Real-Time Height Map Fusion Using Differentiable Rendering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interacting with Autostereograms
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/336204498 Interacting with Autostereograms Conference Paper · October 2019 DOI: 10.1145/3338286.3340141 CITATIONS READS 0 39 5 authors, including: William Delamare Pourang Irani Kochi University of Technology University of Manitoba 14 PUBLICATIONS 55 CITATIONS 184 PUBLICATIONS 2,641 CITATIONS SEE PROFILE SEE PROFILE Xiangshi Ren Kochi University of Technology 182 PUBLICATIONS 1,280 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Color Perception in Augmented Reality HMDs View project Collaboration Meets Interactive Spaces: A Springer Book View project All content following this page was uploaded by William Delamare on 21 October 2019. The user has requested enhancement of the downloaded file. Interacting with Autostereograms William Delamare∗ Junhyeok Kim Kochi University of Technology University of Waterloo Kochi, Japan Ontario, Canada University of Manitoba University of Manitoba Winnipeg, Canada Winnipeg, Canada [email protected] [email protected] Daichi Harada Pourang Irani Xiangshi Ren Kochi University of Technology University of Manitoba Kochi University of Technology Kochi, Japan Winnipeg, Canada Kochi, Japan [email protected] [email protected] [email protected] Figure 1: Illustrative examples using autostereograms. a) Password input. b) Wearable e-mail notification. c) Private space in collaborative conditions. d) 3D video game. e) Bar gamified special menu. Black elements represent the hidden 3D scene content. ABSTRACT practice. This learning effect transfers across display devices Autostereograms are 2D images that can reveal 3D content (smartphone to desktop screen). when viewed with a specific eye convergence, without using CCS CONCEPTS extra-apparatus. -
A Residual Network and FPGA Based Real-Time Depth Map Enhancement System
entropy Article A Residual Network and FPGA Based Real-Time Depth Map Enhancement System Zhenni Li 1, Haoyi Sun 1, Yuliang Gao 2 and Jiao Wang 1,* 1 College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; [email protected] (Z.L.); [email protected] (H.S.) 2 College of Artificial Intelligence, Nankai University, Tianjin 300071, China; [email protected] * Correspondence: [email protected] Abstract: Depth maps obtained through sensors are often unsatisfactory because of their low- resolution and noise interference. In this paper, we propose a real-time depth map enhancement system based on a residual network which uses dual channels to process depth maps and intensity maps respectively and cancels the preprocessing process, and the algorithm proposed can achieve real- time processing speed at more than 30 fps. Furthermore, the FPGA design and implementation for depth sensing is also introduced. In this FPGA design, intensity image and depth image are captured by the dual-camera synchronous acquisition system as the input of neural network. Experiments on various depth map restoration shows our algorithms has better performance than existing LRMC, DE-CNN and DDTF algorithms on standard datasets and has a better depth map super-resolution, and our FPGA completed the test of the system to ensure that the data throughput of the USB 3.0 interface of the acquisition system is stable at 226 Mbps, and support dual-camera to work at full speed, that is, 54 fps@ (1280 × 960 + 328 × 248 × 3). Citation: Li, Z.; Sun, H.; Gao, Y.; Keywords: depth map enhancement; residual network; FPGA; ToF Wang, J. -
Deep Learning Whole Body Point Cloud Scans from a Single Depth Map
Deep Learning Whole Body Point Cloud Scans from a Single Depth Map Nolan Lunscher John Zelek University of Waterloo University of Waterloo 200 University Ave W. 200 University Ave W. [email protected] [email protected] Abstract ture the complete 3D structure of an object or person with- out the need for the machine or operator to necessarily be Personalized knowledge about body shape has numerous an expert at how to take every measurement. Scanning also applications in fashion and clothing, as well as in health has the benefit that all possible measurements are captured, monitoring. Whole body 3D scanning presents a relatively rather than only measurements at specific points [27]. simple mechanism for individuals to obtain this information Beyond clothing, understanding body measurements and about themselves without needing much knowledge of an- shape can provide details about general health and fitness. thropometry. With current implementations however, scan- In recent years, products such as Naked1 and ShapeScale2 ning devices are large, complex and expensive. In order to have begun to be released with the intention of capturing 3D make such systems as accessible and widespread as pos- information about a person, and calculating various mea- sible, it is necessary to simplify the process and reduce sures such as body fat percentage and muscle gains. The their hardware requirements. Deep learning models have technologies can then be used to monitor how your body emerged as the leading method of tackling visual tasks, in- changes overtime, and offer detailed fitness tracking. cluding various aspects of 3D reconstruction. In this paper Depth map cameras and RGBD cameras, such as the we demonstrate that by leveraging deep learning it is pos- XBox Kinect or Intel Realsense, have become increasingly sible to create very simple whole body scanners that only popular in 3D scanning in recent years, and have even made require a single input depth map to operate. -
