Formal Notice of Intent

Total Page:16

File Type:pdf, Size:1020Kb

Formal Notice of Intent April 2, 2020 Sonny Perdue, David Bernhardt, Secretary of Agriculture Secretary of the Interior U.S. Dept. of Agriculture U.S. Dept. of the Interior 1400 Independence Ave., S.W. 1849 C Street, N.W. Washington, D.C. 20250 Washington, D.C. 20240 [email protected] [email protected] Vicki Christiansen, Acting Chief Aurelia Skipwith, Director U.S. Forest Service 201 14th Street, S.W. Washington D.C. 20024 U.S. Fish and Wildlife Service 201 14TH Street, SW 1849 C Street, N.W. Washington, DC 20024 Washington D.C. 20240 [email protected] [email protected] Elaine Kohrman, Acting Regional Forester Amy Lueders, Region 2 Regional Director U.S. Forest Service, Southwestern Region U.S. Fish and Wildlife Service 333 Broadway SE P.O. Box 1306 Albuquerque, NM 87102 Albuquerque, NM 87102 [email protected] [email protected] Jeff Humphrey, Arizona State Supervisor Seth Willey, New Mexico State Supervisor U.S. Fish and Wildlife Service U.S. Fish and Wildlife Service 9828 North 31st Avenue, Suite C3 2105 Osuna Road NE Phoenix, Arizona 85051 Albuquerque, NM 87113 [email protected] [email protected] Dear Messrs. Bernhardt, Perdue, Humphrey, and Willey, and Mses. Christiansen, Skipwith, Lueders, and Kohrman, RE: Sixty‐Day Notice of Intent to Sue if you fail to remedy your Endangered Species Act Violations threatening the Mexican Spotted Owl in Arizona and New Mexico. The U.S. Department of Agriculture Secretary, U.S. Forest Service ("USFS") Chief, Forest Service Southwestern Region Regional Forester, the U.S. Secretary of the Interior, U.S. Fish and Wildlife Service ("USFWS") Director, USFWS Region 2 Director, USFWS Arizona Ecological Services Director and USFWS New Mexico Ecological Services Director are hereby notified that the Center for Biological Diversity and Maricopa Audubon Society intend to file suit, pursuant to the citizen suit provision of the Endangered Species Act (“ESA”), 16 U.S.C. § 1540(g), and the Administrative Procedure Act (“APA”), 5 U.S.C. §§ 701‐706, to compel ESA Section 7 consultations1 to stop ongoing violations of law and to prevent the Forest Service Southwestern Region's coordinated and identical Region wide forest "restoration projects" from further jeopardizing the Mexican Spotted Owl ("MSO") and adversely modifying its Critical Habitat in Arizona and New Mexico. While these projects are labeled as "restoration," as presented in this Notice, they are highly likely to be jeopardizing MSO without modifications to the projects themselves, correction of the current unlawful guiding ESA documentary framework, and adherence to best available science. Currently, the coordinated and identical "site specific" projects under this Region wide "restoration" umbrella violate the best available MSO science and the law by, 1. widespread disregard for the MSO Recovery Plan's best available science recommendation for canopy cover2 and its proxy management of MSO nesting/roosting habitat basal area and management of the percentage of basal area by large trees "emphasize that values shown are minimums, not targets;"3 2. complete disregard for the best science available recommendation for at least 10 years of post‐treatment local monitoring;4 3. complete disregard for the best science available recommendation and the legal requirement to provide for the regionwide habitat monitoring necessary for Recovery and for any Jeopardy Analysis. No MSO Biological Opinion can provide a Jeopardy Analysis without regionwide population and habitat monitoring, as a 1 16 U.S.C. § 1536(a)(2) and 50 C.F.R. § 402.14(g). 2 MEXICAN SPOTTED OWL RECOVERY PLAN, FIRST REVISION (Strix occidentalis lucida); Southwest Region U.S. Fish and Wildlife Service; Albuquerque, New Mexico; September 2012.; page 267: "We used tree BA and large tree (>46 cm [18 inches] dbh) density to describe minimum conditions for owl nesting/roosting habitat (Table C.3). Other structures such as canopy cover, snags, and downed logs are important as well. However, we assume that when tree BA and density approach the levels given in Table C.3, then adequate amounts of canopy cover, snags, and downed logs either exist already or will develop over time."; and page 276: "Minimum canopy cover of 40% in pine‐oak and 60% in mixed conifer (Ganey et al. 2003)." 