Sediment Losses and Gains Across a Gradient of Livestock Grazing and Plant Invasion in a Cool, Semi-Arid Grassland, Colorado Plateau, USA

Total Page:16

File Type:pdf, Size:1020Kb

Sediment Losses and Gains Across a Gradient of Livestock Grazing and Plant Invasion in a Cool, Semi-Arid Grassland, Colorado Plateau, USA Aeolian Research 1 (2009) 27–43 Contents lists available at ScienceDirect Aeolian Research journal homepage: www.elsevier.com/locate/aeolia Sediment losses and gains across a gradient of livestock grazing and plant invasion in a cool, semi-arid grassland, Colorado Plateau, USA Jayne Belnap a,*, Richard L. Reynolds b, Marith C. Reheis b, Susan L. Phillips a, Frank E. Urban b, Harland L. Goldstein b a US Geological Survey, Southwest Biological Science Center, 2290 S West Resource Blvd., Moab, UT 84532, USA b US Geological Survey, Denver Federal Center, MS 980, Box 25046, Denver, CO 80225, USA article info abstract Article history: Large sediment fluxes can have significant impacts on ecosystems. We measured incoming and outgoing Received 26 November 2008 sediment across a gradient of soil disturbance (livestock grazing, plowing) and annual plant invasion for Revised 25 February 2009 9 years. Our sites included two currently ungrazed sites: one never grazed by livestock and dominated by Accepted 10 March 2009 perennial grasses/well-developed biocrusts and one not grazed since 1974 and dominated by annual weeds with little biocrusts. We used two currently grazed sites: one dominated by annual weeds and the other dominated by perennial plants, both with little biocrusts. Precipitation was highly variable, Keywords: with years of average, above-average, and extremely low precipitation. During years with average and Drylands above-average precipitation, the disturbed sites consistently produced 2.8 times more sediment than Dust Global change the currently undisturbed sites. The never grazed site always produced the least sediment of all the sites. Land use During the drought years, we observed a 5600-fold increase in sediment production from the most dis- Wind erosion turbed site (dominated by annual grasses, plowed about 50 years previously and currently grazed by live- stock) relative to the never grazed site dominated by perennial grasses and well-developed biocrusts, indicating a non-linear, synergistic response to increasing disturbance types and levels. Comparing sed- iment losses among the sites, biocrusts were most important in predicting site stability, followed by perennial plant cover. Incoming sediment was similar among the sites, and while inputs were up to 9-fold higher at the most heavily disturbed site during drought years compared to average years, the change during the drought conditions was small relative to the large change seen in the sediment outputs. Ó 2009 Elsevier B.V. All rights reserved. 1. Introduction can bury biological soil crusts, vegetation or alter competitive interactions of plants via changes in soil nutrients. In addition, The generation of aeolian sediment remains a topic of major the increased deposition of dust on snowpack may increase the concern worldwide, as both source and sink areas are impacted rate of snowmelt and thus increase the timing and the availability by the gain or loss of sediment. Loss of the fine soil fraction via of run-off water (Painter et al., 2007). wind erosion decreases the fertility and water-holding capacity Changes in aeolian sediment emission and deposition over time of the source soils, thus reducing the productivity and nutrient have been recently documented. In western North America, for content of plants growing in these soils (Ebeid et al., 1995; Erdman, example, drying of pluvial lakes over millennia during the late 1942; Neff et al., 2005). As in the past, dust continues to fertilize Pleistocene and early Holocene (e.g., Benson et al., 1990) appar- diverse landscapes, including Amazonia (Swap et al., 1992), older ently led to increased dust deposition close to and far from the Hawaiian Islands (Chadwick et al., 1999), islands in the Caribbean lakes (Machette, 1985; Reheis et al., 1989, 1995; Reynolds et al., Sea and off the coast of California (Muhs et al., 2007, 2008), dry- 2006; Wells et al., 1985). Studies of alpine lake sediments in wes- lands (e.g., Capo and Chadwick, 1999; Neff et al., 2005; Reynolds tern North America reveal up to eight times more dust flux during et al., 2001), and subalpine and alpine zones (Muhs and Benedict, the past 150 years than during the prior several millennia (Neff 2006). Large amounts of deposited aeolian dust result in loess et al., 2008). The influences of greatly increasing dust flux on these deposits that provide rich agricultural landscapes (see Goudie short time spans of a decade to a few centuries are uncertain. and Middleton, 2006). However, many ecosystems are receiving Much of the atmospheric dust in western North America is gen- high levels of sediment deposition within short time periods which erated in sparsely vegetated