Probabilistic Range Image Integration for DSM and True-Orthophoto Generation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3D Computer Graphics Compiled By: H
animation Charge-coupled device Charts on SO(3) chemistry chirality chromatic aberration chrominance Cinema 4D cinematography CinePaint Circle circumference ClanLib Class of the Titans clean room design Clifford algebra Clip Mapping Clipping (computer graphics) Clipping_(computer_graphics) Cocoa (API) CODE V collinear collision detection color color buffer comic book Comm. ACM Command & Conquer: Tiberian series Commutative operation Compact disc Comparison of Direct3D and OpenGL compiler Compiz complement (set theory) complex analysis complex number complex polygon Component Object Model composite pattern compositing Compression artifacts computationReverse computational Catmull-Clark fluid dynamics computational geometry subdivision Computational_geometry computed surface axial tomography Cel-shaded Computed tomography computer animation Computer Aided Design computerCg andprogramming video games Computer animation computer cluster computer display computer file computer game computer games computer generated image computer graphics Computer hardware Computer History Museum Computer keyboard Computer mouse computer program Computer programming computer science computer software computer storage Computer-aided design Computer-aided design#Capabilities computer-aided manufacturing computer-generated imagery concave cone (solid)language Cone tracing Conjugacy_class#Conjugacy_as_group_action Clipmap COLLADA consortium constraints Comparison Constructive solid geometry of continuous Direct3D function contrast ratioand conversion OpenGL between -
Survey of Texture Mapping Techniques for Representing and Rendering Volumetric Mesostructure
Journal of Computer Graphics Techniques Vol. 3, No. 2, 2014 http://jcgt.org Survey of Texture Mapping Techniques for Representing and Rendering Volumetric Mesostructure Charalampos Koniaris Darren Cosker Xiaosong Yang University of Bath University of Bath University of Bournemouth Kenny Mitchell Disney Research Figure 1. Volumetric texture mapping can be used to represent complex surface detail on parameterised surfaces. Figures from [Policarpo and Oliveira 2006], [Brodersen et al. 2007], [Decaudin and Neyret 2009] and [Peng et al. 2004]. Abstract Representation and rendering of volumetric mesostructure using texture mapping can poten- tially allow the display of highly detailed, animated surfaces at a low performance cost. Given the need for consistently more detailed and dynamic worlds rendered in real-time, volumetric texture mapping now becomes an area of great importance. In this survey, we review the developments of algorithms and techniques for representing volumetric mesostructure as texture-mapped detail. Our goal is to provide researchers with an overview of novel contributions to volumetric texture mapping as a starting point for further research and developers with a comparative review of techniques, giving insight into which methods would be fitting for particular tasks. We start by defining the scope of our domain and provide background information re- garding mesostructure and volumetric texture mapping. Existing techniques are assessed in terms of content representation and storage as well as quality and performance of parameter- ization and rendering. Finally, we provide insights to the field and opportunities for research directions in terms of real-time volumetric texture-mapped surfaces under deformation. 18 ISSN 2331-7418 Journal of Computer Graphics Techniques Vol. -
Real-Time Height Map Fusion Using Differentiable Rendering
Real-Time Height Map Fusion using Differentiable Rendering Jacek Zienkiewicz, Andrew Davison and Stefan Leutenegger Imperial College London, UK Abstract— We present a robust real-time method which performs dense reconstruction of high quality height maps from monocular video. By representing the height map as a triangular mesh, and using efficient differentiable rendering approach, our method enables rigorous incremental probabilis- tic fusion of standard locally estimated depth and colour into an immediately usable dense model. We present results for the application of free space and obstacle mapping by a low- cost robot, showing that detailed maps suitable for autonomous navigation can be obtained using only a single forward-looking camera. I. INTRODUCTION Advancing commodity processing power, particularly from GPUs, has enabled various recent demonstrations of real-time dense reconstruction from monocular video. Usu- ally the approach has been to concentrate on high quality Fig. 1: Left: an example input monocular RGB image and multi-view depth map reconstruction, and then fusion into motion stereo depth map which are inputs to our fusion a generic 3D representation such as a TSDF, surfel cloud algorithm. Right: output RGB and depth image from dif- or mesh. Some of the systems presented in this vein have ferentiable renderer. been impressive, but we note that there are few examples of moving beyond showing real-time dense reconstruction towards using it, in-the-loop, in applications. The live recon- structions are often in a form which needs substantial further processing before they could be useful for any in-the-loop Our core representation for reconstruction is a coloured use such as path planning or scene labelling. -
