Groundwater Irrigation and the Rural Poor Public Disclosure Authorized Groundwater Irrigation and the Rural Poor

Total Page:16

File Type:pdf, Size:1020Kb

Groundwater Irrigation and the Rural Poor Public Disclosure Authorized Groundwater Irrigation and the Rural Poor Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Groundwater IrrigationandtheRuralPoor Groundwater Irrigation and the Rural Poor Groundwater Irrigation and the Rural Poor Options for Development in the Gangetic Basin edited by Friedrich Kahnert and Gilbert Levine The World Bank Washington, D.C. ©1993 The International Bank for Reconstruction and Development / THE WORLD BANK 1818 H Street, N.W., Washington, D.C. 20433, U.S.A. All rights reserved Manufactured in the United States of America First printing April 1993 The findings, interpretations, and conclusions expressed in this study are entirely those of the authors and should not be attributed in any manner to the World Bank, to its affiliated organizations, or to members of its Board of Executive Directors or the countries they represent. Because of the informality of this series and to make the publication available with the least possible delay, the manuscript has not been edited as fully as would be the case with a more formal document, and the World Bank accepts no responsibility for errors. The material in this publication is copyrighted. Requests for permission to reproduce portions of it should be sent to the Office of the Publisher at the address shown in the copyright notice above. The World Bank encourages dissemination of its work and will normally give permission promptly and, when the reproduction is for noncommercial purposes, without asking a fee. Permission to copy portions for classroom use is granted through the Copyright Clearance Center, 27 Congress Street, Salem, Massachusetts 01970, U.S.A. The complete backlist of publications from the World Bank is shown in the annual Index of Publications, which contains an alphabetical title list and indexes of subjects, authors, and countries and regions. The latest edition is available free of charge from the Distribution Unit, Office of the Publisher, at the address in the copyright notice or from Publications, World Bank, 66, avenue d'Iéna, 75116 Paris, France. Library of Congress Cataloging−in−Publication Data Groundwater irrigation and the rural poor: options for development in the Gangetic Basin / edited by Friedrich Kahnert and Gilbert Levine. p. cm.—(A World Bank symposium) "Papers were presented at the World Bank Colloquium on Groundwater Irrigation, held April 1214, 1989"—Pref. Includes bibliographical references. ISBN 0−8213−2401−2 1. Irrigation—Economic aspects—Ganges River Watershed (India and Bangladesh)—Congresses. 2. Water, Underground—Ganges River Watershed (India and Bangladesh)—Congresses. 3. Rural development—Ganges River Watershed (India and Bangladesh)—Congresses. 4. Irrigation—Economic aspects—Nepal—Congresses. 5. Water, Underground—Nepal—Congresses. 6. Rural development—Nepal—Congresses. I. Kahnert, Friedrich, 1929—. II. Levine, Groundwater Irrigation and the Rural Poor 1 Groundwater Irrigation and the Rural Poor Gilbert, III. International Bank for Reconstruction and Development. IV. Series. HD1741.G3G76 1993 338.4'762752'09541—dc20 93−9703 CIP FOREWORD This volume reports on a concerted effort to analyze and reflect on the possible role of groundwater development in helping to address the persistent rural poverty problem in Bangladesh, Nepal, and eastern India, an area in large part coincident with the Gangetic Basin. The work was initiated by the World Bank and cosponsored by the International Irrigation Management Institute, which contributed substantially to its success. Papers were presented at the World Bank Colloquium on Groundwater Irrigation, held April 1214, 1989, in Washington, D.C. Groundwater remains the largest natural resource endowment of this region that is not yet used to its full potential, even though this potential cannot be identified with certainty for the basin as a whole or for its constituent parts. In addition to an incomplete data base, a problem common to many development challenges, a great deal of uncertainty arises from the unresolved riparian issues affecting the use of the water from the Ganges river system. These concern not only the three countries of the region but also the division of the water resources among the Indian states in