3 Id., page 278. THIS BOLDED EMPHASIS IS NOT ADDED, IT IS FROM THE RECOVERY PLAN ITSELF.; "Identification of distinguishing characteristics around middens of Mount Graham red squirrels," Smith, Andrew Allen, M.S.; The University of Arizona, 1992.; "Distinguishing Characteristics of Mount Graham Red Squirrel Midden Sites," Andrew A. Smith and R. William Mannan, J. WILDL. MANAGE. 58(3):437‐445; 1994.; "An Evaluation of the Minimum Habitat Quality Standards for Birds in Old‐ Growth Ponderosa Pine Forests," James Joshua Siegel; University of Arizona; 1989.; Minimum Standards and Forest Wildlife Management; Richard N. Conner; Wildlife Society Bulletin; Vol. 7, No. 4 (Winter, 1979), pp. 293‐296.; Harrison's Principles of Internal Medicine, 20th Edition, J. Larry Jameson and Anthony S. Fauci, et al. 4 Recovery Plan for the Mexican Spotted Owl (Strix occidentalis lucida), USFWS Southwestern Region, December 1995.; pages 78‐79.; WildEarth Guardians v. USFWS; Order, September 11, 2019.; page 11: "Defendants [Forest Service/USFWS] … admit that any monitoring for recovery would need to be done over a period of around 15 years “to generate any meaningful data on population trends.” Id. at 18. A monitoring period of one year before and two to three years after treatment is insufficient to provide population trend data for delisting. Again, this does not provide adequate information to guide a jeopardy analysis about recovery." 2 Jeopardy Analysis must consider the Regional Program projects' impact on Recovery which is dependent upon non‐existent range‐wide monitoring.;5 4. failure to heed Recovery Plan recommendations where "The Recovery Team recommends mechanical treatment in PACs only if such [large‐scale assessments] monitoring occurs.";6 and, 5. disregard for the best available MSO science7 in utilizing widespread mechanical thinning in PACs and in Recovery nesting/roosting habitat spite. USFWS is obligated by the ESA and its implementing regulations to produce both a programmatic regional Biological Opinion and an individual Biological Opinion for each of the "site specific" project actions undertaken in accordance with the programmatic Biological Opinion.8 Specifically, a "programmatic consultation," pursuant to 50 CFR § 402.02, must address "the effects of programmatic actions such as…[m]ultiple similar, frequently occurring…actions… providing a framework for future proposed actions."9 5 Nat’l Wildlife Fed’n v. Nat’l Marine Fisheries Serv., 524 F.3d 917, 931 (9th Cir. 2008).; Ctr. for Biological Diversity v. Rumsfeld, 198 F. Supp. 2d 1139, 1153‐54 (D. Ariz. 2002).; In addition, recently, the Court in WildEarth Guardians v. USFWS also recognized this fact: Order, WildEarth Guardians, Plaintiff, v. United States Fish and Wildlife Service and United States Forest Service, Defendants, Case No. 4:13‐cv‐151‐RCC, September 19, 2019.: "…The jeopardy analysis must consider both survival and recovery. Nat’l Wildlife Fed’n, 524 F.3d at 931; 50 C.F.R. § 402.02. [page 20] … Stand‐alone Forest Plan measures protecting habitat do not reasonably address recovery because even if all national forest land was preserved for the MSO, it will never provide enough information about population trends to allow for delisting nor an accurate [page 21] assessment of whether the population range‐wide is recovering. Therefore, it cannot be a basis for a no jeopardy determination. [pages 21‐22] … Finally, FWS argues that the range‐wide monitoring is for delisting—not for the jeopardy analysis. However, the two are interconnected because jeopardy must consider recovery, recovery must be geared towards eventual delisting, and delisting is dependent upon range‐wide monitoring. … The BiOps [of the Forest Plans] simply do not provide a route to recovery or a way to accurately assess it. The no‐jeopardy determination is unsupported, arbitrary, and capricious because the finding failed to account for recovery of the MSO." [page 24.] 