dryland settings (Reynolds et al., 2003; http://esp.cr.usgs.gov/info/dust/inventory/). The cover and * Corresponding author. Tel.: +1 435 719 2333; fax: +1 435 719 2350. type of vegetation influence the amount of wind-blown sediments E-mail address: [email protected] (J. Belnap). produced at such settings, with site stability increasing with 1875-9637/$ - see front matter Ó 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.aeolia.2009.03.001 28 J. Belnap et al. / Aeolian Research 1 (2009) 27–43 greater plant cover (Lancaster and Baas, 1998; Okin, 2008). Soil moisture will decrease plant cover and slow the recovery of dis- surfaces covered with physical and biological soil crusts in these turbed plants and crusts (Pulwarty et al., 2005), all of which will dryland regions are very stable unless disturbed, and the stability likely further increase the frequency and magnitude of wind ero- conferred by well-developed crusts is great enough that wind ero- sion events. sion is minimal even with a dramatic decrease in vascular plant Whereas there have been many studies examining the impact cover (reviewed in Belnap, 2003; Marticorena et al., 1997). During of intensive agriculture on sediment production and nutrient loss historic times in western North American drylands, however, soil- (e.g., Bielders et al., 1999, 2002; Ebeid et al., 1995; Erdman, surface disturbances caused by plowing, livestock grazing, mining, 1942), few studies have measured landscape-scale sediment emis- and by the use of both off-road recreational and military vehicles sion from soils that have been disturbed by activities other than have depleted the natural components that stabilize desert soils. intensive agriculture. A limited number of studies have focused Thus, soil loss appears to have increased dramatically in these re- on the potential erodibility of a site, using a wind tunnel (Belnap gions (Neff et al., 2008). and Gillette, 1997; Marticorena et al., 1997) or models of air flow Surface disturbance also enhances the invasion of exotic annual patterns and vegetation (Bowker et al., 2007; King et al., 2005; plants such as Bromus spp. and Salsola spp. (D’Antonio and Vito- Okin and Gillette, 2001). Nevertheless, only a few studies have doc- usek, 1992). Whereas high annual plant cover can be present in umented the rates of sediment movement over long time periods years with high rainfall, annual plants often do not germinate in or under differing land use and climatic conditions (e.g., Breshears drought years, leaving soils barren and vulnerable to erosion. Ro- et al., 2003; Whicker et al., 2008; Wolfe and Helm, 1999). To dents colonize invaded areas, and their burrowing activity leaves address this lack of information, we conducted a 9-year multiple patches of bare soil that can be mobilized by wind. In (1999–2007) study, utilizing sediment collection devices and addition, growth of annual plants in wet years often produces suf- aeolian-particle flux detectors to measure the input and outgo of ficient fuels to carry fire in following dry years. In the short term, aeolian sediment at sites that have received different types and fire creates ash, which is easily moved by wind, while decreasing intensity of land use over the past 150 years. plant and crust cover and thus increasing the vulnerability of soils to wind erosion. Although post-fire vegetation sometimes provides 2. Methods more cover and protection than pre-fire vegetation, more often the repeated burning of areas maintains the dominance of annuals and 2.1. Site Descriptions an increased vulnerability to soil erosion (Vermeire et al., 2005). A synergistic effect may also be created when one or more of these This study was conducted on the central Colorado Plateau about factors (surface disturbance, invaded landscapes drought) occur to- 70 km south of Moab, Utah, USA (Fig. 1). The four selected sites lie gether, and large amounts of soil can be eroded in a short time. In within a 10 km radius adjacent to and within Canyonlands addition, as current climate models predict an increase in temper- National Park (NP), and all are at an elevation of approximately ature of 4–6 °C and a decrease of as much as 20% precipitation for 1600 m. Climate data (Western Region Climate Center – http:// this region (Christensen et al., 2007), the resultant decline in soil www.wrcc.dri.edu/) show the long-term annual average rainfall Fig. 1. A map of the study sites. Two sites (Needles and Virginia Park) are within Canyonlands National Park, and thus are not grazed by livestock, whereas the other two sites (Corral Pocket and Dugout Ranch) are outside the park boundary and are grazed by livestock. J. Belnap et al. / Aeolian Research 1 (2009) 27–43 29 100 DR Total monthly precip. Longterm average precip 80 60 40 * 20 0 100 NR 80 60 mm ,noitatipicerp latot ylhtnoM latot ,noitatipicerp mm 40 * 20 0 100 CP 80 60 40 * * * * 20 0 100 VP 80 60 40 * 20 0 J M S J M S J M S J M S J M S J M S J M S J M S J M S 1999 2000 2001 2002 2003 2004 2005 2006 2007 Fig.
