Sparsity in Linear Predictive Coding of Speech

Total Page:16

File Type:pdf, Size:1020Kb

Sparsity in Linear Predictive Coding of Speech Sparsity in Linear Predictive Coding of Speech Ph.D. Thesis Daniele Giacobello Multimedia Information and Signal Processing Department of Electronic Systems Aalborg University Niels Jernes Vej 12, 9220 Aalborg Ø, Denmark Sparsity in Linear Predictive Coding of Speech Ph.D. Thesis August 2010 Copyright c 2010 Daniele Giacobello, except where otherwise stated. All rights reserved. Abstract This thesis deals with developing improved techniques for speech coding based on the recent developments in sparse signal representation. In particular, this work is motivated by the need to address some of the limitations of the well- known linear prediction (LP) model currently applied in many modern speech coders. In the first part of the thesis, we provide an overview of Sparse Linear Predic- tion, a set of speech processing tools created by introducing sparsity constraints into the LP framework. This approach defines predictors that look for a sparse residual rather than a minimum variance one with direct applications to coding but also consistent with the speech production model of voiced speech, where the excitation of the all-pole filter can be modeled as an impulse train, i.e., a sparse sequence. Introducing sparsity in the LP framework will also bring to de- velop the concept of high-order sparse predictors. These predictors, by modeling efficiently the spectral envelope and the harmonics components with very few coefficients, have direct applications in speech processing, engendering a joint estimation of short-term and long-term predictors. We also give preliminary results of the effectiveness of their application in audio processing. The second part of the thesis deals with introducing sparsity directly in the linear prediction analysis-by-synthesis (LPAS) speech coding paradigm. We first propose a novel near-optimal method to look for a sparse approximate excitation using a compressed sensing formulation. Furthermore, we define a novel re-estimation procedure to adapt the predictor coefficients to the given sparse excitation, balancing the two representations in the context of speech coding. Finally, the advantages of the compact parametric representation of a segment of speech, given by the sparse linear predictors and the use of the re- estimation procedure, are analyzed in the context of frame independent coding for speech communications over packet networks. i ii List of Papers The main body of this thesis consists of the following papers: [A] D. Giacobello, M. G. Christensen, J. Dahl, S. H. Jensen, and M. Moonen, “Sparse Linear Predictors for Speech Processing,” in Proceedings of the 9th Annual Conference of the International Speech Communication Association (INTERSPEECH), pp. 1353–1356, 2008. [B] D. Giacobello, M. G. Christensen, J. Dahl, S. H. Jensen, and M. Moo- nen, “Joint Estimation of Short-Term and Long-Term Predictors in Speech Coders,” in Proceedings of the 34th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4109–4112, 2009. [C] D. Giacobello, M. G. Christensen, M. N. Murthi, S. H. Jensen, and M. Moonen, “Speech Coding Based on Sparse Linear Prediction,” in Proceedings of the 17th European Signal Processing Conference (EUSIPCO), 2009, pp. 2524–2528. [D] D. Giacobello, M. G. Christensen, M. N. Murthi, S. H. Jensen, and M. Moonen, “Enhancing Sparsity in Linear Prediction of Speech by Iteratively Reweighted 1-norm Minimization,” in Proceedings of the 35th IEEE Inter- national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4650–4653, 2010. [E] D. Giacobello, M. G. Christensen, M. N. Murthi, S. H. Jensen, and M. Moo- nen, “Sparse Linear Prediction and Its Applications to Speech Processing,” submitted to IEEE Transactions on Audio, Speech, and Language Process- ing, 2010. [F] D. Giacobello, M. G. Christensen, M. N. Murthi, S. H. Jensen, and M. Moonen, “Stable Solutions for Linear Prediction of Speech Based on 1-norm Error Criterion,” to be submitted to IEEE Transactions on Audio, Speech, and Language Processing, 2010. [G] D. Giacobello, T. van Waterschoot, M. G. Christensen, S. H. Jensen, and M. Moonen, “High-Order Sparse Linear Predictors for Audio Processing,” ac- cepted for publication in Proceedings of the 18th European Signal Processing Conference (EUSIPCO), 2010. iii [H] D. Giacobello, M. G. Christensen, M. N. Murthi, S. H. Jensen, and M. Moo- nen, “Retrieving Sparse Patterns Using a Compressed Sensing Framework: Applications to Speech Coding Based on Sparse Linear Prediction,” in IEEE Signal Processing Letters, vol. 17, no. 1, pp. 103–106, 2010. [I] D. Giacobello, M. N. Murthi, M. G. Christensen, S. H. Jensen, and M. Moonen, “Re-estimation of Linear Predictive Parameters in Sparse Linear Prediction,” in Conference Record of the 43rd Asilomar Conference on Sig- nals, Systems and Computers, pp. 1770–1773, 2009. [J] D. Giacobello, M. N. Murthi, M. G. Christensen, S. H. Jensen, and M. Moonen, “Estimation of Frame Independent and Enhancement