Fusing Multimedia Data Into Dynamic Virtual Environments
ABSTRACT Title of dissertation: FUSING MULTIMEDIA DATA INTO DYNAMIC VIRTUAL ENVIRONMENTS Ruofei Du Doctor of Philosophy, 2018 Dissertation directed by: Professor Amitabh Varshney Department of Computer Science In spite of the dramatic growth of virtual and augmented reality (VR and AR) technology, content creation for immersive and dynamic virtual environments remains a signifcant challenge. In this dissertation, we present our research in fusing multimedia data, including text, photos, panoramas, and multi-view videos, to create rich and compelling virtual environments. First, we present Social Street View, which renders geo-tagged social media in its natural geo-spatial context provided by 360° panoramas. Our system takes into account visual saliency and uses maximal Poisson-disc placement with spatiotem- poral flters to render social multimedia in an immersive setting. We also present a novel GPU-driven pipeline for saliency computation in 360° panoramas using spher- ical harmonics (SH). Our spherical residual model can be applied to virtual cine- matography in 360° videos. We further present Geollery, a mixed-reality platform to render an interactive mirrored world in real time with three-dimensional (3D) buildings, user-generated content, and geo-tagged social media. Our user study has identifed several use cases for these systems, including immersive social storytelling, experiencing the culture, and crowd-sourced tourism. We next present Video Fields, a web-based interactive system to create, cal- ibrate, and render dynamic videos overlaid on 3D scenes. Our system renders dynamic entities from multiple videos, using early and deferred texture sampling. Video Fields can be used for immersive surveillance in virtual environments. Fur- thermore, we present VRSurus and ARCrypt projects to explore the applications of gestures recognition, haptic feedback, and visual cryptography for virtual and augmented reality. -
3D Computer Graphics Compiled By: H
animation Charge-coupled device Charts on SO(3) chemistry chirality chromatic aberration chrominance Cinema 4D cinematography CinePaint Circle circumference ClanLib Class of the Titans clean room design Clifford algebra Clip Mapping Clipping (computer graphics) Clipping_(computer_graphics) Cocoa (API) CODE V collinear collision detection color color buffer comic book Comm. ACM Command & Conquer: Tiberian series Commutative operation Compact disc Comparison of Direct3D and OpenGL compiler Compiz complement (set theory) complex analysis complex number complex polygon Component Object Model composite pattern compositing Compression artifacts computationReverse computational Catmull-Clark fluid dynamics computational geometry subdivision Computational_geometry computed surface axial tomography Cel-shaded Computed tomography computer animation Computer Aided Design computerCg andprogramming video games Computer animation computer cluster computer display computer file computer game computer games computer generated image computer graphics Computer hardware Computer History Museum Computer keyboard Computer mouse computer program Computer programming computer science computer software computer storage Computer-aided design Computer-aided design#Capabilities computer-aided manufacturing computer-generated imagery concave cone (solid)language Cone tracing Conjugacy_class#Conjugacy_as_group_action Clipmap COLLADA consortium constraints Comparison Constructive solid geometry of continuous Direct3D function contrast ratioand conversion OpenGL between -
Construction of Autostereograms Taking Into Account Object Colors and Its Applications for Steganography
Construction of Autostereograms Taking into Account Object Colors and its Applications for Steganography Yusuke Tsuda Yonghao Yue Tomoyuki Nishita The University of Tokyo ftsuday,yonghao,[email protected] Abstract Information on appearances of three-dimensional ob- jects are transmitted via the Internet, and displaying objects q plays an important role in a lot of areas such as movies and video games. An autostereogram is one of the ways to represent three- dimensional objects taking advantage of binocular paral- (a) SS-relation (b) OS-relation lax, by which depths of objects are perceived. In previous Figure 1. Relations on an autostereogram. methods, the colors of objects were ignored when construct- E and E indicate left and right eyes, re- ing autostereogram images. In this paper, we propose a L R spectively. (a): A pair of points on the screen method to construct autostereogram images taking into ac- and a single point on the object correspond count color variation of objects, such as shading. with each other. (b): A pair of points on the We also propose a technique to embed color informa- object and a single point on the screen cor- tion in autostereogram images. Using our technique, au- respond with each other. tostereogram images shown on a display change, and view- ers can enjoy perceiving three-dimensional object and its colors in two stages. Color information is embedded in we propose an approach to take into account color variation a monochrome autostereogram image, and colors appear of objects, such as shading. Our approach assign slightly when the correct color table is used. -
