Stereoscopic Depth Map Estimation and Coding Techniques for Multiview Video Systems

Total Page:16

File Type:pdf, Size:1020Kb

Stereoscopic Depth Map Estimation and Coding Techniques for Multiview Video Systems Poznań University of Technology Faculty of Electronics and Telecommunications Chair of Multimedia Telecommunication and Microelectronics Doctoral Dissertation Stereoscopic depth map estimation and coding techniques for multiview video systems Olgierd Stankiewicz Supervisor: Prof. dr hab. inż. Marek Domański POZNAN UNIVERSITY OF TECHNOLOGY Faculty of Electronics and Telecommunications Chair of Multimedia Telecommunications and Microelectronics Pl. M. Skłodowskiej-Curie 5 60-965 Poznań www.multimedia.edu.pl This dissertation was supported by the public funds as a research project. A part of this dissertation related to depth estimation was partially supported by National Science Centre, Poland, according to the decision DEC-2012/07/N/ST6/02267. A part of this dissertation related to depth coding was partially supported by National Science Centre, Poland, according to the decision DEC-2012/05/B/ST7/01279. This dissertation has been partially co-financed by European Union funds as a part of European Social Funds. Copyright © Olgierd Stankiewicz, 2013 All rights reserved Online edition 1, 2015 ISBN 978-83-942477-0-6 This dissertation is dedicated to my beloved parents: Zdzisława and Jerzy, who gave me wonderful childhood and all opportunities for development and fulfillment in life. I would like to thank all important people in my life, who have always been in the right place and supported me in difficult moments, especially during realization of this work. I would like to express special thanks and appreciation to professor Marek Domański, for his time, help and ideas that have guided me towards completing this dissertation. Rozprawa ta dedykowana jest moim ukochanym rodzicom: Zdzisławie i Jerzemu, którzy dali mi cudowne dzieciństwo oraz wszelkie możliwości rozwoju i spełnienia życiowego. Chciałbym podziękować wszystkim ważnym osobom w moim życiu, które zawsze były we właściwym miejscu i wspierały mnie w trudnych chwilach, w szczególności podczas realizacji niniejszej pracy. Chciałbym również wyrazić szczególne podziękowania oraz wyrazy wdzięczności panu profesorowi Markowi Domańskiemu, za jego czas, pomoc oraz pomysły, które doprowadziły mnie do ukończenia tej rozprawy. Olgierd Stankiewicz “Stereoscopic depth map estimation and coding techniques for multiview video systems” Table of contents Abstract ............................................................................................................................ 3 List of terms, symbols and abbreviations ........................................................................... 7 Chapter 1. Introduction ..................................................................................................... 9 1.1. The scope of the dissertation .......................................................................................... 9 1.2. The goals and the theses of the dissertation ................................................................. 14 1.3. The overview of the dissertation ................................................................................... 15 1.4. The methodology of work .............................................................................................. 16 1.5. Multiview video test sequences .................................................................................... 17 1.5.1. Production of the test material at Poznan University of Technology ................................. 18 1.5.2. Test sequences used in the dissertation ............................................................................. 22 1.5.3. Assessment of the quality of depth maps ........................................................................... 25 Chapter 2. State of the art in depth map estimation ........................................................ 27 2.1. Depth estimation fundamentals .................................................................................... 27 2.2. Local estimation methods .............................................................................................. 31 2.3. Global optimization methods ........................................................................................ 35 2.3.1. Data Cost function ............................................................................................................... 36 2.3.2. Transition Cost function ...................................................................................................... 37 2.3.3. Graph Cuts ........................................................................................................................... 39 2.3.4. Belief Propagation ............................................................................................................... 41 2.5. Accuracy and precision of disparity values .................................................................... 42 2.6. Temporal consistency of the depth ............................................................................... 45 Chapter 3. Proposed methods for depth map estimation ................................................. 47 3.1. Proposed Data Cost derivation based on MAP ............................................................. 47 3.2. Simplification of Data Cost to classical SSD and SAD similarity metrics ........................ 51 3.3. Verification of the assumptions ..................................................................................... 55 3.3.1. Noise extraction technique used for the analysis ............................................................... 56 3.3.2. Independence of the noise in the subsequent frames ....................................................... 