Surface Characterisation of Bacterial Cells Relevant to Mineral Industry

Total Page:16

File Type:pdf, Size:1020Kb

Surface Characterisation of Bacterial Cells Relevant to Mineral Industry Surface Studies Relevant to Microbial Adhesion and Bioflotation of Sulphide Minerals Prashant K. Sharma Division of Mineral Processing Luleå University of Technology SE-97187, Luleå Sweden November, 2001 SUMMARY Biomineral beneficiation concerns the manner in which different microorganisms bring about the enrichment of an ore matrix. It involves the selective removal of undesirable mineral constituents from an ore through microbe-mineral interactions in the processes such as selective flotation and flocculation. The adhesion of microorganisms to minerals result in alteration of surface chemistry of minerals relevant to beneficiation process due to a consequence of the formation of a biofilm on the surface or biocatalysed surface oxidation or reduction products. Physico-chemical properties of microbial cell surface influence their adhesion behaviour, therefore the physico-chemical characterisation of microbial cell is essential in order to fully understand and control the biomineral beneficiation process. Different bacteria have different surface properties and adaptation of bacteria by growing them in presence of minerals introduces further changes in their surface properties. The pure strains of Thiobacillus thiooxidans, Thiobacillus ferrooxidans (T.f.) along with sulphur grown T.f. and Paenibacillus polymyxa (P.p.) along with chalcopyrite, pyrite, galena and sphalerite adapted strains are used in the study. The charge characteristics of mineral and bacterial cell surfaces are determined using electrokinetic measurements and the chemical composition is determined using FT-IR, FT-Raman and XPS spectroscopy. Hydrophobicity of the mineral and bacterial cell surface is evaluated using contact angle measurements, adhesion to organic solvents and surface energy evaluation. The surface energy of bacterial cells has been evaluated using different physico-chemical approaches - Fowkes, Equation of state, Geometric mean and Lifshitz-van der Waals/Acid-Base (LW-AB) approach. A detailed analysis of the physico-chemical approaches available to evaluate the bacterial cells surface energy from liquid contact angles is performed using literature data on 147 different microbial cells. It has been concluded that Geometric mean and Equation of state approaches evaluate similar surface energy values. But both of them give inconsistent results as the surface energy values change with the use of different liquid contact angles. Surface energy evaluated using LW-AB approach gives most detailed information of the bacterial cell surface. This approach is effected by mathematical instability but contact angle with the three liquids - Water, Formamide and Methyleneiodide/α-Bromonapthelene evaluates the most consistent results. The electron donor characteristics evaluated by LW-AB approach can differentiate between the gram-negative and gram-positive bacterial species. The other advantage of LW-AB approach is the fact that extended DLVO approach could be used to study the adhesion of bacterial cells on mineral surfaces. The polar components of the surface energy of mineral were lower than bacterial cells. Bacterial cells had a very high electron donating characteristics but for mineral surface it was on the lower side. Adhesion of microbial cells on mineral surface has been studied by constructing adsorption isotherms and indirectly by FT-IR spectroscopy and electrokinetic studies. Adsorption studies, electro-kinetic studies, IR-spectroscopic I studies and change in the flotation behaviour of the minerals experimentally showed that the adhesion of bacteria is taking place on the mineral surface. The bacterial adhesion is theoretically assessed by thermodynamic and extended DLVO calculations. The extended DLVO approach is found to be more effective in predicting the adhesion behaviour than the expectations from the thermodynamic approach. The thermodynamic approach yields no bacterial adhesion on minerals and this discrepancy could be the result of inadequate description of the phenomena, which strongly depends on the distance of separation between bacterial cell and mineral surface. The adhesion predictions by the DLVO approach are able to partially explain the adhesion and hence the bioflotation results of pyrite and chalcopyrite. Extended DLVO also shows that on account of high bacterial surface energy their aggregation is not feasible. But due to the hydrophobicity of pyrite and chalcopyrite, their aggregation is possible. Mineral-adapted bacterial cells showed marked differences in their surface properties from the unadapted ones. Paenibacillus polymyxa cells became more hydrophilic and gained the electron-accepting characteristic after adaptation, where as for Thiobacillus ferrooxidans the IEP shifted to higher pH