Components for Speech Communication over Packet Networks,” in Proceedings of the 35th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4682–4685, 2010. The following papers have also been published by the author of this thesis during the Ph.D. studies: [1] D. Giacobello, M. Semmoloni, D. Neri, L. Prati and S. Brofferio, “Voice Activity Detection Based on the Adaptive Multi-Rate Speech Codec Param- eters,” in Proc. 11th International Workshop on Acoustic Echo and Noise Control (IWAENC), 2008. [2] D. Giacobello, D. Neri, L. Prati and S. Brofferio, “Acoustic Echo Cancella- tion on the Adaptive Multi-Rate Speech Codec Parameters,” in Proc. 11th International Workshop on Acoustic Echo and Noise Control (IWAENC), 2008. iv Preface This thesis is submitted to the International Doctoral School of Technology and Science at Aalborg University in partial fulfillment of the requirements for the degree of Doctor of Philosophy. The main body consists of a number of papers that have been published in or have been submitted to peer-reviewed conferences and journals. The work was carried out during the period from September 2007 through August 2010 at the Multimedia Information and Signal Processing Group of the Department of Electronic Systems at Aalborg University. It was funded by the European Union Marie Curie SIGNAL Fellowship, contract no. MEST-CT-2005-021175. There are many people I am indebted to and, without their guidance and encouragement, achieving this important goal in my life would have not been possible. First and foremost, my sincere gratitude goes to my supervisor, Prof. Søren Holdt Jensen, for giving me the opportunity of pursuing a Ph.D. degree and for providing me with a perfect working environment to fully develop my potential. He also supported and encouraged me in all my decisions and provided me with very valuable advices. I also thank my co-promoter within the Marie Curie SIGNAL project, Prof. Marc Moonen, for his invaluable comments on all my papers and also for making my stay at the Katholieke Universiteit Leuven a very pleasant experience. I would also like to extend my gratitude to my co-supervisor Prof. Mads Græsbøll Christensen. Since I first started my Ph.D. studies, he has taken me “under his wings” providing me with some of the ideas he had developed by introducing sparsity constraints in the linear predictive framework. As soon as we started working on it, those ideas truly became the “goose that laid the golden eggs,” and form the core of this thesis. I owe him a great deal and it has been a privilege to work with him, his mentoring has undoubtedly helped me throughout this great scientific adventure. This thesis is also, to a large extent, the result of collaboration with other people, and my various co-authors also deserve an honorable mention here. First of all, Prof. Manohar N. Murthi deserves to be thanked for the technical dis- cussions during my stay at the University of Miami and the very fruitful collab- oration that sprung out of them. I would also like to thank Dr. Joachim Dahl v for his precious insights on convex optimization, and Dr. Toon van Waterschoot for the highly beneficial talks on how to extend our work to other application scenarios. The best part of my Ph.D. studies has undoubtedly been getting to meet and work with many amazing people. In this regards, I would like to acknowledge my present and former colleagues at the Multimedia Information and Signal Processing Group at Aalborg University and all the people at Katholieke Uni- versiteit Leuven, Instituto Superior Tecnico Lisbon, and University of Nice who were involved in the SIGNAL project for the countless interesting technical dis- cussions and the fun times we had at our numerous meetings. I would also like to express my gratitude to Charlotte Skindbjerg Pedersen and the whole admin- istrative staff at Aalborg University for taking care of the bureaucratic matters, thus making my working life easier. In the personal sphere, I would like to thank many people that have been close to me in the past several years and, directly or indirectly, have contributed to this work. In particular (in rigorous alphabetical order): Alessandro, Alessio, Alvaro, Andrea, Behzad, Emilia, Francesca, Gian Paolo, Giulia, Ismael, Kim, Jason, Johan, Lucia, Marco, Mario, Marta, Meg, Pedro, Pierre-Louis, Rocco, Romain, Sabato, Shaminda, Tobias, and Virginia. My largest debt of gratitude is toward my parents. They have been the pillars on which I could hold on to at any moment in my life. They have guided, inspired, encouraged, and supported me. Above all, they have always believed in me. This thesis is dedicated to them. A special thought goes also to all of my family for their unconditional love and support. Finally, I would like to thank Shadi for her support, encouragement, patience, and unwavering love, which made these past three years the best of my life. Daniele Giacobello Aalborg University, August 2010 vi Contents Abstract i List of Papers iii Preface v Introduction 1 1 Background.............................
