Bibliography of Publications on the Marine Ecology of Juvenile Pacific Salmon in North America, 2006-2014

Total Page:16

File Type:pdf, Size:1020Kb

Bibliography of Publications on the Marine Ecology of Juvenile Pacific Salmon in North America, 2006-2014 NPAFC Doc.1520 Rev. ___ Bibliography of Publications on the Marine Ecology of Juvenile Pacific Salmon in North America, 2006-2014 by Eric Hertz1 and Marc Trudel1,2 1Department of Biology University of Victoria Victoria, British BC, Canada V8W 3N5 2Fisheries and Oceans Canada Science Branch, Pacific Region Pacific Biological Station 3190 Hammond Bay Road Nanaimo, BC, Canada V9T 6N7 Submitted to the NORTH PACIFIC ANADROMOUS FISH COMMISSION by CANADA MARCH 2014 THIS PAPER MAY BE CITED IN THE FOLLOWING MANNER: Hertz, E. and M. Trudel. 2014. Bibliography of publications on the marine ecology of juvenile Pacific salmon in North America, 2006-2014. NPAFC Doc. 1520. 147 pp. (Available at http://www.npafc.org). Keywords: Juvenile Pacific Salmon; Migration; Survival Mechanisms North America Abstract: In this document, we provide a compiliation of primary publications in peer-reviewed journals, as well as applicable NPAFC publications (Bulletin and Documents) that have been published on juvenile Pacific salmon (Oncorhynchus spp.) by North American scientists since 2006. This compilation formed the basis of an overview on recent progress in understanding the marine ecology of juvenile salmon in North America that was presented at the “Third International Workshop on Migration and Survival Mechanisms of Juvenile Salmon and Steelhead in Ocean Ecosystems” in Honolulu. Introduction: The marine ecology of juvenile Pacific salmon (Oncorhynchus spp.) is of the utmost importance to the persistence of salmon stocks. For many Pacific salmon stocks, the mortality rates in the first year of ocean life are a good predictor of year-class strength. Thus, determining the ecological factors that affect mortality during this time is significant for understanding variation in recruitment. In Trudel and Hertz (2013), we reviewed recent progress in understanding the marine ecology of juvenile salmon in North America since the “Second NPAFC International Workshop on Factors Affecting Production of Juvenile Salmon” held in Sapporo, Japan, in 2006. Here, we provide an updated bibliography of material that has been published up to April 1, 2014. This compilation was requested by many participants at the workshop and includes primary publications in peer-reviewed journals, as well as applicable NPAFC publications (Bulletin and Documents). From primary publications, we did not include review papers, or comments and responses. Similarly, we excluded papers that only considered methodological topics (e.g effects of acoustic tags). For NPAFC publications, we did not include extended abstracts, or papers not reporting new results pertaining to the marine ecology of juvenile salmon. We thank the many authors who provided information for this bibliography. 1 Figure 1: Number of peer-reviewed journal articles (grey bars) and NPAFC publications (red bars) published between 2006 and January 2014 pertaining to the marine ecology of juvenile Pacific salmon in North America. References: Trudel, M. & Hertz, E. (2013). Recent Advances in Marine Juvenile Pacific Salmon Research in North America. North Pacific Anadromous Fish Commission Technical Report, 9, 11-20. 2 Agler, B. A., Ruggerone, G. T., Wilson, L. I., & Mueter, F. J. (2013). Historical growth of Bristol Bay and Yukon River, Alaska chum salmon (Oncorhynchus keta) in relation to climate and inter- and intraspecific competition. Deep Sea Research Part II: Topical Studies in Oceanography, 94, 165–177. doi:10.1016/j.dsr2.2013.03.028 We examined Bristol Bay and Yukon River adult chum salmon scales to determine whether climate variability, such as changes in sea surface temperature and climate indices, and high pink and Asian chum salmon abundance reduced chum salmon growth. Annual marine growth increments for 1965–2006 were estimated from scale growth measurements and were modeled as a function of potential explanatory variables using a generalized least squares regression approach. First-year growth of salmon originating from Bristol Bay and the Yukon River showed increased growth in association with higher regional ocean temperatures and was negatively affected by wind mixing and ice cover. Third-year growth was lower when Asian chum salmon were more abundant. Contrary to our hypothesis, warmer large-scale sea surface temperatures in the Gulf of Alaska were also associated with reduced third-year growth. Negative effects of high abundances of Russian pink salmon on third-year growth provided some evidence for interspecific interactions, but the effects were smaller than the effects of Asian chum salmon abundance and Gulf of Alaska sea surface temperature. Although the relative effects