Characterization of Three Methcathinone Analogs: 4-Methylmethcathinone, Methylone, and Bk-MBDB
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recommended Methods for the Identification and Analysis of Synthetic Cathinones in Seized Materialsd
Recommended methods for the Identification and Analysis of Synthetic Cathinones in Seized Materials (Revised and updated) MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES Photo credits:UNODC Photo Library; UNODC/Ioulia Kondratovitch; Alessandro Scotti. Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Recommended Methods for the Identification and Analysis of Synthetic Cathinones in Seized Materials (Revised and updated) MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES UNITED NATIONS Vienna, 2020 Note Operating and experimental conditions are reproduced from the original reference materials, including unpublished methods, validated and used in selected national laboratories as per the list of references. A number of alternative conditions and substitution of named commercial products may provide comparable results in many cases. However, any modification has to be validated before it is integrated into laboratory routines. ST/NAR/49/REV.1 Original language: English © United Nations, March 2020. All rights reserved, worldwide. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of names of firms and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Acknowledgements The Laboratory and Scientific Section of the UNODC (LSS, headed by Dr. Justice Tettey) wishes to express its appreciation and thanks to Dr. -
Quantification of Drugs of Abuse in Municipal Wastewater Via SPE and Direct Injection Liquid Chromatography Mass Spectrometry
Anal Bioanal Chem (2010) 398:2701–2712 DOI 10.1007/s00216-010-4191-9 ORIGINAL PAPER Quantification of drugs of abuse in municipal wastewater via SPE and direct injection liquid chromatography mass spectrometry Kevin J. Bisceglia & A. Lynn Roberts & Michele M. Schantz & Katrice A. Lippa Received: 2 June 2010 /Revised: 30 August 2010 /Accepted: 2 September 2010 /Published online: 24 September 2010 # US Government 2010 Abstract We present an isotopic-dilution direct injection 50 ng/L. We also present a modified version of this method reversed-phase liquid chromatography–tandem mass spec- that incorporates solid-phase extraction to further enhance trometry method for the simultaneous determination of 23 sensitivity. The method includes a confirmatory LC separa- drugs of abuse, drug metabolites, and human-use markers in tion (selected by evaluating 13 unique chromatographic municipal wastewater. The method places particular emphasis phases) that has been evaluated using National Institute of on cocaine; it includes 11 of its metabolites to facilitate Standards and Technology Standard Reference Material 1511 assessment of routes of administration and to enhance the Multi-Drugs of Abuse in Freeze-Dried Urine. Seven analytes accuracy of estimates of cocaine consumption. Four opioids (ecgonine methyl ester, ecgonine ethyl ester, anhydroecgo- (6-acetylmorphine, morphine, hydrocodone, and oxycodone) nine methyl ester, m-hydroxybenzoylecgonine, p-hydroxy- are also included, along with five phenylamine drugs benzoyl-ecgonine, ecgonine, and anhydroecgonine) were (amphetamine, methamphetamine, 3,4-methylenedioxy- detected for the first time in a wastewater sample. methamphetamine, methylbenzodioxolyl-butanamine, and 3,4-methylenedioxy-N-ethylamphetamine) and two human- Keywords Wastewater . Illicit drugs . Urinary metabolites . use markers (cotinine and creatinine). -
2015-02 Toxicology Rapid Testing Panel