the basin. Given the close interaction between surface water flows and groundwater availability, resolution of the riparian issues will place as yet unknown political limits on groundwater development in many parts of the region. While improving knowledge of the behavior of the system as a whole and of local conditions as well as resolution of the riparian issues must remain priority objectives, attempts to harness groundwater development more directly for the alleviation of poverty cannot wait. The resource is being developed and appropriated apace and time for influencing this process is running out. It is from this perspective that a number of unequivocal conclusions and action recommendations are put forward, namely: Farmers need a full range of equipment options in order to respond efficiently to local groundwater development conditions and to their specific requirements. Controls on equipment choice produce inefficiency and inequity and should be abolished. Tube well spacing regulations are largely unenforceable and futile; they are often harmful to the poor who are the only ones unable to circumvent them. They should be abolished. The subsidies in place distort the comparative advantages of different technologies because the degree of subsidy varies both by type of pumping energy (electricity / diesel) and by type of pumping equipment (deep tube wells/shallow tube wells/hand tube wells). What is more, these subsidies often benefit the relatively rich rather than the poor. Where subsidies have to remain in force, they should at least be scale− and energy−neutral. The provision of dedicated power for groundwater pumping to the improved deep tube wells first supported by the World Bank is ques− tionable if all externalities are taken into account; where dedicated power is to be used for this purpose, it should be more specifically targeted at the poor. This should also be done with power connections where these remain scarce, as in large parts of Bangladesh and Nepal. FOREWORD 2 Groundwater Irrigation and the Rural Poor Technical solutions to the well−known problems of public deep tube wells, such as the improvements incorporated in the design supported by the World Bank, are only part of what is needed. Much more attention must be devoted from the very beginning to farmer participation in such tube well investments and to the formation and sustained operation of water user groups. Because there is evidence that, the larger the capacity of the tube well, the more severe the operation and management problems, the smaller deep tube well models should be given preference over the larger ones wherever deep tube wells have to be installed. Water markets are developing rapidly both inside and outside the study area. Competitive water markets have positive efficiency and equity impacts; they can and should be promoted. In areas where electricity is available for pumping, a switch to flat−rate and progressive power pricing based on the horsepower of the connected motor can be a powerful tool to promote competition in the water market. The persistence of severe poverty in the study region is of concern not only to the World Bank and the three governments concerned but also to all those who devoted time and energy to producing the material in this report, not to mention the very large number of people suffering from deprivation in this area. In addition to the conclusions highlighted above, the body of this report contains a host of other suggestions, recommendations, and ideas for policies, other actions, and research. It is my hope that all this will contribute not only to the ongoing discussion of the problems but above all to policy reform and action to address them. Finally, I would like to express my sincere thanks to all the contributors to this project, especially to Friedrich Kahnert and Gilbert Levine. From the inception of the project to the end, it was Friedrich Kahnert whose dedicated work ensured that the vast experiences with and analyses of this topic could culminate in this volume; and we are obliged to Professor Levine, without whose expert support and assistance the project could not have been brought to a successful conclusion. OKTAY YENAL CHIEF, WORLD BANK RESIDENT MISSION NEW DELHI, INDIA CONTENTS Contributors link Overview link Friedrich Kahnert and Gilbert Levine Key Findings, Recommendations, and Summary link Friedrich Kahnert and Gilbert Levine Part 1: Bangladesh link 1 link National Water Planning in Bangladesh 19852005: The Role of Groundwater in Irrigation Development G.T. Keith Pitman 2 link Improving the Access of the Rural Poor to Groundwater Irrigation CONTENTS 3 Groundwater Irrigation and the Rural Poor in Bangladesh M.A. Hamid 3 link Groundwater Irrigation in Bangladesh: Access, Competition, and Performance M.A.S. Mandal 4 link Socialization of Minor Irrigation: A Strategy for Growth with Equity Qazi Faruque Ahmed Part 2: Nepal link 5 link Use of Groundwater Resources to Alleviate Poverty in Nepal: Policy Issues S.K. Upadhyay 6 link Improving Access of the Poor to Groundwater in Nepal: Sociopolitical and Managerial Issues R.N. Deo Part 3: India link 7 link Groundwater Development for Economic Emancipation in the Lower Ganges Basin: Problems, Prospects, and Strategies T. Prasad 8 link Performance of the World Bank Tube Wells
Recommended publications
  • Estimating Irrigation Water Use Over the Contiguous United States by Combining Satellite and Reanalysis Soil Moisture Data
    Hydrol. Earth Syst. Sci., 23, 897–923, 2019 https://doi.org/10.5194/hess-23-897-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data Felix Zaussinger1, Wouter Dorigo1, Alexander Gruber1,2, Angelica Tarpanelli3, Paolo Filippucci3, and Luca Brocca3 1CLIMERS – Research Group Climate and Environmental Remote Sensing, Department of Geodesy and Geoinformation, TU Wien, Vienna, Austria 2Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium 3Research Institute for Geo-Hydrological Protection, National Research Council, Perugia, Italy Correspondence: Felix Zaussinger ([email protected]) and Wouter Dorigo ([email protected]) Received: 6 August 2018 – Discussion started: 10 August 2018 Revised: 12 December 2018 – Accepted: 5 February 2019 – Published: 18 February 2019 Abstract. Effective agricultural water management requires state-level irrigation water withdrawals (IWW) but system- accurate and timely information on the availability and use of atically underestimate them. We argue that this discrepancy irrigation water. However, most existing information on irri- can be mainly attributed to the coarse spatial resolution of gation water use (IWU) lacks the objectivity and spatiotem- the employed satellite soil moisture retrievals, which fails poral representativeness needed for operational water man- to resolve local irrigation practices. Consequently, higher- agement and meaningful characterization of land–climate in- resolution soil moisture data are needed to further enhance teractions. Although optical remote sensing has been used to the accuracy of IWU mapping. map the area affected by irrigation, it does not physically al- low for the estimation of the actual amount of irrigation wa- ter applied.
    [Show full text]
  • Irrigation Engineering
    IRRIGATION ENGINEERING IRRIGATION ENGINEERING Editor R.N. Reddy ff:d GENE TECH 2010 Gene-Tech Books New Delhi - 110 002 2010, © Publisher InformatlOlJ contall1cd in tillS work has been published by Gene-Tech Books and has been obtamed by Its allthor(s)/editor(s) from sOllrces belzeved to be reliable and are correct to the best of their knowledge. However, the publisher and its autllOr(s) make no representation of warranties with respect of aCCllracy or completeness of the contents of this book, and shall 111 no event be lzable for any efrors, omissIOns or damages arzsing out of use of tillS l1l/omzatlOn and specifically disclaim any implied warranties or merchantability or fitness for any particular purpose. All riglzts resaved. Including the rigllt to trallslate or to reproduce tillS book or parts thereof except for brief quotatIOns in entzcal reviews. ISBN 81-89729-98-5 ISBN 978-81-89729-98-1 Published by GENE-TECH BOOKS 4762-63/23, Ansari Road, Darya Ganj, NEW DELHI - 110 002 Phone: 41562849 e-mail: [email protected] Printed at Chawla Offset Printers New Delhi - 110 052 PRINTED IN INDIA Preface Irrigation involves the artificial application of water to soil, usually for assisting the growth of crops in dry areas or where there is a shortage of rainfall. As the process of agriculture becomes increasingly mechanised, the application of scientific methods and technology to the procedure of irrigation comes as no surprise. With agricultural yields dwindling and demand for food increasing, the pressure on agriculture is immense and no stone is to be left unturned in meeting demands and expectations.