value. Single mineral Hallimond flotation is performed for chalcopyrite and pyrite after interaction with microbial cells and in presence and absence of collector. Microbial cells were able to successfully depress pyrite flotation and not chalcopyrite. Hence, a separation among pyrite and chalcopyrite is possible by bioflotation. Keywords: Bacterial adhesion, Bioprocessing, Biobeneficiation, bioflotation, microorganisms, sulphide minerals, Zeta-potential, Contact angle, surface energy, DLVO, XPS, FT-IR, FT-Raman II ACKNOWLEDGEMENTS First of all, I would like to express my sincere gratitude to my supervisor, Associate Professor K. Hanumantha Rao for all his help and patience. I would like to thank Prof. Eric Forssberg for making it possible for me to come here and pursue my doctoral studies. Sincere thanks to Prof. K.A. Natarajan, Indian Institute of Science, Bangalore, India for introducing me to the field of bio-processing and his continued help, fruitful discussions and suggestions. I would also like to acknowledge The Swedish Foundation for International Co- operation in Research and Higher Education (STINT), Sweden for financial support for the project “Bio-mineral and bio-hydrometallurgical processing”. I would also like to acknowledge the financial support from the KKS (Stiftelsen för Kunskaps- och Kompetensutveckling) Företagsforskarskola inom berg- och mineralteknik in the later period of my studies. I would like to thank Ulf Nordström, Maine Ranheimer, Birgitta Nyberg and Björg Tangen Lundmark for their help in the lab. Thanks to all my friends and colleagues (alphabetically)- Andreas Krig, Aruna Thakur, Hamid-Reza Manouchehri, Maneesh Singh, Nourreddine Menad, Philippe Lingois, Tarun Kundu and Vidyadhar Ari for the time spent together. Last but most important, I would like to thank my wife, Aradhana, for her patience with me especially during the preparation of this thesis. I would also like to thank my parents in India for their continued support. Prashant K. Sharma November 2001 III CONTENTS Contents Page Summary I Acknowledgements III 1. Introduction 1 2. Minerals and Microbes 5 2.1 The Cell 5 2.2 Bacterial Strains: Their Growth and Adaptation 8 2.3 Minerals and Reagents 12 Paper I 13 3. Surface Characterisation 23 3.1 Bacterial Cell Surface Structure 23 3.2 Bacterial Cell Surface Properties and its Characterisation 30 Paper II 53 Paper III 77 Paper IV 89 4. Microbial Adhesion and Adsorption on Mineral Surfaces 201 4.1 Microbial Adhesion Mechanisms 201 4.2 Factors Effecting Adhesion 202 4.3 Thermodynamic Aspects of Adhesion 204 4.4 Colloidal Aspects of Adhesion 205 4.5 Mineral Microbe Interaction: Experimental Studies 209 Paper V 213 Paper VI 233 5. Biobeneficiation: Bioflotation 245 Paper VII 251 Paper VIII 259 Paper IX 279 6. Conclusions 289 7. References 291 List of Publications 297 IV Chapter 1: Introduction 1. Introduction Surface Studies Relevant to Microbial Adhesion and Bioflotation of Sulphide Minerals, P.K. Sharma, 2001 Minerals exist in nature abundantly in the earth's crust in the form of ore bodies, i.e., in association with other minerals. In order to extract metals from minerals by hydro- and pyro-metallurgical methods, it is very important to concentrate the mineral from the ore. Mineral processing is the branch of science, which concerns itself with the processes of mineral separation from ore. Conventionally, physico-chemical methods are used in mineral processing, but now a days, biotechnological processing routes are sought to solve the problems associated with lean grade ores and where the traditional methods fail to separate the minerals from complex ores. Two major areas, which are making advances in minerals bioprocessing, are bio-leaching and bio-beneficiation (Fig. 1.1). Bio-leaching can be defined as a hydrometallurgical dissolution process assisted by microorganisms for the recovery of metals from their ores/concentrates. Major activity has been in bio-leaching of sulphide minerals and chemolithoautotrophic bacteria have been used for the bio- leaching process. Over the past three decades bio-leaching has come a long way and is now economically competitive, many processes have been commercialised and are in use. Whereas, bio-beneficiation is relatively a new area and a new term which, has recently has been defined as “bio-beneficiation involves the selective removal of undesired mineral constituents from an ore through interaction with microorganisms, enriching the solid residue with respect to the desired mineral phase” (Natarajan, 1998). The subject of this thesis lies in the broad area of minerals bio-processing and more specifically in bio-beneficiation. Bio-beneficiation uses the conventional wet mineral processing methods, which separate minerals based on their surface property differences,
Recommended publications
  • The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
    microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression.