SOUTH CAROLINA LAW ENFORCEMENT DIVISION NIKKI R. HALEY MARK A. KEEL Governor Chief FORENSIC SERVICES LABORATORY CUSTOMER NOTICE 2015-02 REGARDING TOXICOLOGY RAPID TESTING PANEL August 12, 2015 This notice is to inform the Coroners of South Carolina of a new testing panel available through the SLED Toxicology Department. On Monday, August 17th, the Toxicology Department will begin offering both a Rapid Testing Panel in addition to the already available Expanded Testing Panel. This Rapid Testing Panel is to be utilized in cases where the Expanded Testing Panel is not warranted, specifically where a cause of death has already been established. The Rapid Testing Panel will consist of volatiles analysis, to include, ethanol, acetone, isopropanol and methanol, drug screens, and drug confirmation/quantitation of positive screens. The cases assigned to the Rapid Testing Panel will have an expedited turnaround time. Targeted turn around times will be two weeks for negative cases and six weeks or less for positive cases. While every effort will be made to adhere to these time frames, additional time may be required on occasion due to the nature of postmortem samples. Submitters will be notified if there is a problem with a particular sample. Please see attachment regarding specifically which substances are covered by the Rapid Testing Panel and the Expanded Testing Panel. As always, a detailed case history and list of drugs suspected is appreciated. Rapid Panel and Expanded Panel will be choices available in iLAB. Please contact Lt. Dustin Smith (803-896-7385) with additional questions. ALI-359-T An Accredited Law Enforcement Agency P.O. -
Pharmacokinetics of Mephedrone Enantiomers in Whole Blood After a Controlled Intranasal Administration to Healthy Human Volunteers
pharmaceuticals Article Pharmacokinetics of Mephedrone Enantiomers in Whole Blood after a Controlled Intranasal Administration to Healthy Human Volunteers Joanna Czerwinska 1, Mark C. Parkin 1,2, Agostino Cilibrizzi 3 , Claire George 4, Andrew T. Kicman 1, Paul I. Dargan 5,6 and Vincenzo Abbate 1,* 1 King’s Forensics, Department of Analytical, Environmental and Forensic Sciences, King’s College London, London SE1 9NH, UK; [email protected] (J.C.); MarkParkin@eurofins.co.uk (M.C.P.); [email protected] (A.T.K.) 2 Toxicology Department, Eurofins Forensic Services, Teddington TW11 0LY, UK 3 Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK; [email protected] 4 Alere Toxicology (Now Part of Abbott), Abingdon OX14 1DY, UK; [email protected] 5 Clinical Toxicology, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK; [email protected] 6 Clinical Toxicology, Guy’s and St Thomas’ NHS Foundation Trust and King’s Health Partners, London SE1 7EH, UK * Correspondence: [email protected] Abstract: Mephedrone, which is one of the most popular synthetic cathinones, has one chiral centre and thus exists as two enantiomers: R-(+)-mephedrone and S-(−)-mephedrone. There are some preliminary data suggesting that the enantiomers of mephedrone may display enantioselective phar- macokinetics and exhibit different neurological effects. In this study, enantiomers of mephedrone were resolved via chromatographic chiral recognition and the absolute configuration was unambigu- ously determined by a combination of elution order and chiroptical analysis (i.e., circular dichroism). A chiral liquid chromatography tandem mass spectrometry method was fully validated and was Citation: Czerwinska, J.; Parkin, M.C.; applied to the analysis of whole blood samples collected from a controlled intranasal administra- Cilibrizzi, A.; George, C.; Kicman, A.T.; tion of racemic mephedrone hydrochloride to healthy male volunteers. -
3,4-Methylenedioxymethcathinone (Methylone) [“Bath Salt,” Bk-MDMA, MDMC, MDMCAT, “Explosion,” “Ease,” “Molly”] December 2019