Recommended publications
  • Corinna Riginos Curriculum Vitae
    Corinna Riginos Curriculum Vitae Berry Biodiversity Conservation Center University of Wyoming Laramie, WY 82071 E-mail: [email protected] Phone (cell): 202-294-9731 Phone (Kenya): +254-20-2033187 EDUCATION PhD 2008 University of California, Davis: Ecology. Dissertation: Tree-grass interactions in an East African savanna: the role of wild and domestic herbivores Graduate advisor: Truman P. Young BS 2000 Brown University: Environmental Science (Magna Cum Laude) POSITIONS 2012- Berry Biodiversity Conservation Postdoctoral Fellow, University of Wyoming 2008-2012 Council on Science and Technology Postdoctoral Fellow and Lecturer, Princeton University 2000-2002 Fulbright U.S. Student Scholar, University of Stellenbosch, South Africa RESEARCH EXPERIENCE 2008-2012 Postdoctoral research: Led design and execution of studies on (a) using livestock to engineer rangelands for wildlife conservation, (b) spatial dynamics of ecosystem functioning, breakdown, and restoration in an African savanna. Additionally, developed methods and manual for pastoralist-based rangeland monitoring under contract from USAID / CARE International. Currently being used on 35,000 km2 in sub-Saharan Africa. Collaborators: Jayne Belnap, Jeff Herrick, Daniel Rubenstein, Kelly Caylor 2003-2005 Doctoral dissertation research: Led design and execution of a series of studies to test causes and consequences of increases in woody vegetation in an African savanna. Statistical modeling and field experimentation. Advisor: Truman Young 2000-2002 Fulbright fellowship: Effects of livestock grazing and disturbance on population and community ecology of succulent shrubs, Succulent Karoo, South Africa. Advisors: Suzanne J. Milton, M. Timm Hoffman 1999-2000 Honors thesis research: Maternal effects of drought stress and inbreeding on a New England forest herb. Advisors: Johanna Schmitt, M.
    [Show full text]
  • How Can Science Be General, Yet Specific? the Conundrum of Rangeland Science in the 21St Century Debra P
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Rangeland Ecol Manage 65:613–622 | November 2012 | DOI: 10.2111/REM-D-11-00178.1 How Can Science Be General, Yet Specific? The Conundrum of Rangeland Science in the 21st Century Debra P. C. Peters,1 Jayne Belnap,2 John A. Ludwig,3 Scott L. Collins,4 Jose´ Paruelo,5 M. Timm Hoffman,6 and Kris M. Havstad1 Authors are 1Research Scientist, USDA-ARS Jornada Experimental Range, Las Cruces, NM 88003, USA; 2Research Ecologist, US Geological Survey, Moab, UT 84532, USA; 3Honorary Fellow, CSIRO Ecosystem Sciences, Atherton, QLD 4883, Australia; 4Professor, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA; 5Associate Professor, University of Buenos Aires, IFEVA–Facultad de Agronomı´a, 1417 Buenos Aires, Argentina; and 6Professor, University of Cape Town, Botany Department, Rondebosch 7701, South Africa. Abstract A critical challenge for range scientists is to provide input to management decisions for land units where little or no data exist. The disciplines of range science, basic ecology, and global ecology use different perspectives and approaches with different levels of detail to extrapolate information and understanding from well-studied locations to other land units. However, these traditional approaches are expected to be insufficient in the future as both human and climatic drivers change in magnitude and direction, spatial heterogeneity in land cover and its use increases, and rangelands become increasingly connected at local to global scales by flows of materials, people, and information. Here we argue that to overcome limitations of each individual discipline, and to address future rangeland problems effectively, scientists will need to integrate these disciplines successfully and in novel ways.