    [Show full text]
  • The Morphology and Histology of a Certain Structure Connected with the Pars Intermedia of the Pituitary Body Ofthe Ox1
    THE MORPHOLOGY AND HISTOLOGY OF A CERTAIN STRUCTURE CONNECTED WITH THE PARS INTERMEDIA OF THE PITUITARY BODY OFTHE OX1 ROSALIND \VULZEX From the Hearst Anatomical Laboratory oj the University oj California SEVENTEEN FIGURES Certain physiological experiments are now being conducted in the Rudolph Spreckels Physiological Laboratory of this University which necessitate the separation of a great number of ox pituitaries into their two main divisions. As an interesting anatomical feature was in this way brought to our attention the material was used in addition for this anatomical study. This feature has not been mentioned by the following who have written more or less fully upon the pituitary body of the ox, Peremeschko ('67), Dostojewski ('86), Herring ('08)' and Traut- mann ('11). The pituitary body of the ox, like that of other vertebrates, is composed of two distinct portions. One, the pars nervosa, is derived from the brain as an outgrowth of the hypothalamus. The other originates as a hollow buccal evagination which in time is completely separated from the digestive tract. That portion of this evagination which comes into contact with the pars nervosa is called the pars intermedia. It is a comparatively thin sheet of epithelium which spreads as a coating over much Material amounting to thousands of pituitary bodies was most kindly sup- plied by the Oakland Meat and Packing Company through the courtesy of the Superintendent. It was derived from cows, bulls and steers. As the cone struc- ture was present indifferently in these three varieties, its appearance can have little to do with sex or castration.
    [Show full text]
  • Pathological and Therapeutic Approach to Endotoxin-Secreting Bacteria Involved in Periodontal Disease
    toxins Review Pathological and Therapeutic Approach to Endotoxin-Secreting Bacteria Involved in Periodontal Disease Rosalia Marcano 1, M. Ángeles Rojo 2 , Damián Cordoba-Diaz 3 and Manuel Garrosa 1,* 1 Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine and INCYL, University of Valladolid, 47005 Valladolid, Spain; [email protected] 2 Area of Experimental Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain; [email protected] 3 Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, and IUFI, Complutense University of Madrid, 28040 Madrid, Spain; [email protected] * Correspondence: [email protected] Abstract: It is widely recognized that periodontal disease is an inflammatory entity of infectious origin, in which the immune activation of the host leads to the destruction of the supporting tissues of the tooth. Periodontal pathogenic bacteria like Porphyromonas gingivalis, that belongs to the complex net of oral microflora, exhibits a toxicogenic potential by releasing endotoxins, which are the lipopolysaccharide component (LPS) available in the outer cell wall of Gram-negative bacteria. Endotoxins are released into the tissues causing damage after the cell is lysed. There are three well-defined regions in the LPS: one of them, the lipid A, has a lipidic nature, and the other two, the Core and the O-antigen, have a glycosidic nature, all of them with independent and synergistic functions. Lipid A is the “bioactive center” of LPS, responsible for its toxicity, and shows great variability along bacteria. In general, endotoxins have specific receptors at the cells, causing a wide immunoinflammatory response by inducing the release of pro-inflammatory cytokines and the production of matrix metalloproteinases.