59 3.3.3. Probability distributions of the noise .................................................................................. 65 3.3.4. Chi-square test for Gaussian probability distribution of the noise ..................................... 70 3.3.5. Uniformity of probability distributions of luminance value ................................................ 72 3.3.6. Uniformity of probability distributions of disparity value ................................................... 74 3.3.7. Lambertian model of reflectance and color profile compatibility among the cameras ..... 76 3.4. The proposed probability model for Data Cost function .............................................. 80 3.5. The proposed probability model for Transition Cost function ...................................... 82 3.6. Experimental results for the depth estimation with the proposed FitCost model ....... 87 3.7. Depth refinement by Mid-Level Hypothesis .................................................................. 89 3.7.1. Idea of depth refinement by Mid-Level Hypothesis algorithm ........................................... 91 3.7.2. Implementation of the algorithm ........................................................................................ 93 3.7.3. Experimental results for depth refinement ........................................................................ 95 3.8. Temporal consistency improvement of the depth by noise reduction ......................... 98 3.8.1. Still Background Noise Reduction (SBNR) technique .......................................................... 99 1 of 241 Olgierd Stankiewicz “Stereoscopic depth map estimation and coding techniques for multiview video systems” 3.8.2. Motion-Compensated Noise Reduction with Refinement (MCNRR) technique .............. 103 3.8.3. Experimental results for temporal consistency improvement ......................................... 107 3.9. Summary of the achievements in the area of depth estimation ................................ 112 Chapter 4. State-of-the-art in depth map coding ............................................................ 115 4.1. Coding tools that involve depth .................................................................................. 115 4.2. State-of-the-art directly related to the proposals in the dissertation ........................ 117 Chapter 5. Proposed non-linear depth representation for coding ................................... 119 5.1. The idea of non-linear depth representation .............................................................. 119 5.2. Proof of concept proposal for non-linear transformation .......................................... 122 5.3. A theoretical approach to selection of non-linear transformation ............................. 125 5.4. Approximation of non-linear depth transformation ................................................... 126 5.5. Experimental results for depth map coding ................................................................ 128 5.6. Adoption of non-linear transformation in international coding standards ................ 131 5.7. Summary of achievements in the area of depth coding ............................................. 135 Chapter 6. A new 3D video coding technology ................................................................ 137 6.1. Comparison with other state-of-the-art codecs .......................................................... 138 6.2. The structure of the proposed 3D video codec ........................................................... 141 6.3. Author’s contribution in the proposal of the new 3D video codec ............................. 143 6.3.1. Layer separation ............................................................................................................... 143 6.3.2. Unified Depth Representation .........................................................................................
Recommended publications
  • An Introduction to Mpeg-4 Audio Lossless Coding
    « ¬ AN INTRODUCTION TO MPEG-4 AUDIO LOSSLESS CODING Tilman Liebchen Technical University of Berlin ABSTRACT encoding process has to be perfectly reversible without loss of in- formation, several parts of both encoder and decoder have to be Lossless coding will become the latest extension of the MPEG-4 implemented in a deterministic way. audio standard. In response to a call for proposals, many com- The MPEG-4 ALS codec uses forward-adaptive Linear Pre- panies have submitted lossless audio codecs for evaluation. The dictive Coding (LPC) to reduce bit rates compared to PCM, leav- codec of the Technical University of Berlin was chosen as refer- ing the optimization entirely to the encoder. Thus, various encoder ence model for MPEG-4 Audio Lossless Coding (ALS), attaining implementations are possible, offering a certain range in terms of working draft status in July 2003. The encoder is based on linear efficiency and complexity. This section gives an overview of the prediction, which enables high compression even with moderate basic encoder and decoder functionality. complexity, while the corresponding decoder is straightforward. The paper describes the basic elements of the codec, points out 2.1. Encoder Overview envisaged applications, and gives an outline of the standardization process. The MPEG-4 ALS encoder (Figure 1) typically consists of these main building blocks: • 1. INTRODUCTION Buffer: Stores one audio frame. A frame is divided into blocks of samples, typically one for each channel. Lossless audio coding enables the compression of digital audio • Coefficients Estimation and Quantization: Estimates (and data without any loss in quality due to a perfect reconstruction quantizes) the optimum predictor coefficients for each of the original signal.