of Asian chum salmon and sea surface temperature on the growth of Yukon and Bristol Bay chum salmon were difficult to untangle, we found consistent evidence that high abundances of Asian chum salmon contributed to a reduction in the growth of western Alaska chum salmon. Andrews, A. G., Farley Jr, E. V., Moss, J. H., Murphy, J. M., & Husoe, E. F. (2009). Energy density and length of juvenile pink salmon Oncorhynchus gorbuscha in the eastern Bering Sea from 2004 to 2007: a period of relatively warm and cool sea surface temperatures. North Pacific Anadromous Fish Commission Bulletin, 5, 183–189. Juvenile pink salmon (Oncorhynchus gorbuscha) were examined in the eastern Bering Sea from 2004 to 2007 to assess the influence of ocean temperature on whole body energy content (WBEC), length, and diet. Fish were collected during the United States Bering-Aleutian Salmon International Study (U.S. BASIS) surveys in the eastern Bering Sea. Warmer spring and summer sea surface temperatures prevailed from 2004 to 2005 on the eastern Bering Sea shelf, whereas cooler spring and summer sea surface temperatures occurred from 2006 to 2007.Juvenile pink salmon changed diet between the warm and cool years. Walleye pollock Theragra chalcogramma dominated the diet (> 50% wet mass) in warm years, while walleye pollock were nearly absent from the diet in cool years. Juvenile pink salmon lengths were significantly longer in warm years but WBEC was significantly lower. We interpret our results to indicate that length is not always a reliable measure of energy status Araujo, A.H., Holt, C., Curtis, J. M. R., Perry, R. I., Irvine, J. R., & Michielsens, C. G. J. (2013). Building an ecosystem model using mismatched and fragmented data: A probabilistic network of early marine survival for coho salmon Oncorhynchus kisutch in the Strait of Georgia. Progress in Oceanography, 115, 41–52. doi:10.1016/j.pocean.2013.05.022 We evaluated the effects of biophysical conditions and hatchery production on the early 3 marine survival of coho salmon Oncorhynchus kisutch in the Strait of Georgia, British Columbia, Canada. Due to a paucity of balanced multivariate ecosystem data, we developed a probabilistic network that integrated physical and ecological data and information from literature, expert opinion, oceanographic models, and in situ observations. This approach allowed us to evaluate alternate hypotheses about drivers of early marine survival while accounting for uncertainties in relationships among variables. Probabilistic networks allow users to explore multiple environmental settings and evaluate the consequences of management decisions under current and projected future states. We found that the zooplankton biomass anomaly, calanoid copepod biomass, and herring biomass were the best indicators of early marine survival. It also appears that concentrating hatchery supplementation during periods of negative PDO and ENSO (Pacific Decadal and El Niño Southern Oscillation respectively), indicative of generally favorable ocean conditions for salmon, tends to increase survival of hatchery coho salmon while minimizing negative impacts on the survival of wild juveniles. Scientists and managers can benefit from the approach presented here by exploring multiple scenarios, providing a basis for open and repeatable ecosystem-based risk assessments when data are limited. Armstrong, J. L., Myers, K. W., Beauchamp, D. A., Davis, N. D., Walker, R. V., Boldt, J. L., Piccolo, J. J., Haldorson, L. J., & Moss, J. H. (2008). Interannual and spatial feeding patterns of hatchery and wild juvenile pink salmon in the Gulf of Alaska in years of low and high survival. Transactions of the American Fisheries Society, 137(5), 1299–1316. doi:10.1577/T07-196.1 To improve understanding of the mechanisms affecting growth and survival, we evaluated the summer diets and feeding patterns (prey composition, energy density, and stomach fullness) of hatchery and wild juvenile pink salmon Oncorhynchus gorbuscha in Prince William Sound (PWS) and the northern coastal Gulf of Alaska (CGOA). Our study (1999-2004) included 2 years of low (∼3%), mid (∼5%), and high (∼8-9%) survival of PWS hatchery pink salmon. Because variations in diet should affect growth and ultimately survival, we expected that the variations in diet, growth, and survival would be correlated. During August in the CGOA, pteropod-dominated diets and higher gut fullness corresponded to high survival (5-9%), and copepod-dominated diets and lower gut fullness corresponded to low survival (3%). Within years, no significant differences were found in diet composition or gut fullness between hatchery and wild fish or among the four PWS hatchery stocks. Diets varied by water mass (habitat) as juveniles moved from PWS to more saline habitats in the CGOA. In July, when juveniles were most abundant in PWS, their diets were dominated by pteropods and hyperiid amphipods.