Toward Improving Procedural Terrain Generation with Gans
Toward Improving Procedural Terrain Generation With GANs The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Mattull, William A. 2020. Toward Improving Procedural Terrain Generation With GANs. Master's thesis, Harvard Extension School. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365041 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Toward Improving Procedural Terrain Generation with GANs William Mattull A Thesis in the Field of Information Technology For the Degree of Master of Liberal Arts in Extension Studies Harvard University December 2019 Abstract The advance of Generative Adversarial Networks (GANs) are able to create new and meaningful outputs given arbitrary encodings for three dimensional terrain genera- tion. Using a two-stage GAN network, this novel system takes the terrain heightmap as the first processing object, and then maps the real texture image onto the heightmap according to the learned network. The synthetic terrain image results perform well and are realistic. However, improvements can be made to generator stability during training. Acknowledgements I want to thank my professors and teaching fellows for taking the time to assist me throughout the years. I would also like to thank my wife and daughters for their unwavering support during this academic journey. Contents 1 Introduction 1 1.1 Prior Work . 3 1.1.1 Synthetic Terrain From Fractal Based Approaches . -
A Surface Reconstruction Method for In-Detail Underwater 3D Optical Mapping Ricard Campos, Rafael Garcia, Pierre Alliez, Mariette Yvinec
A Surface Reconstruction Method for In-Detail Underwater 3D Optical Mapping Ricard Campos, Rafael Garcia, Pierre Alliez, Mariette Yvinec To cite this version: Ricard Campos, Rafael Garcia, Pierre Alliez, Mariette Yvinec. A Surface Reconstruction Method for In-Detail Underwater 3D Optical Mapping. The International Journal of Robotics Research, SAGE Publications, 2015, 34 (1), pp.25. 10.1177/0278364914544531. hal-01030845 HAL Id: hal-01030845 https://hal.inria.fr/hal-01030845 Submitted on 22 Jul 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Surface Reconstruction Method for In-Detail Underwater 3D Optical Mapping Ricard Campos, Rafael Garcia Pierre Alliez Computer Vision and Robotics Group Titane University of Girona, Spain INRIA Sophia Antipolis - M´editerran´ee, France [email protected], [email protected] [email protected] Mariette Yvinec Geometrica INRIA Sophia Antipolis - M´editerran´ee, France [email protected] Abstract Underwater range scanning techniques are starting to gain interest in underwater exploration, provid- ing new tools to represent the seafloor. These scans (often) acquired by underwater robots usually result in an unstructured point cloud, but given the common downward-looking or forward-looking configura- tion of these sensors with respect to the scene, the problem of recovering a piecewise linear approximation representing the scene is normally solved by approximating these 3D points using a heightmap (2.5D). -
Automatic Terrain Generation with a Sketching Tool
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositori Institucional de la Universitat Jaume I Multimed Tools Appl manuscript No. (will be inserted by the editor) Automatic Terrain Generation with a Sketching Tool Anna Puig-Centelles Peter A. C. Varley · · Oscar Ripolles Miguel Chover · Received: date / Accepted: date Abstract Nowadays, applications such as scientific simulations, virtual reality or computer games are increasing the detail of their environments with the aim of offering more realism. Terrain is a very important element in these outdoor scenarios. Artists are currently requiring a higher level of customization. In this sense, the objective of the work presented in this paper is to provide the final user with an easy-to-use terrain generation application. More precisely, our aim is to ease the creation of islands. We propose a sketching solution which, combined with a simple terrain algorithm, is capable of suiting the user needs. The application is composed of two windows, which offer 2D and 3D representations of the terrain respectively. These windows are sufficient for providing the user with an interactive feedback about the island that is being designed. We try to show that relatively simple algorithms can be combined to provide successful results. Keywords Terrain Generation Sketching Inteface Virtual Environment · · · Simulation 1Introduction Terrain generation is a research area which has been active for many decades and growing power of modern computers has made them capable of producing increasingly realistic scenarios. Synthetic terrain generation is a process which creates elevation values throughout a two dimensional grid.