    [Show full text]
  • THÈSE Pour Obtenir Le Titre De Docteur En Sciences De L’UNIVERSITÉ De Nice-Sophia Antipolis Mention : Automatique, Traitement Du Signal Et Des Images
    Université de Nice-Sophia Antipolis École doctorale STIC THÈSE pour obtenir le titre de Docteur en Sciences de l’UNIVERSITÉ de Nice-Sophia Antipolis Mention : Automatique, Traitement du Signal et des Images présentée par Marie OGER Model-based techniques for flexible speech and audio coding Thèse dirigée par Marc ANTONINI, Directeur de Recherche CNRS Equipe d’accueil : CReATIVe, Laboratoire I3S, UNSA-CNRS et Stéphane RAGOT Equipe d’accueil : TPS, Laboratoire SSTP, France Télécom R&D Lannion soutenance prévue le 13 décembre 2007 Jury: Robert M. Gray Université de Stanford Rapporteur Pierre Duhamel CNRS Paris Rapporteur Marc Antonini CNRS Sophia Antipolis Directeur de thèse Stéphane Ragot France Télécom Lannion Directeur de thèse Michel Barlaud Université de Nice-Sophia Antipolis Examinateur Geneviève Baudoin ESIEE Paris Examinateur Christine Guillemot INRIA Rennes Examinateur Bastiaan Kleijn KTH Stockholm Examinateur ii Acronyms 3GPP 3rd Generation Partnership Project AAC Advanced Audio Coding AbS Analysis-by -Synthesis ACELP Algebraic Code Excited Linear Prediction ACR Absolute Category Rating ADPCM Adaptive Differential Pulse Code Modulation AMR-WB Adaptive Multi Rate-Wideband AMR-WB+ Extended Adaptive Multi-Rate Wideband ATC Adaptive Transform Codec BER Bit Error Rates BSAC Bit-Sliced Arithmetic Coding CCR Comparative Category Rating CELP Code Excited Linear Predictive CMOS Comparison Mean Opinion Score DCR Degradation Category Rating DCT Discrete Cosine Transform DMOS Degradation Mean Opinion Score DPCM Differential Pulse Code Modulation DWT Discrete Wavelet Transform e-AAC+ Enhanced High Efficiency Advanced Audio Coding EM Expectation Maximization iv FEC Frame Error Concealment FER Frame Error Rate FFT Fast Fourier Transform HE-AAC High Efficiency AAC GMM Gaussian Mixture Model i.i.d.
    [Show full text]
  • Interacting with Autostereograms
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/336204498 Interacting with Autostereograms Conference Paper · October 2019 DOI: 10.1145/3338286.3340141 CITATIONS READS 0 39 5 authors, including: William Delamare Pourang Irani Kochi University of Technology University of Manitoba 14 PUBLICATIONS 55 CITATIONS 184 PUBLICATIONS 2,641 CITATIONS SEE PROFILE SEE PROFILE Xiangshi Ren Kochi University of Technology 182 PUBLICATIONS 1,280 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Color Perception in Augmented Reality HMDs View project Collaboration Meets Interactive Spaces: A Springer Book View project All content following this page was uploaded by William Delamare on 21 October 2019. The user has requested enhancement of the downloaded file. Interacting with Autostereograms William Delamare∗ Junhyeok Kim Kochi University of Technology University of Waterloo Kochi, Japan Ontario, Canada University of Manitoba University of Manitoba Winnipeg, Canada Winnipeg, Canada [email protected] [email protected] Daichi Harada Pourang Irani Xiangshi Ren Kochi University of Technology University of Manitoba Kochi University of Technology Kochi, Japan Winnipeg, Canada Kochi, Japan [email protected] [email protected] [email protected] Figure 1: Illustrative examples using autostereograms. a) Password input. b) Wearable e-mail notification. c) Private space in collaborative conditions. d) 3D video game. e) Bar gamified special menu. Black elements represent the hidden 3D scene content. ABSTRACT practice. This learning effect transfers across display devices Autostereograms are 2D images that can reveal 3D content (smartphone to desktop screen). when viewed with a specific eye convergence, without using CCS CONCEPTS extra-apparatus.