    [Show full text]
  • Some English Terms Used in Microbiology 1
    Some English terms used in Microbiology 1 Shapes & Structures General terms Antibiotics and related Bacillus (pl. bacilli) Acid fast (acid fastness) ácido-alcohol resistente Acetylases Capsule Bacterial (adj.) Ampicillin Cell wall pared celular Bacterium (pl., bacteria): Beta-lactamase Coccus (cocci; and hence Staphylococcus, Bench: poyata Beta-lactamic Staphylococci) Biofilm Cephalosporin Core oligosaccharide núcleo oligosacarídico Burner (Bunsen Burner): mechero (Bunsen) Chloramphenicol Cortex Colony: colonia Colistin Fimbria (pl. fimbriae) Coverslip: (vidrio) cubreobjetos D-Cycloserine Flagellum (pl. flagella) Dye colorante DNA-gyrase Glycocalix Eukaryote or eucaryote Erythromycin Lipid A Incubator: estufa de incubación Ethambuthol Lipopolysaccharide Inoculating loop asa de siembra Fluoroquinolone Murein mureína Inoculum (inocula): Gentamicin (formerly gentamycin) Omp: outer membrane major protein proteína To flame: flamear Isoniazide de membrane externa Flask (Erlenmeyer flask): matraz Methicillin Outer membrane membrana externa Volumetric flask: matraz aforado Methylases PAMP (pathogen associated molecular pattern): Microorganism Nalidixic acid patrón molecular asociado a patógeno Motility movilidad Penicillin Peptidoglycan peptidoglucano Mycoplasm Penicillin binding protein (PBP) Periplasm periplasma Negative staining tinción negativa Phosphonomycin Periplasmic space espacio periplásmico Petri dish: placa de Petri Phosphorylases Permeability barrier barrera de permeabilidad Prokaryote or procaryote Polymyxin Pilus (pl. pili) Rack:
    [Show full text]
  • The Regulation of Arsenic Metabolism in Rhizobium Sp. NT-26
    The regulation of arsenic metabolism in Rhizobium sp. NT-26 Paula Corsini Madeira University College London Thesis submitted for the degree of Doctor of Philosophy 2016 I, Paula Corsini Madeira, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Date: Signed: II Abstract Arsenic (As) is a toxic metalloid and a major contaminant in terrestrial and aquatic environments. The two soluble forms, arsenite (AsIII) and arsenate (AsV) are toxic to most organisms. A range of phylogenetically distant bacteria are able to oxidize AsIII to the less toxic form, arsenate AsV using the periplasmic arsenite oxidase (AioBA). The two-component signal transduction system AioS/AioR and the AsIII-binding periplasmic protein AioX are required for AsIII oxidation and are involved in the transcriptional regulation of the aioBA operon. Most AsIII oxidisers can also reduce AsV to AsIII via the As (Ars) resistance system. The focus of this work was to understand the regulation of genes involved in AsIII oxidation and As resistance together with those involved in phosphate metabolism in the facultative chemolithoautotrophic AsIII oxidiser NT-26 grown under different conditions. Gene expression was studied by quantitative PCR in cells grown heterotrophically with and without AsIII or AsV in late-log and stationary phases. qPCR was optimised and suitable reference genes were chosen. The expression of genes involved in phosphate transport, sensing As and the genes aioX, aioS, aioR (AsIII-sensing and regulation) and aioB, aioA (AsIII oxidation) and cytC (cytochrome c) were also analysed in NT-26 grown heterotrophically in the presence or absence of AsIII or AsV at different growth stages (i.e., late-log and stationary phases).