    [Show full text]
  • Biological Soil Crusts: Ecology and Management
    BIOLOGICAL SOIL CRUSTS: ECOLOGY AND MANAGEMENT Technical Reference 1730-2 2001 U.S. Department of the Interior Bureau of Land Management U.S. Geological Survey Biological Soil Crusts: Ecology & Management This publication was jointly funded by the USDI, BLM, and USGS Forest and Rangeland Ecosystem Science Center. Though this document was produced through an interagency effort, the following BLM numbers have been assigned for tracking and administrative purposes: Technical Reference 1730-2 BLM/ID/ST-01/001+1730 Biological Soil Crusts: Ecology & Management Biological Soil Crusts: Ecology and Management Authors: Jayne Belnap Julie Hilty Kaltenecker USDI Geological Survey Boise State University/USDI Bureau of Land Forest and Rangeland Ecosystem Science Center Management Moab, Utah Idaho State Office, BLM Boise, Idaho Roger Rosentreter John Williams USDI Bureau of Land Management USDA Agricultural Research Service Idaho State Office Columbia Plateau Conservation Research Center Boise, Idaho Pendleton, Oregon Steve Leonard David Eldridge USDI Bureau of Land Management Department of Land and Water Conservation National Riparian Service Team New South Wales Prineville, Oregon Australia Illustrated by Meggan Laxalt Edited by Pam Peterson Produced By United States Department of the Interior Bureau of Land Management Printed Materials Distribution Center BC-650-B P.O. Box 25047 Denver, Colorado 80225-0047 Technical Reference 1730-2 2001 Biological Soil Crusts: Ecology & Management ACKNOWLEDGMENTS We gratefully acknowledge the following individuals
    [Show full text]
  • Roads As Conduits for Exotic Plant Invasions in a Semiarid Landscape
    Roads as Conduits for Exotic Plant Invasions in a Semiarid Landscape JONATHAN L. GELBARD*‡ AND JAYNE BELNAP† *Nicholas School of the Environment, Duke University, Durham, NC 27708, U.S.A. †U.S. Geological Survey, Canyonlands Field Station, 2290 S. Resource Boulevard, Moab, UT 84532, U.S.A. Abstract: Roads are believed to be a major contributing factor to the ongoing spread of exotic plants. We ex- amined the effect of road improvement and environmental variables on exotic and native plant diversity in roadside verges and adjacent semiarid grassland, shrubland, and woodland communities of southern Utah (U.S.A.). We measured the cover of exotic and native species in roadside verges and both the richness and cover of exotic and native species in adjacent interior communities (50 m beyond the edge of the road cut) along 42 roads stratified by level of road improvement ( paved, improved surface, graded, and four-wheel- drive track). In roadside verges along paved roads, the cover of Bromus tectorum was three times as great (27%) as in verges along four-wheel-drive tracks ( 9%). The cover of five common exotic forb species tended to be lower in verges along four-wheel-drive tracks than in verges along more improved roads. The richness and cover of exotic species were both more than 50% greater, and the richness of native species was 30% lower, at interior sites adjacent to paved roads than at those adjacent to four-wheel-drive tracks. In addition, environmental variables relating to dominant vegetation, disturbance, and topography were significantly correlated with exotic and native species richness and cover.
    [Show full text]
  • Geomorphic Controls on Biological Soil Crust Distribution: a Conceptual Model from the Mojave Desert (USA)
    Geomorphology 195 (2013) 99–109 Contents lists available at SciVerse ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Geomorphic controls on biological soil crust distribution: A conceptual model from the Mojave Desert (USA) Amanda J. Williams a,b,⁎, Brenda J. Buck a, Deborah A. Soukup a, Douglas J. Merkler c a Department of Geoscience, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4010, USA b School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154-4004, USA c USDA-NRCS, 5820 South Pecos Rd., Bldg. A, Suite 400, Las Vegas, NV 89120, USA article info abstract Article history: Biological soil crusts (BSCs) are bio-sedimentary features that play critical geomorphic and ecological roles in Received 30 November 2012 arid environments. Extensive mapping, surface characterization, GIS overlays, and statistical analyses ex- Received in revised form 17 April 2013 plored relationships among BSCs, geomorphology, and soil characteristics in a portion of the Mojave Desert Accepted 18 April 2013 (USA). These results were used to develop a conceptual model that explains the spatial distribution of Available online 1 May 2013 BSCs. In this model, geologic and geomorphic processes control the ratio of fine sand to rocks, which con- strains the development of three surface cover types and biogeomorphic feedbacks across intermontane Keywords: fi Biological soil crust basins. (1) Cyanobacteria crusts grow where abundant ne sand and negligible rocks form saltating sand Soil-geomorphology sheets. Cyanobacteria facilitate moderate sand sheet activity that reduces growth potential of mosses and Pedogenesis lichens. (2) Extensive tall moss–lichen pinnacled crusts are favored on early to late Holocene surfaces com- Vesicular (Av) horizon posed of mixed rock and fine sand.