    [Show full text]
  • Planning Targets for Irrigation Development
    4 Planning Targets for Irrigation Development C. G. Desai Although India possesses 4.9 percent of the total average annual runoff in the rivers of the world, the per capita water availability from surface as, well as groundwater sources is assessed at 3,200 cubic meters Jm3) per year, compared with the availability of more than 17,500 m3 in the Soviet Union, 6,500 m3 in Japan, and 6,200 m3 in the United States. The population that India had at the beginn­ ing of the twentieth century is likely to have increased 50 percent by the end of the century. This would further reduce the per capita availability of water. Surface water would constitute about 80 percent of this; the remainder would be from groundwater. ASSESSING THE AVAILABILITY OF WATER RESOURCES Planning water resources development in any country requires first and foremost a precise assessment of its availability. The need to assess both surface water and groundwater potential is particularly critical because the investment costs of irrigation projects using scarce water resources are accelerating. Any error in the assessment would cause avoidable waste in the construction of canal networks, block huge investments, and ultimately result in recurring financial losses. Five year plan investments of Rs 150 billion from 1951 to 1985 for major and medium irrigation schemes were seriously criticized by economists trying to evaluate perfor­ mance of this sector with the usual yardsticks of efficiency, economic return, or input-output ratio. Similarly, overestimating groundwater resources is likely to block institutional funds by encouraging high default rates on loans to farmers.
    [Show full text]
  • Moving Toward Sustainable Irrigation in a Southern Idaho Irrigation Project
    MOVING TOWARD SUSTAINABLE IRRIGATION IN A SOUTHERN IDAHO IRRIGATION PROJECT D. L. Bjorneberg, J. A. Ippolito, B. A. King, S. K. Nouwakpo, A. C. Koehn Collection Research HIGHLIGHTS Private and public irrigation development was important for expanding agricultural production in the western U.S. The Twin Falls Canal Company is an excellent example of a successful Carey Act project. Cooperative efforts during the last 30 years have dramatically improved the water quality of irrigation return flow. Electricity generated by six hydroelectric facilities improves the sustainability of the irrigation project. ABSTRACT. Private and public irrigation development projects were fundamental to bringing irrigation to arid regions of the western U.S. The Twin Falls Canal Company in southern Idaho provides a case study of private and public irrigation development because the project was developed by private investors under the Carey Act and receives a portion of its irrigation water supply from U.S. Bureau of Reclamation reservoirs. The project survived initial financial struggles and waterlogged soil to focus on sustaining crop production by reducing chronic furrow irrigation erosion and nutrient losses in irrigation return flow. Average sediment loss from the project was 460 kg ha-1 in 1970. A cooperative effort by the canal company, state and federal agencies, and farmers improved water quality by installing sediment ponds on fields, applying polyacrylamide with furrow irrigation, converting from furrow to sprinkler irrigation, and constructing water quality ponds on irrigation return flow streams. From 2006 to 2018, more sediment and total phosphorus flowed into the watershed than returned to the Snake River, and the project removed 13,000 Mg of sediment and 30 Mg of total phosphorus from the Snake River each year.