6 MEXICAN SPOTTED OWL RECOVERY PLAN, FIRST REVISION (Strix occidentalis lucida); Southwest Region U.S. Fish and Wildlife Service; Albuquerque, New Mexico; September 2012.; page 73. THIS BOLDED EMPHASIS IS NOT ADDED, IT IS FROM THE RECOVERY PLAN ITSELF. The insert "large‐scale assessments" comes from the Recovery Plan's referral preceding its warning on monitoring for mechanical treatment, "see Box C.6 for details on how such monitoring might be structured." Box C.6. is on page 285. 7 Conflicting Perspectives on Spotted Owls, Wildlife, and Forest Restoration, Joseph L. Ganey, Ho Yi Wan, Samuel A. Cushman, and Christina D. Vojta; Fire Ecology, 2017.; page 11.; citing, Meiman, S., R. Anthony, E. Glenn, T. Bayless, A. Ellingson, M.C. Hansen, and C. Smith. 2003. Effects of commercial thinning on home‐range and habitat‐use patterns of a male northern spotted owl: a case study. Wildlife Society Bulletin 31: 1254‐1262.; Seamans, M.E., and R.J. Gutiérrez. 2007. Habitat selection in a changing environment: the relationship between habitat alteration and spotted owl territory occupancy and breeding dispersal. Condor 109: 566‐576. doi: 10.1650/8352.1.; Stephens, S.L., S.W. Bigelow, R.D. Burnett, B.M. Collins, C.V. Gallagher, J. Keane, D.A. Kelt, M.P. North, L.J. Roberts, P.A. Stine, and D.H. Van Vuren. 2014a. California spotted owl, songbird, and small mammal responses to landscape fuel treatments. BioScience 64: 893‐906. doi: 10.1093/biosci/biu137.; Tempel, D.J., R.J. Gutiérrez, S.A. Whitmore, M.J. Reetz, R.E. Stoelting, W.J. Berigan, M.E. Seamans, and M.Z. Peery. 2014. Effects of forest management on California spotted owls: implications for reducing wildfire risk in fire‐prone forests. Ecological Applications 24: 2089‐2106. doi: 10.1890/13‐2192.1.; and Tempel, D.J., R.J.
Recommended publications
  • Arizona Forest Action Plan 2015 Status Report and Addendum
    Arizona Forest Action Plan 2015 Status Report and Addendum A report on the strategic plan to address forest-related conditions, trends, threats, and opportunities as identified in the 2010 Arizona Forest Resource Assessment and Strategy. November 20, 2015 Arizona State Forestry Acknowledgements: Arizona State Forestry would like to thank the USDA Forest Service for their ongoing support of cooperative forestry and fire programs in the State of Arizona, and for specific funding to support creation of this report. We would also like to thank the many individuals and organizations who contributed to drafting the original 2010 Forest Resource Assessment and Resource Strategy (Arizona Forest Action Plan) and to the numerous organizations and individuals who provided input for this 2015 status report and addendum. Special thanks go to Arizona State Forestry staff who graciously contributed many hours to collect information and data from partner organizations – and to writing, editing, and proofreading this document. Jeff Whitney Arizona State Forester Granite Mountain Hotshots Memorial On the second anniversary of the Yarnell Hill Fire, the State of Arizona purchased 320 acres of land near the site where the 19 Granite Mountain Hotshots sacrificed their lives while battling one of the most devastating fires in Arizona’s history. This site is now the Granite Mountain Hotshots Memorial State Park. “This site will serve as a lasting memorial to the brave hotshots who gave their lives to protect their community,” said Governor Ducey. “While we can never truly repay our debt to these heroes, we can – and should – honor them every day. Arizona is proud to offer the public a space where we can pay tribute to them, their families and all of our firefighters and first responders for generations to come.” Arizona Forest Action Plan – 2015 Status Report and Addendum Background Contents The 2010 Forest Action Plan The development of Arizona’s Forest Resource Assessment and Strategy (now known as Arizona’s “Forest Action Plan”) was prompted by federal legislative requirements.