    [Show full text]
  • SUSTAINABLE LAND MANAGEMENT and RESTORATION in the MIDDLE EAST and NORTH AFRICA REGION Issues, Challenges, and Recommendations
    SUSTAINABLE LAND MANAGEMENT AND RESTORATION IN THE MIDDLE EAST AND NORTH AFRICA REGION Issues, Challenges, and Recommendations Fall 2019 Environmnt, Nturl Rsourcs & Blu Econom 64270_SLM_CVR.indd 3 11/6/19 12:38 PM SUSTAINABLE LAND MANAGEMENT AND RESTORATION IN THE MIDDLE EAST AND NORTH AFRICA REGION ISSUES, CHALLENGES, AND RECOMMENDATIONS 10116-SLM_64270.indd 1 11/19/19 1:37 PM © 2019 International Bank for Reconstruction and Development/The World Bank 1818 H Street NW Washington, DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org This work is a product of the staff of The World Bank with external contributions. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Direc- tors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denomina- tions, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this work is subject to copyright. The World Bank encourages dissemination of its knowledge, this work may be reproduced, in whole or in part, for noncommercial purposes as long as full attribution to this work is given. Attribution—Please cite the work as follows: World Bank. 2019. Sustainable Land Management and Restoration in the Middle East and North Africa Region—Issues, Challenges, and Recommendations. Washington, DC. Any queries on rights and licenses, including subsidiary rights, should be addressed to: World Bank Publications The World Bank Group 1818 H Street NW Washington, DC 20433 USA Fax: 202-522-2625 10116-SLM_64270.indd 2 11/19/19 1:37 PM TABLE OF CONTENTS Acknowledgments .
    [Show full text]
  • Antoninka Plant and Soil 2017.Pdf
    Plant Soil DOI 10.1007/s11104-017-3300-3 REGULAR ARTICLE Maximizing establishment and survivorship of field-collected and greenhouse-cultivated biocrusts in a semi-cold desert Anita Antoninka & Matthew A. Bowker & Peter Chuckran & Nichole N. Barger & Sasha Reed & Jayne Belnap Received: 31 March 2017 /Accepted: 25 May 2017 # Springer International Publishing Switzerland 2017 Abstract methods to reestablish biocrusts in damaged drylands Aims Biological soil crusts (biocrusts) are soil-surface are needed. Here we test the reintroduction of field- communities in drylands, dominated by cyanobacteria, collected vs. greenhouse-cultured biocrusts for mosses, and lichens. They provide key ecosystem func- rehabilitation. tions by increasing soil stability and influencing soil Methods We collected biocrusts for 1) direct reapplica- hydrologic, nutrient, and carbon cycles. Because of this, tion, and 2) artificial cultivation under varying hydration regimes. We added field-collected and cultivated biocrusts (with and without hardening treatments) to Responsible Editor: Jayne Belnap. bare field plots and monitored establishment. Electronic supplementary material The online version of this Results Both field-collected and cultivated article (doi:10.1007/s11104-017-3300-3) contains supplementary cyanobacteria increased cover dramatically during the material, which is available to authorized users. experimental period. Cultivated biocrusts established more rapidly than field-collected biocrusts, attaining A. Antoninka (*) : M. A. Bowker : P. Chuckran School of Forestry, Northern Arizona University, 200 E. Pine ~82% cover in only one year, but addition of field- Knoll Dr., P.O. Box 15018, Flagstaff, AZ 86011, USA collected biocrusts led to higher species richness, bio- e-mail: [email protected] mass (as assessed by chlorophyll a) and level of devel- opment.