    [Show full text]
  • Simulating the Effects of Irrigation Over the U.S. in a Land Surface Model
    Simulating the Effects of Irrigation over the U.S. in a Land Surface Model Based on Satellite Derived Agricultural Data 2 2,3 2 Mutlu Ozdogan ' *, Matthew Rodell , Hiroko Kato Beaudoing , and David L. Toll *corresponding author 'Center for Sustainability and the Global Environment (SAGE) University of Wisconsin Madison, WI, 53706 [email protected] 2Hydrological Sciences Branch NASA Goddard Space Flight Center Greenbelt, MD 20771 ³Earth System Science Interdisciplinary Center (ESSIC) University of Maryland College Park, MD 20742 submitted to Journal of Hydrometeorology April 2009 Abstract A novel method is introduced for integrating satellite derived irrigation data and high-resolution crop type information into a land surface model (LSM). The objective is to improve the simulation of land surface states and fluxes through better representation of agricultural land use. Ultimately, this scheme could enable numerical weather prediction (NWP) models to capture land-atmosphere feedbacks in managed lands more accurately and thus improve forecast skill. Here we show that application of the new irrigation scheme over the continental US significantly influences the surface water and energy balances by modulating the partitioning of water between the surface and the atmosphere. In our experiment, irrigation caused a 12 % increase in evapotranspiration (QLE) and an equivalent reduction in the sensible heat flux (QH) averaged over all irrigated areas in the continental US during the 2003 growing season. Local effects were more extreme: irrigation shifted more than 100 W/m² from QH to QLE in many locations in California, eastern Idaho, southern Washington, and southern Colorado during peak crop growth. In these cases, the changes in ground heat flux (QG), net radiation (RNET), evapotranspiration (ET), runoff (R), and soil moisture (SM) were more than 3 W/m ², 20 W/m², 5 mm/day, 0.3 mm/day, and 100 mm, respectively.
    [Show full text]
  • Upper Missouri Basin Advisory Council - Issues Scoping Report
    Upper Missouri Basin Advisory Council - Issues Scoping Report Montana State Water Plan Update - Upper Missouri River Basin Prepared by: Upper Missouri River Basin Advisory Council Jim Beck, Chair | Vicki Baker, Vice Chair and Kathleen Williams 202 S Black, Ste 505 Bozeman, MT 59715 Phone: 406-570-1917 e-mail: [email protected] Adopted by the Council December 17, 2013 ACKNOWLEDGMENTS This report was prepared based on information shared by agency staff, as well as the Council's resource experts and many public representatives who attended regional issue public scoping meetings or otherwise shared their expertise and views. Figures in this report are from presentations at these meetings. The Council thanks those who have helped create a productive beginning dialogue about Montana's water resources. TABLE OF CONTENTS Introduction ............................................................................................................................................................... 1 About the Upper Missouri River Basin Advisory Council ....................................................................................... 2 Purpose of this Document ..................................................................................................................................... 3 Summary of Information Presented to the Council About the Upper Missouri Basin ............................................. 6 Water Resources...................................................................................................................................................
    [Show full text]
  • Update of the Digital Global Map of Irrigation Areas to Version 5
    Update of the Digital Global Map of Irrigation Areas to Version 5 DOCUMENTATION Stefan Siebert • Verena Henrich • Karen Frenken • Jacob Burke Update of the Digital Global Map of Irrigation Areas (GMIA) to Version 5 by Stefan Siebert, Verena Henrich Institute of Crop Science and Resource Conservation (INRES) University of Bonn, Germany and Karen Frenken, Jacob Burke Land and Water Division Food and Agriculture Organization of the United Nations (FAO), Rome, Italy Institute of Crop Science and Resource Conservation Rheinische Friedrich-Wilhelms-Universität Bonn, Germany October 2013 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to the Chief, Publishing and Multimedia Service, Information Division, FAO, Viale delle Terme di Caracalla,
    [Show full text]
  • Annual Irrigation Dynamics in the U.S. Northern High Plains Derived From
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Annual Irrigation Dynamics in the U.S. Northern High Plains 10.1002/2017GL074071 Derived from Landsat Satellite Data Key Points: Jillian M. Deines1,2 , Anthony D. Kendall1 , and David W. Hyndman1 • Sustainable management of agricultural water resources requires 1Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA, 2Center for Systems improved understanding of dynamic irrigation patterns Integration and Sustainability, Michigan State University, East Lansing, MI, USA • We produced high-resolution irrigation maps for 18 years using the full annual Landsat record and Abstract Sustainable management of agricultural water resources requires improved understanding of advances in cloud computing irrigation patterns in space and time. We produced annual, high-resolution (30 m) irrigation maps for • Irrigated area had considerable – spatiotemporal variability driven by 1999 2016 by combining all available Landsat satellite imagery with climate and soil covariables in Google changes in commodity prices, Earth Engine. Random forest classification had accuracies from 92 to 100% and generally agreed with county precipitation, and water accessibility statistics (r2 = 0.88–0.96). Two novel indices that integrate plant greenness and moisture information show promise for improving satellite classification of irrigation. We found considerable interannual variability in Supporting Information: irrigation location and extent, including a near doubling between 2002 and 2016. Statistical modeling • Supporting Information S1 suggested that precipitation and commodity price influenced irrigated extent through time. High prices • Data Set S1 incentivized expansion to increase crop yield and profit, but dry years required greater irrigation intensity, Correspondence to: thus reducing area in this supply-limited region.
