberly P. Hatfield -S DN: c=US, o=U.S. Government, ou=HHS, ou=FDA, ou=People, Team Leader Signature: Kimberly P. Hatfield -S 0.9.2342.19200300.100.1.1=1300387215, cn=Kimberly P. Hatfield -S Date: 2018.08.08 14:56:10 -04'00' Li Li, Ph.D. OCP/DCP3 Authored: Sections 6 and 17.3 Clinical Pharmacology Dig ta ly signed by Li Li S DN c=US o=U S Government ou=HHS ou=FDA ou=People Reviewer cn=Li Li S Signature: Li Li -S 0 9 2342 19200300 100 1 1=20005 08577 Date 2018 08 08 15 39 23 04'00' Doanh Tran, Ph.D. -
Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org). -
NPTC-Formulary Brief Acne
Indian Health Service National Pharmacy and Therapeutics Committee Formulary Brief: Treatment of Acne vulgaris -January 2020- Background: The Indian Health Service (IHS) National Pharmacy and Therapeutics Committee (NPTC) reviewed the medical management of acne vulgaris at their January 2020 meeting. This review included topical therapies (retinoids, antibiotics, bactericidal and other anti-comedonal or anti-inflammatory agents) and oral therapies (antibiotics, isotretinoin, oral contraceptives, antiandrogens). Topical clindamycin, topical tretinoin, spironolactone, and combined estrogen-containing oral contraceptives are currently on the IHS National Core Formulary (NCF). Following clinical review, pharmacoeconomic evaluation and internal deliberation, the NPTC voted to ADD (1.) benzoyl peroxide (any topical formulation) and REPLACE topical clindamycin with (2.) combination clindamycin and benzoyl peroxide gel to the NCF. Discussion: Acne is the most common skin disorder in the United States (US), affecting 40-50 million persons of all ages. It can have significant sequelae from physical scarring, persistent hyperpigmentation, and psychological issues. Small studies focused on acne among American Indian/Alaska Native (AI/AN) populations suggest that the prevalence of acne is similar to other racial/ethnic groups in the US, but that the sequelae of scarring is significantly higher (55% in AI/AN vs. 3% among US white populations) and access to specialty care services is disproportionately low1. Acne is a chronic inflammatory disease of the pilosebaceous unit involving increased sebum production by sebaceous glands, hyperkeratinization of the follicle, colonization of the follicle by Propionobacterium acnes, and an inflammatory reaction. Acne is manifested with both non-inflammatory (open and closed comedones) and inflammatory lesions (papules, pustules, and nodules). Inflammatory acne is graded as mild, moderate, or severe based on the frequency of the various inflammatory lesions. -
Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine -
Clindamycin Plus Quinine for Treating Uncomplicated Falciparum Malaria: a Systematic Review and Meta-Analysis Charles O Obonyo1* and Elizabeth a Juma1,2
Obonyo and Juma Malaria Journal 2012, 11:2 http://www.malariajournal.com/content/11/1/2 RESEARCH Open Access Clindamycin plus quinine for treating uncomplicated falciparum malaria: a systematic review and meta-analysis Charles O Obonyo1* and Elizabeth A Juma1,2 Abstract Background: Artemisinin-based combinations are recommended for treatment of uncomplicated falciparum malaria, but are costly and in limited supply. Clindamycin plus quinine is an alternative non-artemisinin-based combination recommended by World Health Organization. The efficacy and safety of clindamycin plus quinine is not known. This systematic review aims to assess the efficacy of clindamycin plus quinine versus other anti-malarial drugs in the treatment of uncomplicated falciparum malaria. Methods: All randomized controlled trials comparing clindamycin plus quinine with other anti-malarial drugs in treating uncomplicated malaria were included in this systematic review. Databases searched included: Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE and LILACS. Two authors independently assessed study eligibility, extracted data and assessed methodological quality. The primary outcome measure was treatment failure by day 28. Dichotomous data was compared using risk ratio (RR), in a fixed effects model. Results: Seven trials with 929 participants were included. Clindamycin plus quinine significantly reduced the risk of day 28 treatment failure compared with quinine (RR 0.14 [95% CI 0.07 to 0.29]), quinine plus sulphadoxine- pyrimethamine (RR 0.17 [95% CI 0.06 to 0.44]), amodiaquine (RR 0.11 [95% CI 0.04 to 0.27]), or chloroquine (RR 0.11 [95% CI 0.04 to 0.29]), but had similar efficacy compared with quinine plus tetracycline (RR 0.33 [95% CI 0.01 to 8.04]), quinine plus doxycycline (RR 1.00 [95% CI 0.21 to 4.66]), artesunate plus clindamycin (RR 0.57 [95% CI 0.26 to 1.24]), or chloroquine plus clindamycin (RR 0.38 [95% CI 0.13 to 1.10]). -