Recommended publications
  • An Introduction to Mpeg-4 Audio Lossless Coding
    « ¬ AN INTRODUCTION TO MPEG-4 AUDIO LOSSLESS CODING Tilman Liebchen Technical University of Berlin ABSTRACT encoding process has to be perfectly reversible without loss of in- formation, several parts of both encoder and decoder have to be Lossless coding will become the latest extension of the MPEG-4 implemented in a deterministic way. audio standard. In response to a call for proposals, many com- The MPEG-4 ALS codec uses forward-adaptive Linear Pre- panies have submitted lossless audio codecs for evaluation. The dictive Coding (LPC) to reduce bit rates compared to PCM, leav- codec of the Technical University of Berlin was chosen as refer- ing the optimization entirely to the encoder. Thus, various encoder ence model for MPEG-4 Audio Lossless Coding (ALS), attaining implementations are possible, offering a certain range in terms of working draft status in July 2003. The encoder is based on linear efficiency and complexity. This section gives an overview of the prediction, which enables high compression even with moderate basic encoder and decoder functionality. complexity, while the corresponding decoder is straightforward. The paper describes the basic elements of the codec, points out 2.1. Encoder Overview envisaged applications, and gives an outline of the standardization process. The MPEG-4 ALS encoder (Figure 1) typically consists of these main building blocks: • 1. INTRODUCTION Buffer: Stores one audio frame. A frame is divided into blocks of samples, typically one for each channel. Lossless audio coding enables the compression of digital audio • Coefficients Estimation and Quantization: Estimates (and data without any loss in quality due to a perfect reconstruction quantizes) the optimum predictor coefficients for each of the original signal.
    [Show full text]
  • THÈSE Pour Obtenir Le Titre De Docteur En Sciences De L’UNIVERSITÉ De Nice-Sophia Antipolis Mention : Automatique, Traitement Du Signal Et Des Images
    Université de Nice-Sophia Antipolis École doctorale STIC THÈSE pour obtenir le titre de Docteur en Sciences de l’UNIVERSITÉ de Nice-Sophia Antipolis Mention : Automatique, Traitement du Signal et des Images présentée par Marie OGER Model-based techniques for flexible speech and audio coding Thèse dirigée par Marc ANTONINI, Directeur de Recherche CNRS Equipe d’accueil : CReATIVe, Laboratoire I3S, UNSA-CNRS et Stéphane RAGOT Equipe d’accueil : TPS, Laboratoire SSTP, France Télécom R&D Lannion soutenance prévue le 13 décembre 2007 Jury: Robert M. Gray Université de Stanford Rapporteur Pierre Duhamel CNRS Paris Rapporteur Marc Antonini CNRS Sophia Antipolis Directeur de thèse Stéphane Ragot France Télécom Lannion Directeur de thèse Michel Barlaud Université de Nice-Sophia Antipolis Examinateur Geneviève Baudoin ESIEE Paris Examinateur Christine Guillemot INRIA Rennes Examinateur Bastiaan Kleijn KTH Stockholm Examinateur ii Acronyms 3GPP 3rd Generation Partnership Project AAC Advanced Audio Coding AbS Analysis-by -Synthesis ACELP Algebraic Code Excited Linear Prediction ACR Absolute Category Rating ADPCM Adaptive Differential Pulse Code Modulation AMR-WB Adaptive Multi Rate-Wideband AMR-WB+ Extended Adaptive Multi-Rate Wideband ATC Adaptive Transform Codec BER Bit Error Rates BSAC Bit-Sliced Arithmetic Coding CCR Comparative Category Rating CELP Code Excited Linear Predictive CMOS Comparison Mean Opinion Score DCR Degradation Category Rating DCT Discrete Cosine Transform DMOS Degradation Mean Opinion Score DPCM Differential Pulse Code Modulation DWT Discrete Wavelet Transform e-AAC+ Enhanced High Efficiency Advanced Audio Coding EM Expectation Maximization iv FEC Frame Error Concealment FER Frame Error Rate FFT Fast Fourier Transform HE-AAC High Efficiency AAC GMM Gaussian Mixture Model i.i.d.