    [Show full text]
  • A Residual Network and FPGA Based Real-Time Depth Map Enhancement System
    entropy Article A Residual Network and FPGA Based Real-Time Depth Map Enhancement System Zhenni Li 1, Haoyi Sun 1, Yuliang Gao 2 and Jiao Wang 1,* 1 College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; [email protected] (Z.L.); [email protected] (H.S.) 2 College of Artificial Intelligence, Nankai University, Tianjin 300071, China; [email protected] * Correspondence: [email protected] Abstract: Depth maps obtained through sensors are often unsatisfactory because of their low- resolution and noise interference. In this paper, we propose a real-time depth map enhancement system based on a residual network which uses dual channels to process depth maps and intensity maps respectively and cancels the preprocessing process, and the algorithm proposed can achieve real- time processing speed at more than 30 fps. Furthermore, the FPGA design and implementation for depth sensing is also introduced. In this FPGA design, intensity image and depth image are captured by the dual-camera synchronous acquisition system as the input of neural network. Experiments on various depth map restoration shows our algorithms has better performance than existing LRMC, DE-CNN and DDTF algorithms on standard datasets and has a better depth map super-resolution, and our FPGA completed the test of the system to ensure that the data throughput of the USB 3.0 interface of the acquisition system is stable at 226 Mbps, and support dual-camera to work at full speed, that is, 54 fps@ (1280 × 960 + 328 × 248 × 3). Citation: Li, Z.; Sun, H.; Gao, Y.; Keywords: depth map enhancement; residual network; FPGA; ToF Wang, J.
    [Show full text]
  • Notice: This Material May Be Protected by Copyright Law (Title 17 U.S.C.) No
    Notice: This Material may be protected by Copyright Law (Title 17 U.S.C.) no. 0 Data Compression Debra A. Lelewer and Daniel S. Hirschberg < Technical Report No. 87-10 Abstract This paper surveys a variety of data compression methods spanning almost forty years of research, from the work of Shannon, Fano and Huffman in the late 40's to a technique developed in 1986. The aim of data compression is to reduce redundancy in stored or communicated data, thus increasing effective data density. Data compression has important application in the areas of file storage and distributed systems. Concepts from information theory, as they relate to the goals and evaluation of data compression methods, are discussed briefly. A framework for evaluation and comparison of methods is constructed and applied to the algorithms presented. Comparisons of both theo­ retical and empirical natures are reported and possibilities for future research are suggested. INTRODUCTION 1. FUNDAMENTAL CONCEPTS 1.1 Definitions 1.2 Classification of Methods 1.3 A Data Compression Model 1.4 Motivation 2. SEMANTIC DEPENDENT METHODS 3. STATIC DEFINED-WORD SCHEMES 3.1 Shannon-Fano Code 3.2 Huffman Coding 3.3 Representations of the Integers 4. ADAPTIVE HUFFMAN CODING 4.1 Algorithm FGK 4.2 Algorithm V 5. OTHER ADAPTIVE METHODS 5.1 Lempel-Ziv Codes 5.2 Algorithm BSTW 6. EMPIRICAL RESULTS 7. SUSCEPTIBILITY TO ERROR 7.1 Static Codes 7.2 Adaptive Codes 8. NEW DIRECTIONS 9. SUMMARY INTRODUCTION Data compression is often referred to as coding. Information theory is defined to be the study of efficient coding and its consequences, in the form of speed of transmission and probability of error [Ingels 1971).
    [Show full text]
  • Deep Learning Whole Body Point Cloud Scans from a Single Depth Map
    Deep Learning Whole Body Point Cloud Scans from a Single Depth Map Nolan Lunscher John Zelek University of Waterloo University of Waterloo 200 University Ave W. 200 University Ave W. [email protected] [email protected] Abstract ture the complete 3D structure of an object or person with- out the need for the machine or operator to necessarily be Personalized knowledge about body shape has numerous an expert at how to take every measurement. Scanning also applications in fashion and clothing, as well as in health has the benefit that all possible measurements are captured, monitoring. Whole body 3D scanning presents a relatively rather than only measurements at specific points [27]. simple mechanism for individuals to obtain this information Beyond clothing, understanding body measurements and about themselves without needing much knowledge of an- shape can provide details about general health and fitness. thropometry. With current implementations however, scan- In recent years, products such as Naked1 and ShapeScale2 ning devices are large, complex and expensive. In order to have begun to be released with the intention of capturing 3D make such systems as accessible and widespread as pos- information about a person, and calculating various mea- sible, it is necessary to simplify the process and reduce sures such as body fat percentage and muscle gains. The their hardware requirements. Deep learning models have technologies can then be used to monitor how your body emerged as the leading method of tackling visual tasks, in- changes overtime, and offer detailed fitness tracking. cluding various aspects of 3D reconstruction. In this paper Depth map cameras and RGBD cameras, such as the we demonstrate that by leveraging deep learning it is pos- XBox Kinect or Intel Realsense, have become increasingly sible to create very simple whole body scanners that only popular in 3D scanning in recent years, and have even made require a single input depth map to operate.