Phytochemical Regulation of Tumor Suppressive Microrna in Human Breast Cancer Cells
Phytochemical Regulation of Tumor Suppressive MicroRNA in Human Breast Cancer Cells by Kristina G. H. Hargraves A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Endocrinology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Gary L. Firestone, Chair Professor G. Steven Martin Professor Jen-Chywan Wang Fall 2013 Phytochemical Regulation of Tumor Suppressive MicroRNA in Human Breast Cancer Cells © 2013 By Kristina G. H. Hargraves ABSTRACT Phytochemical Regulation of Tumor Suppressive MicroRNA in Human Breast Cancer Cells by Kristina G. H. Hargraves Doctor of Philosophy in Endocrinology University of California, Berkeley Professor Gary L. Firestone, Chair MicroRNA post-transcriptionally regulate more than half of the transcribed human genome and could be potential targets of anti-cancer therapeutics. The microRNA family, miR- 34, is a component of the p53 tumor suppressor pathway and has been shown to mediate induction of cell cycle arrest, senescence, and apoptosis in cancer cells. Indole-3-carbinol (I3C) derived from cruciferous vegetables, artemisinin isolated from the sweet wormwood plant and artesunate derived from the carbonyl reduction of artemisinin effect components of the p53 pathway to growth arrest human cancer cells, implicating a potential role for miR-34a in their anti-proliferative effects. Flow cytometry and Taqman semi-quantitative PCR analysis of I3C, artemisinin and artesunate treated human breast cancer cells indicate all three phytochemicals upregulate miR- 34a in a dose and time-dependant manner that correlates with a pronounced G1 cell cycle arrest. Western blot analysis revealed miR-34a upregulation correlates with induction of functional p53 by I3C as well as artesunate and artemisinin mediated decreases in estrogen-receptor alpha (ERα) and the cyclin-dependant kinase CDK4, a known target of miR-34a inhibition. -
“The Red Face” and More Clinical Pearls
“The Red Face” and More Clinical Pearls Courtney R. Schadt, MD, FAAD Assistant Professor Residency Program Director University of Louisville Associates in Dermatology I have no disclosures or conflicts of interest Part 1: The Red Face: Objectives • Distinguish and diagnose common eruptions of the face • Recognize those with potential implications for internal disease • Learn basic treatment options Which patient(s) has an increased risk of hypertension and hyperlipidemia? A B C Which patient(s) has an increased risk of hypertension and hyperlipidemia? A Seborrheic Dermatitis B C Psoriasis Seborrheic Dermatitis Goodheart HP. Goodheart's photoguide of common skin disorders, 2nd ed, Lippincott Williams & Wilkins, Philadelphia 2003. Copyright © 2003 Lippincott Williams & Wilkins. Seborrheic Dermatitis • Erythematous scaly eruption • Infants= “Cradle Cap” • Reappear in adolescence or later in life • Chronic, remissions and flares; worse with stress, cold weather • Occurs on areas of body with increased sebaceous glands • Unclear role of Malassezia; could be immune response; no evidence of overgrowth Seborrheic Dermatitis Severe Seb Derm: THINK: • HIV (can also be more diffuse on trunk) • Parkinson’s (seb derm improves with L-dopa therapy) • Other neurologic disorders • Neuroleptic agents • Unclear etiology 5MinuteClinicalConsult Clinical Exam • Erythema/fine scale • Scalp • Ears • Nasolabial folds • Beard/hair bearing areas Goodheart HP. Goodheart's photoguide of common skin disorders, 2nd ed, Lippincott • Ill-defined Williams & Wilkins, Philadelphia