    [Show full text]
  • Southwest Biological Science Center Updates
    October 2018 - April 2019 Southwest Biological Science Center Updates As a unit of the U.S. Geological Survey (USGS), the mission of the Southwest Biological Science Center (SBSC) is to provide quality scientific information needed to conserve and manage natural and biological resources, with an emphasis on the species and ecosystems of the southwestern United States. The SBSC has two research branches: Terrestrial Dryland Ecology and River Ecosystem Science, which includes the Grand Canyon Monitoring and Research Center (GCMRC). Both branches conduct research on the biology, ecology, and natural processes of the Southwest. SBSC has two research stations in Arizona (Flagstaff and Tucson) and one in Moab, Utah. You can find the SBSC online at: https://usgs.gov/centers/sbsc. WELCOME Below are recent products and activities coming from the SBSC, and SBSC personnel have an asterisk after their names. If you would like more information about the SBSC or with anything in this month’s update contact Todd Wojtowicz ([email protected]). IMAGE OF THE ISSUE Water from Glen Canyon Dam’s four jet tubes during the November 2018 High-Flow Experiment (HFE) on the Colorado River. For more information on Colorado River HFEs: https://www.usgs.gov/centers/sbsc/science/high-flow-experiments-colorado-river?qt- science_center_objects=0#qt-science_center_objects (Photo credit: Mike Moran, USGS) 1 October 2018 - April 2019 OUTREACH Media, Broadcasts, Books and Films Find us on Twitter Look for us on Twitter (https://twitter.com/usgsaz). We post photos depicting field work, restoration approaches, arthropods, wildlife, flowers, and beautiful natural areas. We also provide links to our website and highlight some or our recent science.
    [Show full text]
  • Ecosystems of California: Threats & Responses
    ECOSYSTEMS OF CALIFORNIA: THREATS & RESPONSES Supplement for Decision-Making EDITED BY HAROLD MOONEY AND ERIKA ZAVALETA ECOSYSTEMS OF CALIFORNIA: THREATS & RESPONSES Supplement for Decision-Making EDITED BY HAROLD MOONEY AND ERIKA ZAVALETA Additional writing and editing provided by ROB JORDAN TERRY NAGEL DEVON RYAN JENNIFER WITHERSPOON Graphics edited by Melissa C. Chapin Design by Studio Em Graphic Design Tis compilation of summaries, threats, and responses are presented as a supplement to the book Ecosystems of California, printed in 2016 by the University of California Press © 2016 Te Regents of the University of California For more information about Ecosystems of California or the content presented in this supplement, contact editors Harold Mooney or Erika Zavaleta via the Stanford Woods Institute for the Environment at: [email protected] Contents Contributors ...................................................................................... ii Chaparral ............................................................................................ 35 Introduction ....................................................................................... 1 Oak Woodlands ............................................................................. 37 Fire as an Ecosystem Process ......................................... 2 Coastal Redwood Forests .................................................... 39 Geomorphology and Soils .................................................... 4 Montane Forests .........................................................................
    [Show full text]
  • Direct and Indirect Drivers of Change in Biodiversity and Nature’S Contributions to People 1
    CHAPTER 4. DIRECT AND INDIRECT DRIVERS OF CHANGE IN BIODIVERSITY AND NATURE’S CONTRIBUTIONS TO PEOPLE 1 CHAPTER CHAPTER 4 2 DIRECT AND INDIRECT DRIVERS OF CHANGE IN BIODIVERSITY AND NATURE’S CHAPTER CONTRIBUTIONS TO PEOPLE 3 Coordinating Lead Authors: Review Editors: Mercedes Bustamante (Brazil), Eileen H. Pedro Laterra (Argentina), Carlos Eduardo CHAPTER Helmer (USA), Steven Schill (USA) Young (Brazil) Lead Authors: This chapter should be cited as: Jayne Belnap (USA), Laura K. Brown 4 Bustamante, M., Helmer, E. H., Schill, S., (Canada), Ernesto Brugnoli (Uruguay), Jana Belnap, J., Brown, L. K., Brugnoli, E., E. Compton (USA), Richard H. Coupe (USA), Compton, J. E., Coupe, R. H., Hernández- Marcello Hernández-Blanco (Costa Rica), Blanco, M., Isbell, F., Lockwood, J., Forest Isbell (USA), Julie Lockwood (USA), Lozoya Ascárate, J. P., McGuire, D., CHAPTER Juan Pablo Lozoya Azcárate (Uruguay), David Pauchard, A., Pichs-Madruga, R., McGuire (USA), Anibal Pauchard (Chile), Rodrigues, R. R., Sanchez- Azofeifa, G. A., Ramon Pichs-Madruga (Cuba), Ricardo Soutullo, A., Suarez, A., Troutt, E., and Ribeiro Rodrigues (Brazil), Gerardo Arturo Thompson, L. Chapter 4: Direct and indirect Sanchez-Azofeifa (Costa Rica/Canada), 5 drivers of change in biodiversity and nature’s Alvaro Soutullo (Uruguay), Avelino Suarez contributions to people. In IPBES (2018): 4(Cuba), Elizabeth Troutt (Canada) The IPBES regional assessment report on biodiversity and ecosystem services Fellow: for the Americas. Rice, J., Seixas, C. S., CHAPTER Laura Thompson (USA). Zaccagnini, M. E., Bedoya-Gaitán, M., and Valderrama, N. (eds.). Secretariat of the Intergovernmental Science-Policy Platform on Contributing Authors: Biodiversity and Ecosystem Services, Bonn, Robin Abell (USA), Lorenzo Alvarez- 6 Germany, pp.