    [Show full text]
  • Fusing Multimedia Data Into Dynamic Virtual Environments
    ABSTRACT Title of dissertation: FUSING MULTIMEDIA DATA INTO DYNAMIC VIRTUAL ENVIRONMENTS Ruofei Du Doctor of Philosophy, 2018 Dissertation directed by: Professor Amitabh Varshney Department of Computer Science In spite of the dramatic growth of virtual and augmented reality (VR and AR) technology, content creation for immersive and dynamic virtual environments remains a signifcant challenge. In this dissertation, we present our research in fusing multimedia data, including text, photos, panoramas, and multi-view videos, to create rich and compelling virtual environments. First, we present Social Street View, which renders geo-tagged social media in its natural geo-spatial context provided by 360° panoramas. Our system takes into account visual saliency and uses maximal Poisson-disc placement with spatiotem- poral flters to render social multimedia in an immersive setting. We also present a novel GPU-driven pipeline for saliency computation in 360° panoramas using spher- ical harmonics (SH). Our spherical residual model can be applied to virtual cine- matography in 360° videos. We further present Geollery, a mixed-reality platform to render an interactive mirrored world in real time with three-dimensional (3D) buildings, user-generated content, and geo-tagged social media. Our user study has identifed several use cases for these systems, including immersive social storytelling, experiencing the culture, and crowd-sourced tourism. We next present Video Fields, a web-based interactive system to create, cal- ibrate, and render dynamic videos overlaid on 3D scenes. Our system renders dynamic entities from multiple videos, using early and deferred texture sampling. Video Fields can be used for immersive surveillance in virtual environments. Fur- thermore, we present VRSurus and ARCrypt projects to explore the applications of gestures recognition, haptic feedback, and visual cryptography for virtual and augmented reality.
    [Show full text]
  • Construction of Autostereograms Taking Into Account Object Colors and Its Applications for Steganography
    Construction of Autostereograms Taking into Account Object Colors and its Applications for Steganography Yusuke Tsuda Yonghao Yue Tomoyuki Nishita The University of Tokyo ftsuday,yonghao,[email protected] Abstract Information on appearances of three-dimensional ob- jects are transmitted via the Internet, and displaying objects q plays an important role in a lot of areas such as movies and video games. An autostereogram is one of the ways to represent three- dimensional objects taking advantage of binocular paral- (a) SS-relation (b) OS-relation lax, by which depths of objects are perceived. In previous Figure 1. Relations on an autostereogram. methods, the colors of objects were ignored when construct- E and E indicate left and right eyes, re- ing autostereogram images. In this paper, we propose a L R spectively. (a): A pair of points on the screen method to construct autostereogram images taking into ac- and a single point on the object correspond count color variation of objects, such as shading. with each other. (b): A pair of points on the We also propose a technique to embed color informa- object and a single point on the screen cor- tion in autostereogram images. Using our technique, au- respond with each other. tostereogram images shown on a display change, and view- ers can enjoy perceiving three-dimensional object and its colors in two stages. Color information is embedded in we propose an approach to take into account color variation a monochrome autostereogram image, and colors appear of objects, such as shading. Our approach assign slightly when the correct color table is used.
    [Show full text]
  • Variable-Length Codes for Data Compression David Salomon
    Variable-length Codes for Data Compression David Salomon Variable-length Codes for Data Compression ABC Professor David Salomon (emeritus) Computer Science Department California State University Northridge, CA 91330-8281 USA email: david.salomon@ csun.edu British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: ISBN 978-1-84628-958-3 e-ISBN 978-1-84628-959-0 Printed on acid-free paper. °c Springer-Verlag London Limited 2007 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permit- ted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. 9 8 7 6 5 4 3 2 1 Springer Science+Business Media springer.com To the originators and developers of the codes.