Drug Enforcement Administration Diversion Control Division Drug & Chemical Evaluation Section 3,4-Methylenedioxymethcathinone (Methylone) [“Bath salt,” bk-MDMA, MDMC, MDMCAT, “Explosion,” “Ease,” “Molly”] December 2019 Introduction: discriminate DOM from saline. 3,4-Methylenedioxymethcathinone (methylone) is a Because of the structural and pharmacological similarities designer drug of the phenethylamine class. Methylone is a between methylone and MDMA, the psychoactive effects, adverse synthetic cathinone with substantial chemical, structural, and health risks, and signs of intoxication resulting from methylone pharmacological similarities to 3,4-methylenedioxymeth- abuse are likely to be similar to those of MDMA. Several chat amphetamine (MDMA, ecstasy). Animal studies indicate that rooms discussed pleasant and positive effects of methylone when methylone has MDMA-like and (+)-amphetamine-like used for recreational purpose. behavioral effects. When combined with mephedrone, a controlled schedule I substance, the combination is called User Population: “bubbles.” Other names are given in the above title. Methylone, like other synthetic cathinones, is a recreational drug that emerged on the United States’ illicit drug market in 2009. It is perceived as being a ‘legal’ alternative to drugs of Licit Uses: Methylone is not approved for medical use in the United abuse like MDMA, methamphetamine, and cocaine. Evidence States. indicates that youths and young adults are the primary users of synthetic cathinone substances which include methylone. However, older adults also have been identified as users of these Chemistry: substances. O H O N CH3 Illicit Distribution: CH O 3 Law enforcement has encountered methylone in the United States as well as in several countries including the Netherlands, Methylone United Kingdom, Japan, and Sweden. -
(19) United States (12) Patent Application Publication (10) Pub
US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist. -
Structure-Cytotoxicity Relationship Profile of 13 Synthetic Cathinones In
Neurotoxicology 75 (2019) 158–173 Contents lists available at ScienceDirect Neurotoxicology journal homepage: www.elsevier.com/locate/neuro Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells T ⁎ Jorge Soaresa, , Vera Marisa Costaa, Helena Gasparb,c, Susana Santosd,e, Maria de Lourdes Bastosa, ⁎ Félix Carvalhoa, João Paulo Capelaa,f, a UCIBIO, REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal b BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Portugal c MARE - Centro de Ciências do Mar e do Ambiente, Escola Superior de Turismo e Tecnologia do Mar, Instituto Politécnico de Leiria, Portugal d Centro de Química e Bioquímica (CQB), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal e Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Portugal f FP-ENAS (Unidade de Investigação UFP em Energia, Ambiente e Saúde), CEBIMED (Centro de Estudos em Biomedicina), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Portugal ARTICLE INFO ABSTRACT Keywords: Synthetic cathinones also known as β-keto amphetamines are a new group of recreational designer drugs. We Synthetic cathinones aimed to evaluate the cytotoxic potential of thirteen cathinones lacking the methylenedioxy ring and establish a Classical amphetamines putative structure-toxicity profile using differentiated SH-SY5Y cells, as well as to compare their toxicity to that Cytotoxicity of amphetamine (AMPH) and methamphetamine (METH). Cytotoxicity assays [mitochondrial 3-(4,5-dimethyl-2- SH-SY5Y cells thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) reduction and lysosomal neutral red (NR) uptake] per- Structure-toxicity relationship formed after a 24-h or a 48-h exposure revealed for all tested drugs a concentration-dependent toxicity. -
MDMA) Cause Selective Ablation of Serotonergic Axon Terminals in Forebrain: Lmmunocytochemical Evidence for Neurotoxicity
The Journal of Neuroscience, August 1988, 8(8): 2788-2803 Methylenedioxyamphetamine (MDA) and Methylenedioxymetham- phetamine (MDMA) Cause Selective Ablation of Serotonergic Axon Terminals in Forebrain: lmmunocytochemical Evidence for Neurotoxicity E. O’Hearn,” G. Battaglia, lab E. B. De Souza,’ M. J. Kuhar,’ and M. E. Molliver Departments of Neuroscience, and Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and ‘Neuroscience Branch, Addiction Research Center, National Institute on Drug Abuse, Baltimore, Maryland 21224 The psychotropic amphetamine derivatives 3,4-methylene- The synthetic amphetamine