1 a Structured Light Based 3D Reconstruction Using Combined

Total Page:16

File Type:pdf, Size:1020Kb

1 a Structured Light Based 3D Reconstruction Using Combined A Structured Light Based 3D Reconstruction Using Combined Circular Phase Shifting Patterns Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yujia Zhang Graduate Program in Geodetic Science The Ohio State University 2019 Dissertation Committee Dr. Alper Yilmaz, Advisor Dr. Alan Saafeld Dr. Rongjun Qin 1 Copyrighted by Yujia Zhang 2019 2 Abstract Coded structured light is one of the most effective and reliable techniques for surface reconstruction. With a calibrated projector-camera stereo system, a set of illuminating patterns are projected onto the scene by the projector and the images are captured by the camera. The correspondences between projector and camera frames are calculated in the decoding process, which is used for triangulation and point cloud generation. The continuous phase shifting method is a well-known fringe projection technique for 3D scanning, where a set of sinusoidal patterns showing variation of intensity or color are projected onto the surface. The most common phase shifting patterns are constituted by periodic and absolute cue strips in one or two axes. However, the shortcoming of phase shifting methods is the sensitivity to illumination effects such as subsurface scattering and inter-reflections caused by projecting reflection or occlusions. Therefore, the most accurate method is the combination of gray code and phase shift, which preserve a stable decoding as well as subpixel accuracy. To improve the processing speed, the patterns is multiplexed in frequency or color space to reduce to number of projecting patterns. This proposal, introduces a novel circular phase shifting method to improve the decoding accuracy, without the trade-off between processing speed and decoding accuracy. In the proposed approach, three-step circular phase shifting and absolute patterns are used for increasing the multiplicity since the circular patterns are coded in all directions. With the radius correspondences decoded from circular phase shifting patterns, subpixel accuracy of ii correspondences throughout all directions can be obtained. The stereo triangulation is more stable and accurate than line-plane intersection used in single axis structured light methods with fewer decoding errors. Robust gray patterns are applied to resolve the ambiguity resolution caused by reflectance discontinuities in the phase shifting decoding process. In this thesis, I have a complete setup of the structured light based 3D scanning system, including hardware and software. A novel structured light reconstruction method using combined circular phase shifting patterns is presented. In order to compare with state-of- the-arts, I have implemented several established structured light algorithms, such as conventional gray codes, maximum min-SW gray codes, logical XOR codes, three step phase shifting codes and micro phase shifting codes. A series of experiments are completed to compare the qualitative and quantitative performance of each method. The novel combined circular phase shifting method enables high-quality and high-speed dense reconstruction with limited number of images. Structured light based 3D scanning has broad applications in many fields with its high accuracy, high speed or even real time 3D reconstruction. In this thesis, a medical application of structured light based 3D reconstruction system is presented for intraoperative radiation therapy (IORT). This system is constitute of structured light 3D scanning and fiducial tracking of the devices, which allows automated intraoperative co- registration of patient and radiotherapy device. This system uses structured light scanning to get the 3D coordinates of the patient and a monocular camera, which tracks the motion of the radiotherapy device with fiducial markers. In order to get more stable and accurate tracking results, the combination between camera tracking and inertial navigation using iii IMU (Inertial Navigation Unit) is in consideration. The two motion tracking results are combined through the extended Kalman filter algorithm. iv To my family, my advisor and my friends v Acknowledgments My first thanks goes to my advisor, Dr. Yilmaz, for his valuable guidance. He is one of the most important persons in my academic life, who has given me patiently mentorship and tremendous support to my research for six years. He not only gives me research ideas, but also teaches me the philosophy of life, which benefits my academic and career life in the future. I want to express my full gratitude to my other committee members, Dr. Saafeld and Dr. Qin. Both have been very helpful for my Ph.D. study in Ohio State University. I would also like to thank my lab mates, Dr. Young Jin Lee, Dr. Siavash HosseinyAlamdary, Dr. Changlin Xiao, M. Taha Koroglu, Nima Ajam Gard, Guanyu Xu, Xuhui Su, Shirui Li, Michael Karnes and Bing Zha, for the discussions and happy times we have experienced. My special appreciation goes to Michael Karnes, for his help in modifying my dissertation. I am also very grateful that Dr. Fei Wang and Dr. Jinmei Pan, my best friends here, give me help and happiness in my living life in Ohio. Finally, I would like to thank my parents, who provide me the unwavering support that has motivated my Ph.D. study. vi Vita 2005-2008……………………………………Shihezi No.1 High School, China 2007-2011……………………………………B.S. School of Geodesy and Geomatics, Wuhan University 2012 to present……………………………….Graduate Student, School of Geodetic Science, The Ohio State University Publications Zhang Yujia, Yilmaz Alper, “Structured light based 3D scanning for specular surface by the combination of gray code and phase shifting”, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B3, 137-142, https://doi.org/10.5194/isprs-archives-XLI-B3-137- 2016, 2016. Huai Jianzhu, Zhang Yujia, Yilmaz Alper, “S Real-time large scale 3D reconstruction by fusing Kinect and IMU data”. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-3-W5, 491–496. Zhang Yujia, Yilmaz Alper, “A Novel Structured Light Reconstruction Method Using Combined Circular and Column Phase Shifting Patterns.” In processing of ASPRS Annual Conference 2019. vii Zhang Yujia, Yilmaz Alper, “A Structured Light Based 3D Reconstruction Using Combined Gray and Circular Phase Shifting Patterns.” In processing of ISPRS Journal 2019. Fields of Study Major Field: Geodetic Science viii Table of Contents Abstract ............................................................................................................................... ii Acknowledgments.............................................................................................................. vi Vita .................................................................................................................................... vii List of Tables .................................................................................................................... xii List of Figures .................................................................................................................. xiii Chapter 1. Introduction ....................................................................................................... 1 1.1 Background and Motivation ................................................................................. 2 1.2 Contributions ........................................................................................................ 3 1.3 Structure of the Dissertation ................................................................................. 4 Chapter 2. Related Work.................................................................................................... 6 2.1 Discrete Coding Methods ......................................................................................... 6 2.2 Continuous Coding Methods .................................................................................... 8 Chapter 3. Background Knowledge .................................................................................. 10 3.1 Structured Light System Calibration .................................................................. 10 3.1.1 Camera Calibration .......................................................................................... 11 3.1.2 Projector Calibration ........................................................................................ 15 3.1.3 Stereo Calibration ............................................................................................ 16 3.1.4 Calibration Process .......................................................................................... 16 3.2 Coding Methods ................................................................................................. 18 3.2.1 Binary Coding .................................................................................................. 18 3.2.2 Maximum min-SW Gray Code ........................................................................ 22 3.2.3 Phase Shifting Methods ................................................................................... 23 3.3 Three-Dimensional Reconstruction by Triangulation ........................................ 34 3.3.1 Algebraic Triangulation ................................................................................... 35 3.3.2 Ray-Plane Intersection ..................................................................................... 37 ix 3.3.3 Ray-Ray Intersection ......................................................................................
Recommended publications
  • Interacting with Autostereograms
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/336204498 Interacting with Autostereograms Conference Paper · October 2019 DOI: 10.1145/3338286.3340141 CITATIONS READS 0 39 5 authors, including: William Delamare Pourang Irani Kochi University of Technology University of Manitoba 14 PUBLICATIONS 55 CITATIONS 184 PUBLICATIONS 2,641 CITATIONS SEE PROFILE SEE PROFILE Xiangshi Ren Kochi University of Technology 182 PUBLICATIONS 1,280 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Color Perception in Augmented Reality HMDs View project Collaboration Meets Interactive Spaces: A Springer Book View project All content following this page was uploaded by William Delamare on 21 October 2019. The user has requested enhancement of the downloaded file. Interacting with Autostereograms William Delamare∗ Junhyeok Kim Kochi University of Technology University of Waterloo Kochi, Japan Ontario, Canada University of Manitoba University of Manitoba Winnipeg, Canada Winnipeg, Canada [email protected] [email protected] Daichi Harada Pourang Irani Xiangshi Ren Kochi University of Technology University of Manitoba Kochi University of Technology Kochi, Japan Winnipeg, Canada Kochi, Japan [email protected] [email protected] [email protected] Figure 1: Illustrative examples using autostereograms. a) Password input. b) Wearable e-mail notification. c) Private space in collaborative conditions. d) 3D video game. e) Bar gamified special menu. Black elements represent the hidden 3D scene content. ABSTRACT practice. This learning effect transfers across display devices Autostereograms are 2D images that can reveal 3D content (smartphone to desktop screen). when viewed with a specific eye convergence, without using CCS CONCEPTS extra-apparatus.