    [Show full text]
  • Ddrnet: Depth Map Denoising and Refinement for Consumer Depth
    DDRNet: Depth Map Denoising and Refinement for Consumer Depth Cameras Using Cascaded CNNs Shi Yan1, Chenglei Wu2, Lizhen Wang1, Feng Xu1, Liang An1, Kaiwen Guo3, and Yebin Liu1 1 Tsinghua University, Beijing, China 2 Facebook Reality Labs, Pittsburgh, USA 3 Google Inc, Mountain View, CA, USA Abstract. Consumer depth sensors are more and more popular and come to our daily lives marked by its recent integration in the latest Iphone X. However, they still suffer from heavy noises which limit their applications. Although plenty of progresses have been made to reduce the noises and boost geometric details, due to the inherent illness and the real-time requirement, the problem is still far from been solved. We pro- pose a cascaded Depth Denoising and Refinement Network (DDRNet) to tackle this problem by leveraging the multi-frame fused geometry and the accompanying high quality color image through a joint training strategy. The rendering equation is exploited in our network in an unsupervised manner. In detail, we impose an unsupervised loss based on the light transport to extract the high-frequency geometry. Experimental results indicate that our network achieves real-time single depth enhancemen- t on various categories of scenes. Thanks to the well decoupling of the low and high frequency information in the cascaded network, we achieve superior performance over the state-of-the-art techniques. Keywords: Depth enhancement · Consumer depth camera · Unsuper- vised learning · Convolutional Neural Networks· DynamicFusion 1 Introduction Consumer depth cameras have enabled lots of new applications in computer vision and graphics, ranging from live 3D scanning to virtual and augmented reality.
    [Show full text]
  • Universal Coding with Different Modelers in Data Compression By
    Universal coding with different modelers in data compression by Reggie ChingPing Kwan A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science Montana State University © Copyright by Reggie ChingPing Kwan (1987) Abstract: In data compression systems, most existing codes have integer code length because of the nature of block codes. One of the ways to improve compression is to use codes with noninteger length. We developed an arithmetic universal coding scheme to achieve the entropy of an information source with the given probabilities from the modeler. We show how the universal coder can be used for both the probabilistic and nonprobabilistic approaches in data compression. to avoid a model file being too large, nonadaptive models are transformed into adaptive models simply by keeping the appropriate counts of symbols or strings. The idea of the universal coder is from the Elias code so it is quite close to the arithmetic code suggested by Rissanen and Langdon. The major difference is the way that we handle the precision problem and the carry-over problem. Ten to twenty percent extra compression can be expected as a result of using the universal coder. The process of adaptive modeling, however, may be forty times slower unless parallel algorithms are used to speed up the probability calculating process. UNIVERSAL CODING WITH DIFFERENT MODELERS IN DATA COMPRESSION by Reggie ChingPing Kwan A thesis submitted'in partial fulfillment of the requirements for the degree Of Master of Science ’ in Computer Science MONTANA STATE UNIVERSITY Bozeman, Montana J u l y '1987 MAIN LJtij /V372 /<97? C o p* j_j_ APPROVAL of a thesis submitted by Reggie chingping Kwan This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency, and is ready for submission to the College of Graduate studies.
    [Show full text]
  • Depth Map Design and Depth-Based Effects with a Single Image
    Depth Map Design and Depth-based Effects With a Single Image Jingtang Liao∗ Shuheng Shen† Elmar Eisemann‡ Delft University of Technology ABSTRACT When several views are available, image-based view interpola- We present a novel pipeline to generate a depth map from a single tion [24] is more general. The perceived motion of the objects helps image that can be used as input for a variety of artistic depth-based in estimating spatial relationships. Nonetheless, these techniques effects. In such a context, the depth maps do not have to be perfect often require a special acquisition setup or a carefully produced but are rather designed with respect to a desired result. Consequently, input. Wiggle stereoscopy can be seen as a particular case of view our solution centers around user interaction and relies on a scribble- interpolation, which simply loops left and right images of a stereo based depth editing. The annotations can be sparse, as the depth pair and can result in a striking parallax perception despite its sim- map is generated by a diffusion process, which is guided by image plicity (Fig. 2). These techniques all avoid special equipment, e.g., features. Additionally, we support a variety of controls, such as a 3D glasses, and they even work for people with limited or no vision non-linear depth mapping, a steering mechanism for the diffusion in one eye. (e.g., directionality, emphasis, or reduction of the influence of image Alternatively, it is possible to use a single input image and warp cues), and besides absolute, we also support relative depth indica- it based on a depth map to produce stereo pairs.
    [Show full text]