    [Show full text]
  • Historical Fire Regime Patterns in the Southwestern United States Since AD 1700
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Historical Fire Regime Patterns in the Southwestern United States Since AD 1700 Thomas W. Swetnam and Christopher H. Baisan1 Abstract.-Fire-scar chronologies from a network of 63 sites in the South­ western United States are listed and described. These data characterize the natural range and variability of fire regimes from low elevation pine forests to higher elevation mixed-conifer forests since AD 1700. A general pattern of increasing length of intervals between low intensity surface fires was observed along gradients of low to high elevations, and from the rela­ tively drier pine sites to the wetter mixed-conifer sites. However, large vari­ ability in the measures of central tendency and higher moments of the fire interval distributions suggest that elevation and forest type were often weak determinants of fire frequency. Some of the variations in fire interval distri­ butions between similar elevation or forest types were probably due to unique site characteristics, such as landscape connectivity (Le., ability of fires to spread into the sites), and land-use history. Differences in the sizes of sampled areas and fire-scar collections among the sites also limited our ability to compare and interpret fire interval summary statistics. Comparison of both the fire-scar network data (1700 to 1900) and docu­ mentary records of area burned on all Southwestern Region National For­ ests (1920 to 1978) with a Palmer Drought Severity Index time series clearly shows the association between severe droughts and large fire years, and wet periods and small fire years.
    [Show full text]
  • 236 Pinaleño Mountains in the Twentieth Century Atalanta Hoyt
    Pinaleño Mountains in the Twentieth Century Atalanta Hoyt Throughout the twentieth century, a few major events dominated the history of the Forest Service. First, the founding of the National Forest Service in 1905 replaced the Bureau of Forestry and led to the creation of modern National Forests. The new service was created under the jurisdiction of the Department of Agriculture with the purpose of securing a long term supply of timber for the American people.1 Second, the great depression of the 1930s, Franklin Roosevelt’s creation of the Civilian Conservation Corps (CCC) and the expansion of the Forest Service changed the shape of National Forests.2 This time period featured a major transition from timber management to hands on putting resources into the forest. The Forest Service and CCC planted trees, carved trails, built roads, and conducted research; actively molding forests and applying the latest forestry techniques instead of letting the forest take its course.3 A third period of great change came in the 1970s during the environmental era.4 The emphasis changed from conceptualizing the forests as resources to be converted into marketable goods to seeing them as wilderness in need of preservation. While conservation has always been an important part of the Forest Service - advocated by both those who saw an intrinsic value in wilderness and by those who used the wilderness for recreational purposes - increased urbanization highlighted the uniqueness of forests. Efforts to catalog and protect the environments of forests became a main priority while ecologists and conservationists gained status.5 These three main shifts defined the Forest Service in the twentieth century.
    [Show full text]
  • A GUIDE to the GEOLOGY of the Santa Catalina Mountains, Arizona: the Geology and Life Zones of a Madrean Sky Island
    A GUIDE TO THE GEOLOGY OF THE SANTA CATALINA MOUNTAINS, ARIZONA: THE GEOLOGY AND LIFE ZONES OF A MADREAN SKY ISLAND ARIZONA GEOLOGICAL SURVEY 22 JOHN V. BEZY Inside front cover. Sabino Canyon, 30 December 2010. (Megan McCormick, flickr.com (CC BY 2.0). A Guide to the Geology of the Santa Catalina Mountains, Arizona: The Geology and Life Zones of a Madrean Sky Island John V. Bezy Arizona Geological Survey Down-to-Earth 22 Copyright©2016, Arizona Geological Survey All rights reserved Book design: M. Conway & S. Mar Photos: Dr. Larry Fellows, Dr. Anthony Lux and Dr. John Bezy unless otherwise noted Printed in the United States of America Permission is granted for individuals to make single copies for their personal use in research, study or teaching, and to use short quotes, figures, or tables, from this publication for publication in scientific books and journals, provided that the source of the information is appropriately cited. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, for creating new or collective works, or for resale. The reproduction of multiple copies and the use of articles or extracts for comer- cial purposes require specific permission from the Arizona Geological Survey. Published by the Arizona Geological Survey 416 W. Congress, #100, Tucson, AZ 85701 www.azgs.az.gov Cover photo: Pinnacles at Catalina State Park, Courtesy of Dr. Anthony Lux ISBN 978-0-9854798-2-4 Citation: Bezy, J.V., 2016, A Guide to the Geology of the Santa Catalina Mountains, Arizona: The Geology and Life Zones of a Madrean Sky Island.