    [Show full text]
  • High Efficiency, Moderate Complexity Video Codec Using Only RF IPR
    Thor High Efficiency, Moderate Complexity Video Codec using only RF IPR draft-fuldseth-netvc-thor-00 Arild Fuldseth, Gisle Bjontegaard (Cisco) IETF 93 – Prague, CZ – July 2015 1 Design principles • Moderate complexity to allow real-time implementation in SW on common HW, as well as new HW designs • Basic building blocks from well-known hybrid approach (motion compensated prediction and transform coding) • Common design elements in modern codecs – Larger block sizes and transforms, up to 64x64 – Quarter pixel interpolation, motion vector prediction, etc. • Cisco RF IPR (note well: declaration filed on draft) – Deblocking, transforms, etc. (some also essential in H.265/4) • Avoid non-RF IPR – If/when others offer RF IPR, design/performance will improve 2 Encoder Architecture Input Transform Quantizer Entropy Output video Coding bitstream - Inverse Transform Intra Frame Prediction Loop filters Inter Frame Prediction Reconstructed Motion Frame Estimation Memory 3 Decoder Architecture Input Entropy Inverse Bitstream Decoding Transform Intra Frame Prediction Loop filters Inter Frame Prediction Output video Reconstructed Frame Memory 4 Block Structure • Super block (SB) 64x64 • Quad-tree split into coding blocks (CB) >= 8x8 • Multiple prediction blocks (PB) per CB • Intra: 1 PB per CB • Inter: 1, 2 (rectangular) or 4 (square) PBs per CB • 1 or 4 transform blocks (TB) per CB 5 Coding-block modes • Intra • Inter0 MV index, no residual information • Inter1 MV index, residual information • Inter2 Explicit motion vector information, residual information
    [Show full text]
  • Notice: This Material May Be Protected by Copyright Law (Title 17 U.S.C.) No
    Notice: This Material may be protected by Copyright Law (Title 17 U.S.C.) no. 0 Data Compression Debra A. Lelewer and Daniel S. Hirschberg < Technical Report No. 87-10 Abstract This paper surveys a variety of data compression methods spanning almost forty years of research, from the work of Shannon, Fano and Huffman in the late 40's to a technique developed in 1986. The aim of data compression is to reduce redundancy in stored or communicated data, thus increasing effective data density. Data compression has important application in the areas of file storage and distributed systems. Concepts from information theory, as they relate to the goals and evaluation of data compression methods, are discussed briefly. A framework for evaluation and comparison of methods is constructed and applied to the algorithms presented. Comparisons of both theo­ retical and empirical natures are reported and possibilities for future research are suggested. INTRODUCTION 1. FUNDAMENTAL CONCEPTS 1.1 Definitions 1.2 Classification of Methods 1.3 A Data Compression Model 1.4 Motivation 2. SEMANTIC DEPENDENT METHODS 3. STATIC DEFINED-WORD SCHEMES 3.1 Shannon-Fano Code 3.2 Huffman Coding 3.3 Representations of the Integers 4. ADAPTIVE HUFFMAN CODING 4.1 Algorithm FGK 4.2 Algorithm V 5. OTHER ADAPTIVE METHODS 5.1 Lempel-Ziv Codes 5.2 Algorithm BSTW 6. EMPIRICAL RESULTS 7. SUSCEPTIBILITY TO ERROR 7.1 Static Codes 7.2 Adaptive Codes 8. NEW DIRECTIONS 9. SUMMARY INTRODUCTION Data compression is often referred to as coding. Information theory is defined to be the study of efficient coding and its consequences, in the form of speed of transmission and probability of error [Ingels 1971).