Ddrnet: Depth Map Denoising and Refinement for Consumer Depth
DDRNet: Depth Map Denoising and Refinement for Consumer Depth Cameras Using Cascaded CNNs Shi Yan1, Chenglei Wu2, Lizhen Wang1, Feng Xu1, Liang An1, Kaiwen Guo3, and Yebin Liu1 1 Tsinghua University, Beijing, China 2 Facebook Reality Labs, Pittsburgh, USA 3 Google Inc, Mountain View, CA, USA Abstract. Consumer depth sensors are more and more popular and come to our daily lives marked by its recent integration in the latest Iphone X. However, they still suffer from heavy noises which limit their applications. Although plenty of progresses have been made to reduce the noises and boost geometric details, due to the inherent illness and the real-time requirement, the problem is still far from been solved. We pro- pose a cascaded Depth Denoising and Refinement Network (DDRNet) to tackle this problem by leveraging the multi-frame fused geometry and the accompanying high quality color image through a joint training strategy. The rendering equation is exploited in our network in an unsupervised manner. In detail, we impose an unsupervised loss based on the light transport to extract the high-frequency geometry. Experimental results indicate that our network achieves real-time single depth enhancemen- t on various categories of scenes. Thanks to the well decoupling of the low and high frequency information in the cascaded network, we achieve superior performance over the state-of-the-art techniques. Keywords: Depth enhancement · Consumer depth camera · Unsuper- vised learning · Convolutional Neural Networks· DynamicFusion 1 Introduction Consumer depth cameras have enabled lots of new applications in computer vision and graphics, ranging from live 3D scanning to virtual and augmented reality. -
Survey of Texture Mapping Techniques for Representing and Rendering Volumetric Mesostructure
Journal of Computer Graphics Techniques Vol. 3, No. 2, 2014 http://jcgt.org Survey of Texture Mapping Techniques for Representing and Rendering Volumetric Mesostructure Charalampos Koniaris Darren Cosker Xiaosong Yang University of Bath University of Bath University of Bournemouth Kenny Mitchell Disney Research Figure 1. Volumetric texture mapping can be used to represent complex surface detail on parameterised surfaces. Figures from [Policarpo and Oliveira 2006], [Brodersen et al. 2007], [Decaudin and Neyret 2009] and [Peng et al. 2004]. Abstract Representation and rendering of volumetric mesostructure using texture mapping can poten- tially allow the display of highly detailed, animated surfaces at a low performance cost. Given the need for consistently more detailed and dynamic worlds rendered in real-time, volumetric texture mapping now becomes an area of great importance. In this survey, we review the developments of algorithms and techniques for representing volumetric mesostructure as texture-mapped detail. Our goal is to provide researchers with an overview of novel contributions to volumetric texture mapping as a starting point for further research and developers with a comparative review of techniques, giving insight into which methods would be fitting for particular tasks. We start by defining the scope of our domain and provide background information re- garding mesostructure and volumetric texture mapping. Existing techniques are assessed in terms of content representation and storage as well as quality and performance of parameter- ization and rendering. Finally, we provide insights to the field and opportunities for research directions in terms of real-time volumetric texture-mapped surfaces under deformation. 18 ISSN 2331-7418 Journal of Computer Graphics Techniques Vol. -
Depth Map Design and Depth-Based Effects with a Single Image
Depth Map Design and Depth-based Effects With a Single Image Jingtang Liao∗ Shuheng Shen† Elmar Eisemann‡ Delft University of Technology ABSTRACT When several views are available, image-based view interpola- We present a novel pipeline to generate a depth map from a single tion [24] is more general. The perceived motion of the objects helps image that can be used as input for a variety of artistic depth-based in estimating spatial relationships. Nonetheless, these techniques effects. In such a context, the depth maps do not have to be perfect often require a special acquisition setup or a carefully produced but are rather designed with respect to a desired result. Consequently, input. Wiggle stereoscopy can be seen as a particular case of view our solution centers around user interaction and relies on a scribble- interpolation, which simply loops left and right images of a stereo based depth editing. The annotations can be sparse, as the depth pair and can result in a striking parallax perception despite its sim- map is generated by a diffusion process, which is guided by image plicity (Fig. 2). These techniques all avoid special equipment, e.g., features. Additionally, we support a variety of controls, such as a 3D glasses, and they even work for people with limited or no vision non-linear depth mapping, a steering mechanism for the diffusion in one eye. (e.g., directionality, emphasis, or reduction of the influence of image Alternatively, it is possible to use a single input image and warp cues), and besides absolute, we also support relative depth indica- it based on a depth map to produce stereo pairs. -
Stereoscopic Depth Map Estimation and Coding Techniques for Multiview Video Systems