    [Show full text]
  • African Farmer-Led Irrigation Development: Re- Framing Agricultural Policy and Investment?
    The Journal of Peasant Studies ISSN: 0306-6150 (Print) 1743-9361 (Online) Journal homepage: http://www.tandfonline.com/loi/fjps20 African farmer-led irrigation development: re- framing agricultural policy and investment? Philip Woodhouse, Gert Jan Veldwisch, Jean-Philippe Venot, Dan Brockington, Hans Komakech & Ângela Manjichi To cite this article: Philip Woodhouse, Gert Jan Veldwisch, Jean-Philippe Venot, Dan Brockington, Hans Komakech & Ângela Manjichi (2016): African farmer-led irrigation development: re-framing agricultural policy and investment?, The Journal of Peasant Studies, DOI: 10.1080/03066150.2016.1219719 To link to this article: http://dx.doi.org/10.1080/03066150.2016.1219719 © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group Published online: 09 Nov 2016. Submit your article to this journal Article views: 903 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=fjps20 Download by: [University of Sheffield] Date: 21 December 2016, At: 04:06 The Journal of Peasant Studies, 2016 http://dx.doi.org/10.1080/03066150.2016.1219719 African farmer-led irrigation development: re-framing agricultural policy and investment? Philip Woodhouse , Gert Jan Veldwisch, Jean-Philippe Venot, Dan Brockington, Hans Komakech and Ângela Manjichi The past decade has witnessed an intensifying focus on the development of irrigation in sub-Saharan Africa. It follows a 20-year hiatus in the wake of disappointing irrigation performance during the 1970s and 1980s. Persistent low productivity in African agriculture and vulnerability of African food supplies to increasing instability in international commodity markets are driving pan-African agricultural investment initiatives, such as the Comprehensive Africa Agricultural Development Programme (CAADP), that identify as a priority the improvement in reliability of water control for agriculture.
    [Show full text]
  • Quantifying Blue and Green Virtual Water Contents in Global Crop Production As Well As Potential Production Losses Without Irrigation
    Journal of Hydrology 384 (2010) 198–217 Contents lists available at ScienceDirect Journal of Hydrology journal homepage: www.elsevier.com/locate/jhydrol Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation Stefan Siebert *, Petra Döll Institute of Physical Geography, University of Frankfurt, Box 111932, 60054 Frankfurt (Main), Germany article info summary Keywords: Crop production requires large amounts of green and blue water. We developed the new global crop Crop water requirement water model GCWM to compute consumptive water use (evapotranspiration) and virtual water content Global crop water model (evapotranspiration per harvested biomass) of crops at a spatial resolution of 50 by 50, distinguishing 26 Virtual water content crop classes, and blue versus green water. GCWM is based on the global land use data set MIRCA2000 that Irrigation water use provides monthly growing areas for 26 crop classes under rainfed and irrigated conditions for the period Crop production Crop yield 1998–2002 and represents multi-cropping. By computing daily soil water balances, GCWM determines evapotranspiration of blue and green water for each crop and grid cell. Cell-specific crop production under both rainfed and irrigated conditions is computed by downscaling average crop yields reported for 402 national and sub-national statistical units, relating rainfed and irrigated crop yields reported in census statistics to simulated ratios of actual to potential crop evapotranspiration for rainfed crops. By restricting water use of irrigated crops to green water only, the potential production loss without any irri- gation was computed. For the period 1998–2002, the global value of total crop water use was 6685 km3 yrÀ1, of which blue water use was 1180 km3 yrÀ1, green water use of irrigated crops was 919 km3 yrÀ1 and green water use of rainfed crops was 4586 km3 yrÀ1.