    [Show full text]
  • Distribution and Characteristics of Bacillus Bacteria Associated with Hydrobionts and the Waters of the Peter the Great Bay, Sea of Japan I
    ISSN 0026-2617, Microbiology, 2008, Vol. 77, No. 4, pp. 497–503. © Pleiades Publishing, Ltd., 2008. Original Russian Text © I.A. Beleneva, 2008, published in Mikrobiologiya, 2008, Vol. 77, No. 4, pp. 558–565. EXPERIMENTAL ARTICLES Distribution and Characteristics of Bacillus Bacteria Associated with Hydrobionts and the Waters of the Peter the Great Bay, Sea of Japan I. A. Beleneva1 Zhirmunskii Institute of Marine Biology, Far East Division, Russian Academy of Sciences, ul. Pal’chevskogo, 17, Vladivostok 690041, Russia Received May 28, 2007 Abstract—Bacilli of the species Bacillus subtilis, B. pumilus, B. mycoides, B. marinus and B. licheniformis (a total of 53 strains) were isolated from 15 invertebrate species and the water of the Vostok Bay, Peter the Great Bay, Sea of Japan. Bacilli were most often isolated from bivalves (22.7%) and sea cucumbers (18.9%); they occurred less frequently in sea urchins and starfish (13.2 and 7.5%, respectively). Most of bacilli strains were isolated from invertebrates inhabiting silted sediments. No Bacillus spp. strains were isolated from invertebrates inhabiting stony and sandy environments. The species diversity of bacilli isolated from marine objects under study was low. Almost all bacterial isolates were resistant to lincomycin. Unlike B. pumilus, B. subtilis isolates were mostly resistant to benzylpenicillin and ampicillin. Antibiotic sensitivity of B. licheniformis strains was variable (two strains were resistant to benzylpenicillin and oxacillin, while one was sensitive). A significant fraction of isolated bacilli contained pigments. Pigmented strains were more often isolated from seawater sam- ples, while colorless ones predominated within hydrobionts. B. subtilis colonies had the broadest range of co- lors.
    [Show full text]
  • Chapter 11: Bacteria Bacterial Groups
    Bacterial Groups u Most widely accepted taxonomic classification for bacteria is Bergey’s Manual of Systematic Bacteriology. u 5000 bacterial species identified, 3100 classified. Chapter 11: Bacteria u Bacteria are divided into four divisions (phyla) according to the characteristics of their cell walls. u Each division is divided into sections according to: u Gram stain reaction u Cell shape u Cell arrangements u Oxygen requirements u Motility u Nutritional and metabolic properties u Each section contains several genera. Four Divisions of Bacteria Classification of Bacteria Procaryotes Gram-Negative Division II Wall-Less Archaea Bacteria Bacteria Bacteria Bacteria (Gracilicutes) (Firmicutes) (Tenericutes) (Mendosicutes) Thin Cell Walls Thick cell Walls Lack cell walls Unusual cell walls Division I. Gram-Negative Bacteria Gram Negative Bacteria Spirochetes 1. Spirochetes u Helical shape. Flexible. u Contain two or more axial filaments (endoflagella). u Move in corkscrew pattern. u Medically important members: F Treponema pallidum: Syphilis F Borrelia spp.: Lyme disease, relapsing fever F Leptospira: Leptospirosis 1 Syphilis is Caused by a Spirochete Lyme Disease is Caused by a Spirochete Primary syphilitic chancre and secondary rash. Source: Tropical Medicine and Parasitology, 1997 Lyme Disease early lesion at tick bite site. Source: Medical Microbiology, 1998 2. Aerobic, Motile, Helical/Vibroid Gram- Negative Bacteria Gram Negative Bacteria u Rigid helical shape or curved rods. Aerobic, Motile, Helical/Vibroid u Lack axial filaments (endoflagella); have polar Gram-Negative Bacteria flagella instead. u Most are harmless aquatic organisms. u Genus Azospirillum fixes nitrogen in soil. u Genus Bdellovibrio attacks other bacteria. u Important pathogens include: F Campylobacter jejuni: Most common bacterial food- borne intestinal disease in the United States (2 million cases/year).