    [Show full text]
  • A Residual Network and FPGA Based Real-Time Depth Map Enhancement System
    entropy Article A Residual Network and FPGA Based Real-Time Depth Map Enhancement System Zhenni Li 1, Haoyi Sun 1, Yuliang Gao 2 and Jiao Wang 1,* 1 College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; [email protected] (Z.L.); [email protected] (H.S.) 2 College of Artificial Intelligence, Nankai University, Tianjin 300071, China; [email protected] * Correspondence: [email protected] Abstract: Depth maps obtained through sensors are often unsatisfactory because of their low- resolution and noise interference. In this paper, we propose a real-time depth map enhancement system based on a residual network which uses dual channels to process depth maps and intensity maps respectively and cancels the preprocessing process, and the algorithm proposed can achieve real- time processing speed at more than 30 fps. Furthermore, the FPGA design and implementation for depth sensing is also introduced. In this FPGA design, intensity image and depth image are captured by the dual-camera synchronous acquisition system as the input of neural network. Experiments on various depth map restoration shows our algorithms has better performance than existing LRMC, DE-CNN and DDTF algorithms on standard datasets and has a better depth map super-resolution, and our FPGA completed the test of the system to ensure that the data throughput of the USB 3.0 interface of the acquisition system is stable at 226 Mbps, and support dual-camera to work at full speed, that is, 54 fps@ (1280 × 960 + 328 × 248 × 3). Citation: Li, Z.; Sun, H.; Gao, Y.; Keywords: depth map enhancement; residual network; FPGA; ToF Wang, J.
    [Show full text]
  • Deep Learning Whole Body Point Cloud Scans from a Single Depth Map
    Deep Learning Whole Body Point Cloud Scans from a Single Depth Map Nolan Lunscher John Zelek University of Waterloo University of Waterloo 200 University Ave W. 200 University Ave W. [email protected] [email protected] Abstract ture the complete 3D structure of an object or person with- out the need for the machine or operator to necessarily be Personalized knowledge about body shape has numerous an expert at how to take every measurement. Scanning also applications in fashion and clothing, as well as in health has the benefit that all possible measurements are captured, monitoring. Whole body 3D scanning presents a relatively rather than only measurements at specific points [27]. simple mechanism for individuals to obtain this information Beyond clothing, understanding body measurements and about themselves without needing much knowledge of an- shape can provide details about general health and fitness. thropometry. With current implementations however, scan- In recent years, products such as Naked1 and ShapeScale2 ning devices are large, complex and expensive. In order to have begun to be released with the intention of capturing 3D make such systems as accessible and widespread as pos- information about a person, and calculating various mea- sible, it is necessary to simplify the process and reduce sures such as body fat percentage and muscle gains. The their hardware requirements. Deep learning models have technologies can then be used to monitor how your body emerged as the leading method of tackling visual tasks, in- changes overtime, and offer detailed fitness tracking. cluding various aspects of 3D reconstruction. In this paper Depth map cameras and RGBD cameras, such as the we demonstrate that by leveraging deep learning it is pos- XBox Kinect or Intel Realsense, have become increasingly sible to create very simple whole body scanners that only popular in 3D scanning in recent years, and have even made require a single input depth map to operate.
    [Show full text]
  • Fusing Multimedia Data Into Dynamic Virtual Environments
    ABSTRACT Title of dissertation: FUSING MULTIMEDIA DATA INTO DYNAMIC VIRTUAL ENVIRONMENTS Ruofei Du Doctor of Philosophy, 2018 Dissertation directed by: Professor Amitabh Varshney Department of Computer Science In spite of the dramatic growth of virtual and augmented reality (VR and AR) technology, content creation for immersive and dynamic virtual environments remains a signifcant challenge. In this dissertation, we present our research in fusing multimedia data, including text, photos, panoramas, and multi-view videos, to create rich and compelling virtual environments. First, we present Social Street View, which renders geo-tagged social media in its natural geo-spatial context provided by 360° panoramas. Our system takes into account visual saliency and uses maximal Poisson-disc placement with spatiotem- poral flters to render social multimedia in an immersive setting. We also present a novel GPU-driven pipeline for saliency computation in 360° panoramas using spher- ical harmonics (SH). Our spherical residual model can be applied to virtual cine- matography in 360° videos. We further present Geollery, a mixed-reality platform to render an interactive mirrored world in real time with three-dimensional (3D) buildings, user-generated content, and geo-tagged social media. Our user study has identifed several use cases for these systems, including immersive social storytelling, experiencing the culture, and crowd-sourced tourism. We next present Video Fields, a web-based interactive system to create, cal- ibrate, and render dynamic videos overlaid on 3D scenes. Our system renders dynamic entities from multiple videos, using early and deferred texture sampling. Video Fields can be used for immersive surveillance in virtual environments. Fur- thermore, we present VRSurus and ARCrypt projects to explore the applications of gestures recognition, haptic feedback, and visual cryptography for virtual and augmented reality.