    [Show full text]
  • Hardware for Speech and Audio Coding
    Linköping Studies in Science and Technology Thesis No. 1093 Hardware for Speech and Audio Coding Mikael Olausson LiU-TEK-LIC-2004:22 Department of Electrical Engineering Linköpings universitet, SE-581 83 Linköping, Sweden Linköping 2004 Linköping Studies in Science and Technology Thesis No. 1093 Hardware for Speech and Audio Coding Mikael Olausson LiU-TEK-LIC-2004:22 Department of Electrical Engineering Linköpings universitet, SE-581 83 Linköping, Sweden Linköping 2004 ISBN 91-7373-953-7 ISSN 0280-7971 ii Abstract While the Micro Processors (MPUs) as a general purpose CPU are converging (into Intel Pentium), the DSP processors are diverging. In 1995, approximately 50% of the DSP processors on the market were general purpose processors, but last year only 15% were general purpose DSP processors on the market. The reason general purpose DSP processors fall short to the application specific DSP processors is that most users want to achieve highest performance under mini- mized power consumption and minimized silicon costs. Therefore, a DSP proces- sor must be an Application Specific Instruction set Processor (ASIP) for a group of domain specific applications. An essential feature of the ASIP is its functional acceleration on instruction level, which gives the specific instruction set architecture for a group of appli- cations. Hardware acceleration for digital signal processing in DSP processors is essential to enhance the performance while keeping enough flexibility. In the last 20 years, researchers and DSP semiconductor companies have been working on different kinds of accelerations for digital signal processing. The trade-off be- tween the performance and the flexibility is always an interesting question because all DSP algorithms are "application specific"; the acceleration for audio may not be suitable for the acceleration of baseband signal processing.
    [Show full text]
  • Efficient Multi-Codec Support for OTT Services: HEVC/H.265 And/Or AV1?
    Efficient Multi-Codec Support for OTT Services: HEVC/H.265 and/or AV1? Christian Timmerer†,‡, Martin Smole‡, and Christopher Mueller‡ ‡Bitmovin Inc., †Alpen-Adria-Universität San Francisco, CA, USA and Klagenfurt, Austria, EU ‡{firstname.lastname}@bitmovin.com, †{firstname.lastname}@itec.aau.at Abstract – The success of HTTP adaptive streaming is un- multiple versions (e.g., different resolutions and bitrates) and disputed and technical standards begin to converge to com- each version is divided into predefined pieces of a few sec- mon formats reducing market fragmentation. However, other onds (typically 2-10s). A client first receives a manifest de- obstacles appear in form of multiple video codecs to be sup- scribing the available content on a server, and then, the client ported in the future, which calls for an efficient multi-codec requests pieces based on its context (e.g., observed available support for over-the-top services. In this paper, we review the bandwidth, buffer status, decoding capabilities). Thus, it is state of the art of HTTP adaptive streaming formats with re- able to adapt the media presentation in a dynamic, adaptive spect to new services and video codecs from a deployment way. perspective. Our findings reveal that multi-codec support is The existing different formats use slightly different ter- inevitable for a successful deployment of today's and future minology. Adopting DASH terminology, the versions are re- services and applications. ferred to as representations and pieces are called segments, which we will use henceforth. The major differences between INTRODUCTION these formats are shown in Table 1. We note a strong differ- entiation in the manifest format and it is expected that both Today's over-the-top (OTT) services account for more than MPEG's media presentation description (MPD) and HLS's 70 percent of the internet traffic and this number is expected playlist (m3u8) will coexist at least for some time.