    [Show full text]
  • Technical Method
    J Clin Pathol: first published as 10.1136/jcp.38.9.1073 on 1 September 1985. Downloaded from J Clin Pathol 1985;38:1073-1084 Technical method Use of microwaves for acid and alcohol fast staining S HAFIZ, RC SPENCER, MARGARET LEE, organism depends on several factors but remains an HILARY GOOCH, BI DUERDEN Department important component in the identification of a ofMedical Microbiology, Sheffield University Medi- restricted group of organisms. cal School, Sheffield The technical problems associated with the classic Ziehl-Neelsen method include the dangers of heat- ing by flaming torch in laboratories in which volatile Certain bacteria that are characterised by a high organic solvents are used, the deposits that accumu- content of lipid in their cell walls cannot be stained late on the underside of the slide as a result of heat- by simple stains, and either heat or prolonged con- ing, and the crystalline deposits of stain that collect tact is required to drive the stain into the cells; once on the film as a result of evaporation and drying. stained they resist decolourisation by mineral acids This method also requires 20-30 minutes of or acid and alcohol. These organisms are designated laboratory time. Numerous minor modifications acid fast or acid and alcohol fast. They include have been made to the Ziehl-Neelsen method by Mycobacterium tuberculosis and related mycobac- increasing the concentration of carbolic magenta or teria, Mycobacterium leprae, and certain of the by cold staining techniques,'0-'2 but the basic prob- actinomycetes. Koch first stained the tubercle bacil- lems remain. lus by immersion in an alkaline solution of Some of the problems may be overcome by the copyright.
    [Show full text]
  • Multi-Product Lactic Acid Bacteria Fermentations: a Review
    fermentation Review Multi-Product Lactic Acid Bacteria Fermentations: A Review José Aníbal Mora-Villalobos 1 ,Jéssica Montero-Zamora 1, Natalia Barboza 2,3, Carolina Rojas-Garbanzo 3, Jessie Usaga 3, Mauricio Redondo-Solano 4, Linda Schroedter 5, Agata Olszewska-Widdrat 5 and José Pablo López-Gómez 5,* 1 National Center for Biotechnological Innovations of Costa Rica (CENIBiot), National Center of High Technology (CeNAT), San Jose 1174-1200, Costa Rica; [email protected] (J.A.M.-V.); [email protected] (J.M.-Z.) 2 Food Technology Department, University of Costa Rica (UCR), San Jose 11501-2060, Costa Rica; [email protected] 3 National Center for Food Science and Technology (CITA), University of Costa Rica (UCR), San Jose 11501-2060, Costa Rica; [email protected] (C.R.-G.); [email protected] (J.U.) 4 Research Center in Tropical Diseases (CIET) and Food Microbiology Section, Microbiology Faculty, University of Costa Rica (UCR), San Jose 11501-2060, Costa Rica; [email protected] 5 Bioengineering Department, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany; [email protected] (L.S.); [email protected] (A.O.-W.) * Correspondence: [email protected]; Tel.: +49-(0331)-5699-857 Received: 15 December 2019; Accepted: 4 February 2020; Published: 10 February 2020 Abstract: Industrial biotechnology is a continuously expanding field focused on the application of microorganisms to produce chemicals using renewable sources as substrates. Currently, an increasing interest in new versatile processes, able to utilize a variety of substrates to obtain diverse products, can be observed.