Poznań University of Technology Faculty of Electronics and Telecommunications Chair of Multimedia Telecommunication and Microelectronics Doctoral Dissertation Stereoscopic depth map estimation and coding techniques for multiview video systems Olgierd Stankiewicz Supervisor: Prof. dr hab. inż. Marek Domański POZNAN UNIVERSITY OF TECHNOLOGY Faculty of Electronics and Telecommunications Chair of Multimedia Telecommunications and Microelectronics Pl. M. Skłodowskiej-Curie 5 60-965 Poznań www.multimedia.edu.pl This dissertation was supported by the public funds as a research project. A part of this dissertation related to depth estimation was partially supported by National Science Centre, Poland, according to the decision DEC-2012/07/N/ST6/02267. A part of this dissertation related to depth coding was partially supported by National Science Centre, Poland, according to the decision DEC-2012/05/B/ST7/01279. This dissertation has been partially co-financed by European Union funds as a part of European Social Funds. Copyright © Olgierd Stankiewicz, 2013 All rights reserved Online edition 1, 2015 ISBN 978-83-942477-0-6 This dissertation is dedicated to my beloved parents: Zdzisława and Jerzy, who gave me wonderful childhood and all opportunities for development and fulfillment in life. I would like to thank all important people in my life, who have always been in the right place and supported me in difficult moments, especially during realization of this work. I would like to express special thanks and appreciation to professor Marek Domański, for his time, help and ideas that have guided me towards completing this dissertation. Rozprawa ta dedykowana jest moim ukochanym rodzicom: Zdzisławie i Jerzemu, którzy dali mi cudowne dzieciństwo oraz wszelkie możliwości rozwoju i spełnienia życiowego. -
Towards a Smart Drone Cinematographer for Filming Human Motion
University of California Santa Barbara Towards a Smart Drone Cinematographer for Filming Human Motion A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical and Computer Engineering by Chong Huang Committee in charge: Professor Kwang-Ting (Tim) Cheng, Chair Professor Matthew Turk Professor B.S. Manjunath Professor Xin Yang March 2020 The Dissertation of Chong Huang is approved. Professor Matthew Turk Professor B.S. Manjunath Professor Xin Yang Professor Kwang-Ting (Tim) Cheng, Committee Chair March 2020 Towards a Smart Drone Cinematographer for Filming Human Motion Copyright c 2020 by Chong Huang iii I dedicate this dissertation to Avery Huang, whose sweetness encouraged and supported me. iv Acknowledgements I would like to express my sincere gratitude to Professor Tim Cheng for being an excellent advisor, mentor, and collaborator while I have been at UCSB. His guidance helped me to develop my critical thinking. His professional attitude, vision, flexibility and constant encouragement have deeply inspired me. It was a great privilege and honor to work and study under his guidance. I could not have imagined having a better advisor and mentor for my Ph.D study. Besides, I would like to thank Professor Xin Yang for the continuous support of my Ph.D study and research, for her patience, motivation, enthusiasm and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I would also like to thank Professor Mathew Turk and B.S. Manjunath, for their interest in my research and sharing with me their expertise and visions in several different fields. -
Probabilistic Range Image Integration for DSM and True-Orthophoto Generation
Probabilistic Range Image Integration for DSM and True-Orthophoto Generation Markus Rumpler, Andreas Wendel, and Horst Bischof Institute for Computer Graphics and Vision Graz University of Technology, Austria {rumpler,wendel,bischof}@icg.tugraz.at Abstract. Typical photogrammetric processing pipelines for digital sur- face model (DSM) generation perform aerial triangulation, dense image matching and a fusion step to integrate multiple depth estimates into a consistent 2.5D surface model. The integration is strongly influenced by the quality of the individual depth estimates, which need to be handled robustly. We propose a probabilistically motivated 3D filtering scheme for range image integration. Our approach avoids a discrete voxel sam- pling, is memory efficient and can easily be parallelized. Neighborhood information given by a Delaunay triangulation can be exploited for pho- tometric refinement of the fused DSMs before rendering true-orthophotos from the obtained models. We compare our range image fusion approach quantitatively on ground truth data by a comparison with standard me- dian fusion. We show that our approach can handle a large amount of outliers very robustly and is able to produce improved DSMs and true-orthophotos in a qualitative comparison with current state-of-the- art commercial aerial image processing software. 1 Introduction Digital surface models (DSMs) represent height information of the Earth’s sur- faceincludingallobjects(buildings,trees,...) onit.Ingeographicinformation systems, they form the basis for the creation of relief maps of the terrain and rectification of satellite and aerial imagery for the creation of true-orthophotos. Applications of DSMs and orthophotos range from engineering and infrastruc- ture planning, 3D building reconstruction and city modeling to simulations for natural disaster management or wireless signal propagation, navigation and flight planning or rendering of photorealistic 3D visualizations.