    [Show full text]
  • CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Optimized AV1 Inter
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Optimized AV1 Inter Prediction using Binary classification techniques A graduate project submitted in partial fulfillment of the requirements for the degree of Master of Science in Software Engineering by Alex Kit Romero May 2020 The graduate project of Alex Kit Romero is approved: ____________________________________ ____________ Dr. Katya Mkrtchyan Date ____________________________________ ____________ Dr. Kyle Dewey Date ____________________________________ ____________ Dr. John J. Noga, Chair Date California State University, Northridge ii Dedication This project is dedicated to all of the Computer Science professors that I have come in contact with other the years who have inspired and encouraged me to pursue a career in computer science. The words and wisdom of these professors are what pushed me to try harder and accomplish more than I ever thought possible. I would like to give a big thanks to the open source community and my fellow cohort of computer science co-workers for always being there with answers to my numerous questions and inquiries. Without their guidance and expertise, I could not have been successful. Lastly, I would like to thank my friends and family who have supported and uplifted me throughout the years. Thank you for believing in me and always telling me to never give up. iii Table of Contents Signature Page ................................................................................................................................ ii Dedication .....................................................................................................................................
    [Show full text]
  • Arxiv:2002.01657V1 [Eess.IV] 5 Feb 2020 Port Lossless Model to Compress Images Lossless
    LEARNED LOSSLESS IMAGE COMPRESSION WITH A HYPERPRIOR AND DISCRETIZED GAUSSIAN MIXTURE LIKELIHOODS Zhengxue Cheng, Heming Sun, Masaru Takeuchi, Jiro Katto Department of Computer Science and Communications Engineering, Waseda University, Tokyo, Japan. ABSTRACT effectively in [12, 13, 14]. Some methods decorrelate each Lossless image compression is an important task in the field channel of latent codes and apply deep residual learning to of multimedia communication. Traditional image codecs improve the performance as [15, 16, 17]. However, deep typically support lossless mode, such as WebP, JPEG2000, learning based lossless compression has rarely discussed. FLIF. Recently, deep learning based approaches have started One related work is L3C [18] to propose a hierarchical archi- to show the potential at this point. HyperPrior is an effective tecture with 3 scales to compress images lossless. technique proposed for lossy image compression. This paper In this paper, we propose a learned lossless image com- generalizes the hyperprior from lossy model to lossless com- pression using a hyperprior and discretized Gaussian mixture pression, and proposes a L2-norm term into the loss function likelihoods. Our contributions mainly consist of two aspects. to speed up training procedure. Besides, this paper also in- First, we generalize the hyperprior from lossy model to loss- vestigated different parameterized models for latent codes, less compression model, and propose a loss function with L2- and propose to use Gaussian mixture likelihoods to achieve norm for lossless compression to speed up training. Second, adaptive and flexible context models. Experimental results we investigate four parameterized distributions and propose validate our method can outperform existing deep learning to use Gaussian mixture likelihoods for the context model.
    [Show full text]
  • Course Outline & Schedule
    Course Outline & Schedule Call US 408-759-5074 or UK +44 20 7620 0033 Open Media Encoding Techniques Course Code PWL396 Duration 3 Day Course Price $2,815 Course Description Video, TV and Image technology today dominates Internet Services. Whether it be for live TV, Streamed movies or video clips within social media video images are everywhere. The long-term efficiency of services depends upon the methods and mechanisms used to encode these services. We have relied upon the developments from the Digital Video Broadcast industry, ISO, MPEG and the ITU to provide us with standard ways to achieve this. However the patent royalty cost is now considered to be holding back this efficient development. All commercial users of the normal encoding used such as H.264, H.265, HEVC and other standardised codecs are required to pay royalties for using this technology through a firm of US patent Lawyers known as MPEG-LA. Each new ITU- T standard encoding requires new and increased payments. The Alliance for Open Media is founded by leading Internet companies focused on developing next-generation media formats, codecs and technologies in the public interest. The new Alliance is committing its collective technology and expertise to meet growing Internet demand for top-quality video, audio, imagery and streaming across devices of all kinds and for users worldwide. The aim is to develop royalty free standardized encoding based upon the technology contributed by its members. This course provides a technical study of Video Coding and the technologies which the developing Open Media implementations are based upon.