    [Show full text]
  • Monitoring Rangeland Health a Guide for Facilitators and Pastoralist Communities Draft Version I by Corinna Riginos, Jeffrey E
    Monitoring Rangeland Health A Guide for Facilitators and Pastoralist Communities Draft Version I By Corinna Riginos, Jeffrey E. Herrick, Jayne Belnap, Siva R. Sundaresan, Jeffrey S. Worden, Margaret F. Kinnaird Monitoring Rangeland Health A Guide for Facilitators and Pastoralist Communities Draft Version I By Corinna Riginos, Jeffrey E. Herrick, Jayne Belnap, Siva R. Sundaresan, Jeffrey S. Worden, Margaret F. Kinnaird Printed 2009 A PDF version of this manual is available online at: http://www.mpala.org http://usda-ars.nmsu.edu/monit_assess/monitoring.php Or by request from the authors (Corinna Riginos: [email protected] ; Jeffrey Herrick: [email protected] ) Illustration, layout and design by Heather Larkin Acknowledgements This manual is the result of a collaborative effort between scientists at the Mpala Research Centre, Princeton University, the United States Department of Agriculture – Agricultural Research Service (ARS) Jornada Experimental Range, the United States Geological Survey, the Denver Zoological Foundation, and the African Conservation Centre. In developing this manual, we have incorporated suggestions and input from many people, including pastoralist community members in Kenya and Ethiopia, NGO and aid organization workers, and other landowners and managers. Funding was provided by USAID through the Enhanced Livelihoods in the Mandera Triangle (ELMT)/Enhanced Livelihoods in Southern Ethiopia (ELSE) program, (implemented by a consortium lead by CARE International, SAVE The Children and VSF-Suisse), and by the author’s respective host institutions. Additional logistical and administrative support was provided by CARE International and the Mpala Research Centre. Many of the methods presented in this manual are adapted from methods that were researched, tested, and presented as part of the USDA-ARS publication, Monitoring Manual for Grassland, Shrubland, and Savanna Ecosystems.
    [Show full text]
  • Mapping Biological Soil Crust Cover in the Kawaihae Watershed
    MAPPING BIOLOGICAL SOIL CRUST COVER IN THE KAWAIHAE WATERSHED A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I AT HILO IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL CONSERVATION BIOLOGY AND ENVIRONMENTAL SCIENCE MAY 2019 By Eszter Adany Collier Thesis Committee: Ryan Perroy, Chairperson Jonathan Price Sasha Reed Keywords: sUAS, biocrust, image classification, Kohala, Hawaii, erosion, Pelekane Acknowledgements This thesis was made possible through financial support from the Hawai’i Geographic Information Coordinating Council and the Society for Conservation Biology. Access to fieldwork and data analysis equipment was generously provided by the UH Hilo Geography Department and the Spatial Data and Visualization (SDAV) lab. I would like to sincerely thank my thesis committee for contributing their time and support. Dr. Perroy’s guidance and encouragement were central to the successful completion of this thesis and I will always be grateful for his unwavering faith in my capabilities. Dr. Price taught me everything I know about landscape ecology and his wealth of knowledge about a wide variety of topics was invaluable for filling the numerous pukas that sprang up during this project. Dr. Reed’s expert knowledge of biocrusts, along with her enthusiasm for the project, was key to bringing my ideas to fruition. In addition, I’d like to thank Dr. Rebecca Ostertag and everyone who works to support the TCBES program for their tireless dedication to student mentorship. For their logistical support during my field work, I’d like to thank Cody Dwight, formerly of the Kohala Watershed Partnership, and Patti Johnson of the Parker Ranch.
    [Show full text]