    [Show full text]
  • Construction of Autostereograms Taking Into Account Object Colors and Its Applications for Steganography
    Construction of Autostereograms Taking into Account Object Colors and its Applications for Steganography Yusuke Tsuda Yonghao Yue Tomoyuki Nishita The University of Tokyo ftsuday,yonghao,[email protected] Abstract Information on appearances of three-dimensional ob- jects are transmitted via the Internet, and displaying objects q plays an important role in a lot of areas such as movies and video games. An autostereogram is one of the ways to represent three- dimensional objects taking advantage of binocular paral- (a) SS-relation (b) OS-relation lax, by which depths of objects are perceived. In previous Figure 1. Relations on an autostereogram. methods, the colors of objects were ignored when construct- E and E indicate left and right eyes, re- ing autostereogram images. In this paper, we propose a L R spectively. (a): A pair of points on the screen method to construct autostereogram images taking into ac- and a single point on the object correspond count color variation of objects, such as shading. with each other. (b): A pair of points on the We also propose a technique to embed color informa- object and a single point on the screen cor- tion in autostereogram images. Using our technique, au- respond with each other. tostereogram images shown on a display change, and view- ers can enjoy perceiving three-dimensional object and its colors in two stages. Color information is embedded in we propose an approach to take into account color variation a monochrome autostereogram image, and colors appear of objects, such as shading. Our approach assign slightly when the correct color table is used.
    [Show full text]
  • Ddrnet: Depth Map Denoising and Refinement for Consumer Depth
    DDRNet: Depth Map Denoising and Refinement for Consumer Depth Cameras Using Cascaded CNNs Shi Yan1, Chenglei Wu2, Lizhen Wang1, Feng Xu1, Liang An1, Kaiwen Guo3, and Yebin Liu1 1 Tsinghua University, Beijing, China 2 Facebook Reality Labs, Pittsburgh, USA 3 Google Inc, Mountain View, CA, USA Abstract. Consumer depth sensors are more and more popular and come to our daily lives marked by its recent integration in the latest Iphone X. However, they still suffer from heavy noises which limit their applications. Although plenty of progresses have been made to reduce the noises and boost geometric details, due to the inherent illness and the real-time requirement, the problem is still far from been solved. We pro- pose a cascaded Depth Denoising and Refinement Network (DDRNet) to tackle this problem by leveraging the multi-frame fused geometry and the accompanying high quality color image through a joint training strategy. The rendering equation is exploited in our network in an unsupervised manner. In detail, we impose an unsupervised loss based on the light transport to extract the high-frequency geometry. Experimental results indicate that our network achieves real-time single depth enhancemen- t on various categories of scenes. Thanks to the well decoupling of the low and high frequency information in the cascaded network, we achieve superior performance over the state-of-the-art techniques. Keywords: Depth enhancement · Consumer depth camera · Unsuper- vised learning · Convolutional Neural Networks· DynamicFusion 1 Introduction Consumer depth cameras have enabled lots of new applications in computer vision and graphics, ranging from live 3D scanning to virtual and augmented reality.