    [Show full text]
  • The Tectonic Evolution of the Madrean Archipelago and Its Impact on the Geoecology of the Sky Islands
    The Tectonic Evolution of the Madrean Archipelago and Its Impact on the Geoecology of the Sky Islands David Coblentz Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM Abstract—While the unique geographic location of the Sky Islands is well recognized as a primary factor for the elevated biodiversity of the region, its unique tectonic history is often overlooked. The mixing of tectonic environments is an important supplement to the mixing of flora and faunal regimes in contributing to the biodiversity of the Madrean Archipelago. The Sky Islands region is located near the actively deforming plate margin of the Western United States that has seen active and diverse tectonics spanning more than 300 million years, many aspects of which are preserved in the present-day geology. This tectonic history has played a fundamental role in the development and nature of the topography, bedrock geology, and soil distribution through the region that in turn are important factors for understanding the biodiversity. Consideration of the geologic and tectonic history of the Sky Islands also provides important insights into the “deep time” factors contributing to present-day biodiversity that fall outside the normal realm of human perception. in the North American Cordillera between the Sierra Madre Introduction Occidental and the Colorado Plateau – Southern Rocky The “Sky Island” region of the Madrean Archipelago (lo- Mountains (figure 1). This part of the Cordillera has been cre- cated between the northern Sierra Madre Occidental in Mexico ated by the interactions between the Pacific, North American, and the Colorado Plateau/Rocky Mountains in the Southwest- Farallon (now entirely subducted under North America) and ern United States) is an area of exceptional biodiversity and has Juan de Fuca plates and is rich in geology features, including become an important study area for geoecology, biology, and major plateaus (The Colorado Plateau), large elevated areas conservation management.
    [Show full text]
  • Historical Stand-Replacing Fire in Upper Montane Forests of the Madrean Sky Islands and Mogollon Plateau, Southwestern USA
    Fire Ecology Volume 7, Issue 3, 2011 Margolis et al.: Historical Stand-Replacing Fire doi: 10.4996/fireecology.0703088 Page 88 RESEARCH ARTICLE HISTORICAL STAND-REPLACING FIRE IN UPPER MONTANE FORESTS OF THE MADREAN SKY ISLANDS AND MOGOLLON PLATEAU, SOUTHWESTERN USA Ellis Q. Margolis1*, Thomas W. Swetnam1, and Craig D. Allen2 1University of Arizona Laboratory of Tree-Ring Research, 105 W. Stadium, Tucson, Arizona 85721, USA 2US Geological Survey Jemez Mountains Field Station, HCR 1, Box 1, Number 15, Los Alamos, New Mexico 87544, USA *Corresponding author: Tel.: 001-520-626-2733; e-mail: [email protected] ABSTRACT The recent occurrence of large fires with a substantial stand-replacing component in the southwestern United States (e.g., Cerro Grande, 2000; Rodeo-Chedeski, 2002; Aspen, 2003; Horseshoe 2, Las Conchas, and Wallow, 2011) has raised questions about the his- torical role of stand-replacing fire in the region. We reconstructed fire dates and stand-re- placing fire patch sizes using four lines of tree-ring evidence at four upper montane forest sites (>2600 m) in the Madrean Sky Islands and Mogollon Plateau of Arizona and New Mexico, USA. The four lines of tree-ring evidence include: (1) quaking aspen (Populus tremuloides) and spruce-fir age structure, (2) conifer death dates, (3) traumatic resin ducts and ring-width changes, and (4) conifer fire scars. Pre-1905 fire regimes in the upper montane forest sites were variable, with drier, south-facing portions of some sites record- ing frequent, low-severity fire (mean fire interval of all fires ranging from 5 yr to 11 yr among sites), others burning with stand-replacing severity, and others with no evidence of fire for >300 yr.
    [Show full text]
  • Coronado National Forest
    CORONADO NATIONAL FOREST FIRE MANAGEMENT PLAN Reviewed and Updated by _/s/ Chris Stetson ___________ Date __5/18/10 __________ Coronado Fire Management Plan Interagency Federal fire policy requires that every area with burnable vegetation must have a Fire Management Plan (FMP). This FMP provides information concerning the fire process for the Coronado National Forest and compiles guidance from existing sources such as but not limited to, the Coronado National Forest Land and Resource Management Plan (LRMP), national policy, and national and regional directives. The potential consequences to firefighter and public safety and welfare, natural and cultural resources, and values to be protected help determine the management response to wildfire. Firefighter and public safety are the first consideration and are always the priority during every response to wildfire. The following chapters discuss broad forest and specific Fire Management Unit (FMU) characteristics and guidance. Chapter 1 introduces the area covered by the FMP, includes a map of the Coronado National Forest, addresses the agencies involved, and states why the forest is developing the FMP. Chapter 2 establishes the link between higher-level planning documents, legislation, and policies and the actions described in FMP. Chapter 3 articulates specific goals, objectives, standards, guidelines, and/or desired future condition(s), as established in the forest’s LRMP, which apply to all the forest’s FMUs and those that are unique to the forest’s individual FMUs. Page 1 of 30 Coronado Fire Management Plan Chapter 1. INTRODUCTION The Coronado National Forest developed this FMP as a decision support tool to help fire personnel and decision makers determine the response to an unplanned ignition.