    [Show full text]
  • Bacillus Subtilis: Model Organism for Cellular Development, and Industrial Workhorse
    MICROBE PROFILE Errington and Aart, Microbiology 2020;166:425–427 DOI 10.1099/mic.0.000922 Microbe Profile: Bacillus subtilis: model organism for cellular development, and industrial workhorse Jeffery Errington* and Lizah T van der Aart Graphical abstract Life cycle, environmental importance and industrial applications of B. subtilis. DNA and life cycle: the laboratory strain of B. subtilis is naturally transformable and, in the typical example illustrated, a foreign DNA segment ‘insert’ is integrated into the amyE genetic locus by double crossover homologus recombination. A crucial facet of the life cycle of most B. subtilis and most Firmicutes is their ability to switch from a classical binary fission, with equal segregation of sister chromosomes,to endospore formation. The resultant asymmetrical division generates small prespore (red) and larger mother- cell (green) compartments with different patterns of transcription. The tough endospore that results can remain dormant for a long period of time before germinating to resume vegetative growth. Environmental interactions: B. subtilis is typically found in association with plants as both an epiphyte and also within the rhizosphere. In some parts of the world batches of spores are used extensively for plant protection in the form of a seed dressing. B. subtilis has also been studied extensively as a model system for biofilm formation, switching classically between planktonic and sessile states. Industrial applications: B. subtilis and closely related organisms are responsible for huge levels of production of hydrolytic commodity enzymes, particularly proteases and amylases. They are also popular in probiotic formulations and can be engineered for production of fine chemicals, such as the vitamin, riboflavin.
    [Show full text]
  • Cell Structure and Function in the Bacteria and Archaea
    4 Chapter Preview and Key Concepts 4.1 1.1 DiversityThe Beginnings among theof Microbiology Bacteria and Archaea 1.1. •The BacteriaThe are discovery classified of microorganismsinto several Cell Structure wasmajor dependent phyla. on observations made with 2. theThe microscope Archaea are currently classified into two 2. •major phyla.The emergence of experimental 4.2 Cellscience Shapes provided and Arrangements a means to test long held and Function beliefs and resolve controversies 3. Many bacterial cells have a rod, spherical, or 3. MicroInquiryspiral shape and1: Experimentation are organized into and a specific Scientificellular c arrangement. Inquiry in the Bacteria 4.31.2 AnMicroorganisms Overview to Bacterialand Disease and Transmission Archaeal 4.Cell • StructureEarly epidemiology studies suggested how diseases could be spread and 4. Bacterial and archaeal cells are organized at be controlled the cellular and molecular levels. 5. • Resistance to a disease can come and Archaea 4.4 External Cell Structures from exposure to and recovery from a mild 5.form Pili allowof (or cells a very to attach similar) to surfacesdisease or other cells. 1.3 The Classical Golden Age of Microbiology 6. Flagella provide motility. Our planet has always been in the “Age of Bacteria,” ever since the first 6. (1854-1914) 7. A glycocalyx protects against desiccation, fossils—bacteria of course—were entombed in rocks more than 3 billion 7. • The germ theory was based on the attaches cells to surfaces, and helps observations that different microorganisms years ago. On any possible, reasonable criterion, bacteria are—and always pathogens evade the immune system. have been—the dominant forms of life on Earth.
    [Show full text]
  • Streptococcus Response to Group B Role of Lipoteichoic Acid in The
    Role of Lipoteichoic Acid in the Phagocyte Response to Group B Streptococcus Philipp Henneke, Siegfried Morath, Satoshi Uematsu, Stefan Weichert, Markus Pfitzenmaier, Osamu Takeuchi, Andrea This information is current as Müller, Claire Poyart, Shizuo Akira, Reinhard Berner, of September 28, 2021. Giuseppe Teti, Armin Geyer, Thomas Hartung, Patrick Trieu-Cuot, Dennis L. Kasper and Douglas T. Golenbock J Immunol 2005; 174:6449-6455; ; doi: 10.4049/jimmunol.174.10.6449 Downloaded from http://www.jimmunol.org/content/174/10/6449 References This article cites 48 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/174/10/6449.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Role of Lipoteichoic Acid in the Phagocyte Response to Group B Streptococcus1 Philipp Henneke,3* Siegfried Morath,2† Satoshi Uematsu,2§ Stefan Weichert,* Markus Pfitzenmaier,‡ Osamu Takeuchi,§ Andrea Mu¨ller,* Claire Poyart,¶ Shizuo Akira,§ Reinhard Berner,* Giuseppe Teti,# Armin Geyer,‡ Thomas Hartung,† Patrick Trieu-Cuot,ʈ Dennis L.
    [Show full text]