    [Show full text]
  • Studies on Crop Yields and Their Extreme Value Analysis Over India
    sustainability Article Studies on Crop Yields and Their Extreme Value Analysis over India T. V. Lakshmi Kumar 1, Humberto Barbosa 2,*, S. Madhu 1 and K. Koteswara Rao 3 1 Atmospheric Science Research Laboratory, Department of Physics, SRM Institute of Science and Technology, Tamilnadu 603203, India 2 Laboratory for Analyzing and Processing Satellite Images, Federal University of Alagoas, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceió 57072-900, Brazil 3 Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, Maharashtra 411008, India * Correspondence: [email protected] Received: 6 June 2019; Accepted: 9 August 2019; Published: 27 August 2019 Abstract: Trends of rice, wheat, maize, sorghum (jowar) and pearl millet (bazra) yields of India are studied in relation to water irrigation for the period 1951 to 2012. These crop yields have been subjected to correlation with the Normalized Difference Vegetation Index (NDVI), obtained from NOAA Advanced Very High Resolution Radiometer (AVHRR) (for 1982 to 2000) and Moderate Imaging Spectroradiometer (MODIS) Terra (for 2001 to 2012) to understand the linear association among them. Crop products and food inadequacy in percentage along with the average food production rate, available from FAO have been used in the present study. The present study mainly focuses on the estimation of return values of crop yields for different periods using Gumbell Extreme Value analysis. The present study is very important in the context of increased global food demands by 2050 where in many studies report that food production to be doubled by the year 2050 to meet the demands of increasing population.
    [Show full text]
  • 7. IRRIGATION Statistics of Area Irrigated by Different Sources And
    7. IRRIGATION Statistics of area irrigated by different sources and total area of crops irrigated are presented under this section. Table 7.1(A) & (B) This table presents data regarding total area irrigated by different sources which represents net irrigated area. If two or more crops on a given piece of land are irrigated in the same year from the same source, the area is counted only once. Table 7.2(A) & (B) This table provides data for total irrigated area under various crops which represents gross irrigated area and includes area irrigated under more than one crop during the same year. Area irrigated more than once in a harvest season is counted only once. 99 IRRIGATION Table 7.1(A)- NET AREA UNDER IRRIGATION BY SOURCES ('000 hectare) Canals Tube Wells Year/State/ _________________________________________and other Other Total Union Territory Government Private Tanks Wells sources 1 2 3 4 5 6 7 1990-91 16973 480 2944 24694 2932 48023 1995-96 16561 559 3118 29697 3467 53402 1996-97 16782 480 3343 30818 3626 55049 1997-98 17110 502 2743 31585 3045 54985 1998-99 17205 503 2939 33158 3272 57077 1999-00 16881 194 2535 34259 2915 56783 2000-01(P) 15973 199 2475 33454 2739 54839 2001-02(P) 16134 206 2291 34511 2726 55868 2002-03(P) 14669 202 1868 33834 2583 53156 2002-03 State: Andhra Pradesh 1209 - 426 1842 137 3614 Arunachal Pradesh - - - - 42 42 Assam 152 - - 2 20 174 Bihar 966 - 111 2251 134 3462 Chhattisgarh 734 - 52 197 85 1068 Goa 4 - - 20 - 24 Gujarat 380 - 14 2637 15 3046 Haryana 1433 - - 1522 11 2966 Himachal Pradesh 4 - - 12 108
    [Show full text]