    [Show full text]
  • Mount Graham Red Squirrel Recovery Plan
    MOUNT GRAHAM RED SQUIRREL Tamiasciurus hudsonicus arahamensie RECOVERY PLAN Prepared by Lesley A. Fitzpatrick, Member, Recovery Team U.S. Fish and Wildlife Service Phoenix, Arizona Genice F. Froehlich, Consultant, Recovery Team U.S.D.A. Forest Service Coronado National Forest Safford, Arizona Terry B. Johnson, Member, Recovery Team Arizona Game and Fish Department Phoenix, Arizona Randall A. Smith, Leader, Mt. Graham Red Squirrel Recovery Team U.S.D.A. Forest Service Coronado National Forest Tucson, Arizona R. Barry Spicer Arizona Game and Fish Department Phoenix, Arizona for Region 2 U.S. Fish and Wildlife Service Albuquerque, New Mexico Date: Disclaimer Page Recovery plans delineate reasonable actions which are believed to be required to recover and/or protect the species. Plans are prepared by the U.S. Fish and Wildlife Service, sometimes with the assistance of recovery teams, contractors, State agencies, and others. Objectives will only be attained and funds expended contingent upon appropriations, priorities, and other budgetary constraints. Recovery plans do not necessarily represent the views nor the official positions or approvals of any individuals or agencies, other than the U.S. Fish and Wildlife Service, involved in the plan formulation. They represent the official position of the U.S. Fish and Wildlife Service & after they have been signed by the Regional Director as aDproved. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery tasks. Literature citations should read as follows: U.S. Fish and Wildlife Service. 1992. Mount Graham Red Squirrel Recovery Plan. U.S. Fish and Wildlife Service, Albuquerque, New Mexico.
    [Show full text]
  • You Can Learn More About the Chiricahuas
    Douglas RANGER DISTRICT www.skyislandaction.org 2-1 State of the Coronado Forest DRAFT 11.05.08 DRAFT 11.05.08 State of the Coronado Forest 2-2 www.skyislandaction.org CHAPTER 2 Chiricahua Ecosystem Management Area The Chiricahua Mountain Range, located in the Natural History southeastern corner of the Coronado National Forest, The Chiricahua Mountains are known for their is one of the largest Sky Islands in the U.S. portion of amazing variety of terrestrial plants, animals, and the Sky Island region. The range is approximately 40 invertebrates. They contain exceptional examples of miles long by 20 miles wide with elevations ranging ecosystems that are rare in southern Arizona. While from 4,400 to 9,759 feet at the summit of Chiricahua the range covers only 0.5% of the total land area in Peak. The Chiricahua Ecosystem Management Area Arizona, it contains 30% of plant species found in (EMA) is the largest Management Area on the Forest Arizona, and almost 50% of all bird species that encompassing 291,492 acres of the Chiricahua and regularly occur in the United States.1 The Chiricahuas Pedragosa Mountains. form part of a chain of mountains spanning from Protected by remoteness, the Chiricahuas remain central Mexico into southern Arizona. Because of one of the less visited ranges on the Coronado their proximity to the Sierra Madre, they support a National Forest. Formerly surrounded only by great diversity of wildlife found nowhere else in the ranches, the effects of Arizona’s explosive 21st century United States such as the Mexican Chickadee, whose population growth are beginning to reach the flanks only known breeding locations in the country are in of the Chiricahuas.