derivatives 3,4-methylenedioxy- dioxyamphetamine (MDA) and 3,4-methylenedioxymetham- amphetamine (MDA) and 3,4-methylenedioxymethamphet- phetamine (MDMA) have been used for recreational and amine (MDMA) are potent mood-altering drugs that have at- therapeutic purposes in man. In rats, these drugs cause large tained public interest (Seymour, 1986) due to their widespread, reductions in brain levels of serotonin (5HT). This study self-administration by young adults (e.g., Klein, 1985). These employs immunocytochemistry to characterize the neuro- drugs have also been proposed for medical use in psychotherapy toxic effects of these compounds upon monoaminergic neu- because they produce augmentation of mood and enhanced in- rons in the rat brain. Two weeks after systemic administra- sight (Naranjo et al., 1967; Yensen et al., 1976; Di Leo, 198 1; tion of MDA or MDMA (20 mg/kg, s.c., twice daily for 4 d), Greer and Tolbert, 1986; Grinspoon and Bakalar, 1986). How- there is profound loss of serotonergic (5HT) axons through- ever, concern has been raised about the safety of these com- out the forebrain; catecholamine axons are completely pounds based on evidence that they may be toxic to brain seroto- spared. -
10.30.19 Didactic
STIMULANTS PART II Michael H. Baumann, Ph.D. Designer Drug Research Unit (DDRU), Intramural Research Program, NIDA, NIH Baltimore, MD 21224 Chronology of Stimulant Misuse 1. 2000s: Methamphetamine 2. 2010s: Bath Salts 3. Summary 2 Topics Covered for Each Substance Chemistry Formulations and Methods of Use Pharmacokinetics and Metabolism Desired and Adverse Effects Chronic and Withdrawal Effects Neurobiology Treatments 2000s: Methamphetamine Methamphetamine, a synthetic stimulant 5 Formulations and Methods of Use Methamphetamine (i.e., Ice or Crystal) Smoking using pipes Methamphetamine HCl Intravenous injection of solutions using needle and syringe Intranasal snorting of crystals Pharmacokinetics and Metabolism Pharmacokinetics Smoked and intravenous drugs reach brain within seconds Intranasal drug reaches brain within minutes Much longer half-life than cocaine Metabolism N-demethylation to form amphetamine (bioactive) Hydroxylation to form inactive metabolites Desired Effects Enhanced Mood and Euphoria Increased Attention and Alertness Decreased Need for Sleep Appetite Suppression Sexual Arousal Adverse Effects Psychosis Arrhythmias, Palpitations, Heart Attack Hypertension, Stroke Hyperthermia, Rhabdomyolysis Multisystem Organ Failure 11 www.facesofmeth.us. “METH Mouth” 12 Molecular Sites of Action SLC6 Monoamine Transporters Dopamine transporter (DAT) Norepinephrine transporter (NET) 5-HT transporter (SERT) Other sites Vesicular Monoamine Transporter 2 (VMAT2) Trace amine-associated receptors (TAAR1) -
The 2013 "Research on Drug Evidence"
The 2013 “Research on Drug Evidence” Report [From the 17th ICPO / INTERPOL Forensic Science Symposium] Robert F. X. Klein U.S. Department of Justice Drug Enforcement Administration Special Testing and Research Laboratory 22624 Dulles Summit Court Dulles, VA 20166 [[email protected]] ABSTRACT: A reprint of the 2013 “Research on Drug Evidence” Report (a review) is provided. KEYWORDS: INTERPOL, Illicit Drugs, Controlled Substances, Forensic Chemistry. Important Information: Distributed at the 17th ICPO / INTERPOL Forensic Science Symposium, Lyon, France, October 8 - 10, 2013.* Authorized Reprint. Copyright INTERPOL. All rights reserved. May not be reprinted without express permission from INTERPOL. For pertinent background, see: Klein RFX. ICPO / INTERPOL Forensic Science Symposia, 1995 - 2016. “Research on Drug Evidence”. Prefacing Remarks (and a Request for Information). Microgram Journal 2016;13(1-4):1-3. Citations in this report from the Journal of the Clandestine Laboratory Investigating Chemists Association were (and remain) Law Enforcement Restricted. The "General Overview" (Talking Paper) was removed from this reprint (Editor's discretion). This reprint is derived from the