    [Show full text]
  • Video Compression Optimized for Racing Drones
    Video compression optimized for racing drones Henrik Theolin Computer Science and Engineering, master's level 2018 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Video compression optimized for racing drones November 10, 2018 Preface To my wife and son always! Without you I'd never try to become smarter. Thanks to my supervisor Staffan Johansson at Neava for providing room, tools and the guidance needed to perform this thesis. To my examiner Rickard Nilsson for helping me focus on the task and reminding me of the time-limit to complete the report. i of ii Video compression optimized for racing drones November 10, 2018 Abstract This thesis is a report on the findings of different video coding tech- niques and their suitability for a low powered lightweight system mounted on a racing drone. Low latency, high consistency and a robust video stream is of the utmost importance. The literature consists of multiple comparisons and reports on the efficiency for the most commonly used video compression algorithms. These reports and findings are mainly not used on a low latency system but are testing in a laboratory environment with settings unusable for a real-time system. The literature that deals with low latency video streaming and network instability shows that only a limited set of each compression algorithms are available to ensure low complexity and no added delay to the coding process. The findings re- sulted in that AVC/H.264 was the most suited compression algorithm and more precise the x264 implementation was the most optimized to be able to perform well on the low powered system.
    [Show full text]
  • Premam 2015 Malayalam 720P Bdrip X264 AC3 51 14GB 53Golkes
    1 / 4 Premam [2015] Malayalam 720p BDRip X264 AC3 5.1 1.4GB 53 Jun 11, 2021 — skanda sashti kavacham malayalam skanda sashti kavacham malayalam ... Premam [2015] Malayalam 720p BDRip x264 AC3 5.1 1.4GB 53. Apr 15, 2021 — premam malayalam movie download tamilrockers premam malayalam movie ... Free Movies Download-sites: Here is a list of top 53 websites to download ... Premam [2015] Malayalam 720p BDRip x264 AC3 5.1 1.4GB ESubs .... Dec 1, 2017 — Prev · 43 · 44 · 45 · 46 · 47 · 48 · 49 · 50 · 51 · 52 · 53 · Next; Page 48 of 61. Dookudu (2011) - [Telugu+Hindi+Tamil] - 720p - BDRIP - x264 - AC3 + ESubs ... Orange (2010) - Telugu - 720p - BDRIP - x264 - AC3 5.1 + ESubs - 1.4GB ... PREMAM (2015) - Malayalam - 720p - BRRIP - x264 - AAC + ESubs - 1GB .... Apr 17, 2021 — Download premam malayalam movie download tamilrockers premam ... Premam [2015] Malayalam 720p BDRip x264 AC3 5.1 1.4GB ESubs TorrentPk ... Free Movies Download-sites: Here is a list of top 53 websites to .... Gratuit Ambush Karaoke (2019) VOSTFR BDRIP 1080p regarder en ligne. ... (BDRip 1080p Hi10P DTS) 9AE5EFBC mkv: 9.7 GiB: 2019-09-01 04:53: 9: 1: ... AwardSubsPlease Fruits Basket (2019) S3 - 05 (1080p) 18C540A4 1.4 GB: 1 ... Premam 2015 Malayalam 720p BDRip x264 AC3 5 1 1 4GB mp4: 2019-10-13 10:02.. Results 1 - 15 of 15 — Dobara Full Movie With English Subtitles 720p DOWNLOAD (Mirror #1). ... Premam 2015 Malayalam 720p BDRip X264 AC3 5.1 1.4GB. Premam [2015] Malayalam 720p BDRip X264 AC3 5.1 1.4GB 53 22 Feb, ... Adrishya (2018) 720p Hindi HDRip - x264 - DD 5.1 - 1.4GB - ESub ...
    [Show full text]
  • Variable-Length Codes for Data Compression David Salomon
    Variable-length Codes for Data Compression David Salomon Variable-length Codes for Data Compression ABC Professor David Salomon (emeritus) Computer Science Department California State University Northridge, CA 91330-8281 USA email: david.salomon@ csun.edu British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: ISBN 978-1-84628-958-3 e-ISBN 978-1-84628-959-0 Printed on acid-free paper. °c Springer-Verlag London Limited 2007 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permit- ted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. 9 8 7 6 5 4 3 2 1 Springer Science+Business Media springer.com To the originators and developers of the codes.
    [Show full text]