    [Show full text]
  • Depth Map Design and Depth-Based Effects with a Single Image
    Depth Map Design and Depth-based Effects With a Single Image Jingtang Liao∗ Shuheng Shen† Elmar Eisemann‡ Delft University of Technology ABSTRACT When several views are available, image-based view interpola- We present a novel pipeline to generate a depth map from a single tion [24] is more general. The perceived motion of the objects helps image that can be used as input for a variety of artistic depth-based in estimating spatial relationships. Nonetheless, these techniques effects. In such a context, the depth maps do not have to be perfect often require a special acquisition setup or a carefully produced but are rather designed with respect to a desired result. Consequently, input. Wiggle stereoscopy can be seen as a particular case of view our solution centers around user interaction and relies on a scribble- interpolation, which simply loops left and right images of a stereo based depth editing. The annotations can be sparse, as the depth pair and can result in a striking parallax perception despite its sim- map is generated by a diffusion process, which is guided by image plicity (Fig. 2). These techniques all avoid special equipment, e.g., features. Additionally, we support a variety of controls, such as a 3D glasses, and they even work for people with limited or no vision non-linear depth mapping, a steering mechanism for the diffusion in one eye. (e.g., directionality, emphasis, or reduction of the influence of image Alternatively, it is possible to use a single input image and warp cues), and besides absolute, we also support relative depth indica- it based on a depth map to produce stereo pairs.
    [Show full text]
  • Stereoscopic Depth Map Estimation and Coding Techniques for Multiview Video Systems
    Poznań University of Technology Faculty of Electronics and Telecommunications Chair of Multimedia Telecommunication and Microelectronics Doctoral Dissertation Stereoscopic depth map estimation and coding techniques for multiview video systems Olgierd Stankiewicz Supervisor: Prof. dr hab. inż. Marek Domański POZNAN UNIVERSITY OF TECHNOLOGY Faculty of Electronics and Telecommunications Chair of Multimedia Telecommunications and Microelectronics Pl. M. Skłodowskiej-Curie 5 60-965 Poznań www.multimedia.edu.pl This dissertation was supported by the public funds as a research project. A part of this dissertation related to depth estimation was partially supported by National Science Centre, Poland, according to the decision DEC-2012/07/N/ST6/02267. A part of this dissertation related to depth coding was partially supported by National Science Centre, Poland, according to the decision DEC-2012/05/B/ST7/01279. This dissertation has been partially co-financed by European Union funds as a part of European Social Funds. Copyright © Olgierd Stankiewicz, 2013 All rights reserved Online edition 1, 2015 ISBN 978-83-942477-0-6 This dissertation is dedicated to my beloved parents: Zdzisława and Jerzy, who gave me wonderful childhood and all opportunities for development and fulfillment in life. I would like to thank all important people in my life, who have always been in the right place and supported me in difficult moments, especially during realization of this work. I would like to express special thanks and appreciation to professor Marek Domański, for his time, help and ideas that have guided me towards completing this dissertation. Rozprawa ta dedykowana jest moim ukochanym rodzicom: Zdzisławie i Jerzemu, którzy dali mi cudowne dzieciństwo oraz wszelkie możliwości rozwoju i spełnienia życiowego.
    [Show full text]
  • Towards a Smart Drone Cinematographer for Filming Human Motion
    University of California Santa Barbara Towards a Smart Drone Cinematographer for Filming Human Motion A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical and Computer Engineering by Chong Huang Committee in charge: Professor Kwang-Ting (Tim) Cheng, Chair Professor Matthew Turk Professor B.S. Manjunath Professor Xin Yang March 2020 The Dissertation of Chong Huang is approved. Professor Matthew Turk Professor B.S. Manjunath Professor Xin Yang Professor Kwang-Ting (Tim) Cheng, Committee Chair March 2020 Towards a Smart Drone Cinematographer for Filming Human Motion Copyright c 2020 by Chong Huang iii I dedicate this dissertation to Avery Huang, whose sweetness encouraged and supported me. iv Acknowledgements I would like to express my sincere gratitude to Professor Tim Cheng for being an excellent advisor, mentor, and collaborator while I have been at UCSB. His guidance helped me to develop my critical thinking. His professional attitude, vision, flexibility and constant encouragement have deeply inspired me. It was a great privilege and honor to work and study under his guidance. I could not have imagined having a better advisor and mentor for my Ph.D study. Besides, I would like to thank Professor Xin Yang for the continuous support of my Ph.D study and research, for her patience, motivation, enthusiasm and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I would also like to thank Professor Mathew Turk and B.S. Manjunath, for their interest in my research and sharing with me their expertise and visions in several different fields.