original electronic document, and is not an image of the best available hard copy (as was utilized for the 1995 and 1998 reports). For this reason, the pagination in the Proceedings is not retained in this reprint, some minor reformatting was done to eliminate deadspace, and all widow and orphan lines were left as is. [* Due to travel restrictions in effect in late 2013, this report and the associated "General Overview" (Talking Paper) was not actually presented, but rather the report was only distributed to the attendees.] Microgram Journal 2016, Volume 13; Numbers 1-4 511 Research on Drug Evidence January 1, 2010 - June 30, 2013 Presented by: Jeffrey H. -
MDMA, MBDB' and I! I the Classichallucinogens
Differences Between the Mechanism I t of Action of MDMA, MBDB' and i! I the ClassicHallucinogens. i Identification of a New Therapeutic Class: Entactogens Jawi'ri", ! 7 U$ DAVID E. NICHOLS, PH.D.* The widespread use of psychedelic drugs, such as quantitative structure-activity relationships (QSARs). lysergic ac;.d diethylamide (LSD), during the 1960's and Simply stated, attempts are made to find quantitative 1970's IcC to severe reactions by governmental agencies correlations (or equations) that relate biological activity to and proscriptions against their use. However, with the fundamental properties of the molecule. This approach is high deg _e of interest in mind-altering drugs in the being widely developed in the pharmaceutical industry in United States, as evidenced by their widespread popular- order to understand more fully how particular types of ity, it wasonlyamatteroftimebeforenewdrugsappeared drugs work, and to be able to predict which additional that were developed outside of the pharmaceutical corn- molecules should be synthesized. It should also be added panics, that no equations have been developed that adequately j Nearly 70 years after its first synthesis, 3,4- correlate hallucinogenic or psychedelic activity with any methy'enedioxymethamphetamine (MDMA) was redis- particular molecular property. covered. Although it had its' more recent origin in the class In this context, it is important to define clearly the of dr. gs that is generally defined as psychedelic or hallu- type of biological activity that is being measured. It is cino enic, it clearly appears different from LSD. In hu- typical that if a molecule has several different sites of mar , MDMA induces a state of reduced anxiety and action in the brain, that each oneof these actions may be lc .red defensiveness that makes it attractive to thera- related to entirely different structural features or proper- pi . -
Recommended Methods for the Identification and Analysis Of
Vienna International Centre, P.O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES Laboratory and Scientific Section United Nations Office on Drugs and Crime Vienna RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES UNITED NATIONS New York, 2006 Note Mention of company names and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. ST/NAR/34 UNITED NATIONS PUBLICATION Sales No. E.06.XI.1 ISBN 92-1-148208-9 Acknowledgements UNODC’s Laboratory and Scientific Section wishes to express its thanks to the experts who participated in the Consultative Meeting on “The Review of Methods for the Identification and Analysis of Amphetamine-type Stimulants (ATS) and Their Ring-substituted Analogues in Seized Material” for their contribution to the contents of this manual. Ms. Rosa Alis Rodríguez, Laboratorio de Drogas y Sanidad de Baleares, Palma de Mallorca, Spain Dr. Hans Bergkvist, SKL—National Laboratory of Forensic Science, Linköping, Sweden Ms. Warank Boonchuay, Division of Narcotics Analysis, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand Dr. Rainer Dahlenburg, Bundeskriminalamt/KT34, Wiesbaden, Germany Mr. Adrian V. Kemmenoe, The Forensic Science Service, Birmingham Laboratory, Birmingham, United Kingdom Dr. Tohru Kishi, National Research Institute of Police Science, Chiba, Japan Dr.