    [Show full text]
  • Biodiversity and Management of the Madrean Archipelago: the Sky
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. The Madrean Sky Island Archipelago: A Planetary Overview Peter Warshall 1 Abstract.-Previous work on biogeographic isolation has concerned itself with oceanic island chains, islands associated with continents, fringing archipelagos, and bodies of water such as the African lake system which serve as "aquatic islands". This paper reviews the "continental islands" and compares them to the Madrean sky island archipelago. The geological, hydrological, and climatic context for the Afroalpine, Guyana, Paramo, low and high desert of the Great Basin, etc. archipelagos are compared for source areas, number of islands, isolating mechanisms, interactive ecosystems, and evolutionary history. The history of scientific exploration and fieldwork for the Madrean Archipelago and its unique status among the planet's archipelagos are summarized. In 1957, Joe Marshall published "Birds of the American Prairies Province of Takhtajan, 1986) Pine-Oak Woodland in Southern Arizona and Ad­ and western biogeographic provinces, a wealth of jacent Mexico." Never surpassed, this elegant genetically unique cultivars in the Sierra Madre monograph described the stacking of biotic com­ Occidental, and a myriad of mysteries concerning munities on each island mountain from the the distribution of disjuncts, species "holes," and Mogollon Rim to the Sierra Madre. He defined the species II outliers" on individual mountains (e.g., Madrean archipelago as those island mountains Ramamoorthy, 1993). The northernmost sky is­ with a pine-oak woodland. In 1967, Weldon Heald lands are the only place in North America where (1993), from his home in the Chiricahuas, coined you can climb from the desert to northern Canada the addictive phrase-"sky islands" for these in­ in a matter of hours (Warshall, 1986).
    [Show full text]
  • Warshall (1994)
    This file was created by scanning the printed publication. l Errors identified by the software have been corrected; however, some errors may remain. f:~~ United States ~.~flWJ" .,.} Department of Biodiversity and \'''',,;,..• .-.1' (I Ag ricultu re Forest Service Management of the Rocky Mountain Forest and Range Madrean Archipelago: Experiment Station The Sky Islands of Fort Collins, CO 80526 Southwestern United States and General Technical Northwestern Mexico Report RM-GTR-264 September 19-23, 1994 Tucson, Arizona USDA Forest Service July 1995 General Technical Report RM-GTR-264 Biodiversity and Management of the Madrean Archipelago: The Sky Islands of Southwestern United States and Northwestern Mexico September 19-23, 1994 Tucson, Arizona Technical Coordinators: Leonard F. DeSano Peter F. Ffolliott Gerald J. Gottfried University of Arizona Robert H. Hamre Carleton S. Edminster Alfredo Ortega-Rubio Rocky Mountain Forest and Range Centro de Investigaciones Biologicas Experiment Station del Noroeste Page Design: Carol LoSapio Rocky Mountain Forest and Range Experiment Station Sponsors: Rocky Mountain Forest and Range School of Renewable Natural Resources Experiment Station University of Arizona U.S. Department of Agriculture Tucson, Arizona Fort Collins, Colorado The Madrean Sky Island Archipelago: A Planetary Overview Peter Warshall 1 Abstract.-Previous work on biogeographic isolation has concerned itself with oceanic island chains, islands associated with continents, fringing archipelagos, and bodies of water such as the African lake system which serve as "aquatic islands". This paper reviews the "continental islands" and compares them to the Madrean sky island archipelago. The geological, hydrological, and climatic context for the Afroalpine, Guyana, Paramo, low and high desert of the Great Basin, etc.
    [Show full text]
  • A Taxonomic Study of the Polyporaoeae Fungi of the Santa Catalina and Pinaleno Mountains, Southern Arizona
    A taxonomic study of the Polyporaceae fungi of the Santa Catalina and Pinaleno mountains, Southern Arizona Item Type text; Thesis-Reproduction (electronic) Authors Torgerson, Kenneth Julian, 1913- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 07:49:22 Link to Item http://hdl.handle.net/10150/551521 A TAXONOMIC STUDY OF THE POLYPORAOEAE FUNGI OF THE SANTA CATALINA AND PINALENO MOUNTAINS, SOUTHERN ARIZONA by Kenneth J. Torgeraon A thesis submitted to the Faculty of the DEPARTMENT OF BOTANY In Partial Fulfillment of the Requirements For the Degree of Master of Science In the Graduate College THE UNIVERSITY OF ARIZONA 1961 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfill­ ment of requirements for an advanced degree at the Uni­ versity of Arizona and is deposited in The University Library to be made available to borrowers under the rules of the Library, Brief quotations from this thesis are allowable without special permission, provided that accurate ac­ knowledgment of source is made. Requests for permission for extended quotations from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in their judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.
    [Show full text]