    [Show full text]
  • 3D Reconstruction and Rendering from Image Sequences
    3D Reconstruction and Rendering from Image Sequences R. Koch, J.-F. Evers-Senne, J.-M. Frahm, K. Koeser Institute of Computer Science and Applied Mathematics Christian-Albrechts-University of Kiel, 24098 Kiel, Germany email: [email protected] Abstract For this, the topology problem must be solved to distinguish between connected and occluded surfaces from all views. This contribution describes a system for 3D surface re- Another way would be to render directly from the real views construction and novel view synthesis from image streams using depth-compensated warping [2]. In this case, local of an unknown but static scene. The system operates fully surface geometry between adjacent views is sufficient. In automatic and estimates camera pose and 3D scene geom- our contribution we describe ways to render interpolated etry using Structure-from-Motion and dense multi-camera views using view-dependent geometry and texture models stereo reconstruction. From these estimates, novel views of (VDGT) [3]. the scene can be rendered at interactive rates. We will describe the system and its components in the following section, followed by some experiments and eval- 1 INTRODUCTION uation of the approach. Image Based Rendering (IBR) is an active research field 2 SYSTEM OVERVIEW in the computer vision and graphics community. In the last decade, many systems were proposed that synthesize novel Figure 1 gives an overview on the components of the sys- views based on collections of real views of a scene. Those tem. The complete system can be divided into an offline systems differ with respect to the amount of interactivity for data acquisition and an online rendering part.
    [Show full text]
  • Real-Time Height Map Fusion Using Differentiable Rendering
    Real-Time Height Map Fusion using Differentiable Rendering Jacek Zienkiewicz, Andrew Davison and Stefan Leutenegger Imperial College London, UK Abstract— We present a robust real-time method which performs dense reconstruction of high quality height maps from monocular video. By representing the height map as a triangular mesh, and using efficient differentiable rendering approach, our method enables rigorous incremental probabilis- tic fusion of standard locally estimated depth and colour into an immediately usable dense model. We present results for the application of free space and obstacle mapping by a low- cost robot, showing that detailed maps suitable for autonomous navigation can be obtained using only a single forward-looking camera. I. INTRODUCTION Advancing commodity processing power, particularly from GPUs, has enabled various recent demonstrations of real-time dense reconstruction from monocular video. Usu- ally the approach has been to concentrate on high quality Fig. 1: Left: an example input monocular RGB image and multi-view depth map reconstruction, and then fusion into motion stereo depth map which are inputs to our fusion a generic 3D representation such as a TSDF, surfel cloud algorithm. Right: output RGB and depth image from dif- or mesh. Some of the systems presented in this vein have ferentiable renderer. been impressive, but we note that there are few examples of moving beyond showing real-time dense reconstruction towards using it, in-the-loop, in applications. The live recon- structions are often in a form which needs substantial further processing before they could be useful for any in-the-loop Our core representation for reconstruction is a coloured use such as path planning or scene labelling.
    [Show full text]
  • Single-Shot 3D Shape Reconstruction Using Structured Light and Deep Convolutional Neural Networks
    sensors Article Single-Shot 3D Shape Reconstruction Using Structured Light and Deep Convolutional Neural Networks Hieu Nguyen 1,2 , Yuzeng Wang 3 and Zhaoyang Wang 1,* 1 Department of Mechanical Engineering, The Catholic University of America, Washington, DC 20064, USA 2 Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA; [email protected] 3 School of Mechanical Engineering, Jinan University, Jinan 250022, China; [email protected] * Correspondence: [email protected]; Tel.: +1-202-319-6175 Received: 4 June 2020; Accepted: 30 June 2020; Published: 3 July 2020 Abstract: Single-shot 3D imaging and shape reconstruction has seen a surge of interest due to the ever-increasing evolution in sensing technologies. In this paper, a robust single-shot 3D shape reconstruction technique integrating the structured light technique with the deep convolutional neural networks (CNNs) is proposed. The input of the technique is a single fringe-pattern image, and the output is the corresponding depth map for 3D shape reconstruction. The essential training and validation datasets with high-quality 3D ground-truth labels are prepared by using a multi-frequency fringe projection profilometry technique. Unlike the conventional 3D shape reconstruction methods which involve complex algorithms and intensive computation to determine phase distributions or pixel disparities as well as depth map, the proposed approach uses an end-to-end network architecture to directly carry out the transformation of a 2D image to its corresponding 3D depth map without extra processing. In the approach, three CNN-based models are adopted for comparison. Furthermore, an accurate structured-light-based 3D imaging dataset used in this paper is made publicly available.
    [Show full text]