Recommended publications
  • Twenty Thousand Parasites Under The
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Departament de Biologia Animal, Biologia Vegetal i Ecologia Tesis Doctoral Twenty thousand parasites under the sea: a multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean) Tesis doctoral presentada por Sara Maria Dallarés Villar para optar al título de Doctora en Acuicultura bajo la dirección de la Dra. Maite Carrassón López de Letona, del Dr. Francesc Padrós Bover y de la Dra. Montserrat Solé Rovira. La presente tesis se ha inscrito en el programa de doctorado en Acuicultura, con mención de calidad, de la Universitat Autònoma de Barcelona. Los directores Maite Carrassón Francesc Padrós Montserrat Solé López de Letona Bover Rovira Universitat Autònoma de Universitat Autònoma de Institut de Ciències Barcelona Barcelona del Mar (CSIC) La tutora La doctoranda Maite Carrassón Sara Maria López de Letona Dallarés Villar Universitat Autònoma de Barcelona Bellaterra, diciembre de 2016 ACKNOWLEDGEMENTS Cuando miro atrás, al comienzo de esta tesis, me doy cuenta de cuán enriquecedora e importante ha sido para mí esta etapa, a todos los niveles.
    [Show full text]
  • Catching the Complexity of Salmon-Louse Interactions
    Fish and Shellfish Immunology 90 (2019) 199–209 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Catching the complexity of salmon-louse interactions T ∗ Cristian Gallardo-Escáratea, , Valentina Valenzuela-Muñoza, Gustavo Núñez-Acuñaa, Crisleri Carreraa, Ana Teresa Gonçalvesa, Diego Valenzuela-Mirandaa, Bárbara P. Benaventea, Steven Robertsb a Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile b School of Aquatic and Fishery Sciences (SAFS), University of Washington, Seattle, USA ABSTRACT The study of host-parasite relationships is an integral part of the immunology of aquatic species, where the complexity of both organisms has to be overlayed with the lifecycle stages of the parasite and immunological status of the host. A deep understanding of how the parasite survives in its host and how they display molecular mechanisms to face the immune system can be applied for novel parasite control strategies. This review highlights current knowledge about salmon and sea louse, two key aquatic animals for aquaculture research worldwide. With the aim to catch the complexity of the salmon-louse interactions, molecular information gleaned through genomic studies are presented. The host recognition system and the chemosensory receptors found in sea lice reveal complex molecular components, that in turn, can be disrupted through specific molecules such as non-coding RNAs. 1. Introduction worldwide the most studied sea lice species are Lepeophtheirus salmonis and Caligus rogercresseyi [8–10]. Annually the salmon industry presents Host-parasite interactions are a complex relationship where one estimated losses of US $ 480 million, representing between 4 and 10% organism benefits the other and often where there is a negative impact of production costs [10].
    [Show full text]
  • Piscirickettsia Salmonis and the Sea Louse Caligus Rogercresseyi
    Disease Resistance in Atlantic Salmon (Salmo salar): Coinfection of the Intracellular Bacterial Pathogen Piscirickettsia salmonis and the Sea Louse Caligus rogercresseyi Jean Paul Lhorente1, Jose´ A. Gallardo2*, Beatriz Villanueva3, Marı´a J. Caraban˜ o3, Roberto Neira1,4 1 Aquainnovo S.A, Puerto Montt, Chile, 2 Pontificia Universidad Cato´lica de Valparaı´so, Valparaı´so, Chile, 3 Departamento de Mejora Gene´tica Animal, INIA, Madrid, Spain, 4 Departamento de Produccio´n Animal, Facultad de Ciencias Agrono´micas, Universidad de Chile, Santiago, Chile Abstract Background: Naturally occurring coinfections of pathogens have been reported in salmonids, but their consequences on disease resistance are unclear. We hypothesized that 1) coinfection of Caligus rogercresseyi reduces the resistance of Atlantic salmon to Piscirickettsia salmonis; and 2) coinfection resistance is a heritable trait that does not correlate with resistance to a single infection. Methodology: In total, 1,634 pedigreed Atlantic salmon were exposed to a single infection (SI) of P. salmonis (primary pathogen) or coinfection with C. rogercresseyi (secondary pathogen). Low and high level of coinfection were evaluated (LC = 44 copepodites per fish; HC = 88 copepodites per fish). Survival and quantitative genetic analyses were performed to determine the resistance to the single infection and coinfections. Main Findings: C. rogercresseyi significantly increased the mortality in fish infected with P. salmonis (SI mortality = 251/545; LC mortality = 544/544 and HC mortality = 545/545). Heritability estimates for resistance to P. salmonis were similar and of 2 2 2 medium magnitude in all treatments (h SI = 0.2360.07; h LC = 0.1760.08; h HC = 0.2460.07). A large and significant genetic correlation with regard to resistance was observed between coinfection treatments (rg LC-HC = 0.9960.01) but not between the single and coinfection treatments (rg SI-LC = 20.1460.33; rg SI-HC = 0.3260.34).
    [Show full text]
  • Host-Parasite Interaction of Atlantic Salmon (Salmo Salar) and the Ectoparasite Neoparamoeba Perurans in Amoebic Gill Disease
    ORIGINAL RESEARCH published: 31 May 2021 doi: 10.3389/fimmu.2021.672700 Host-Parasite Interaction of Atlantic salmon (Salmo salar) and the Ectoparasite Neoparamoeba perurans in Amoebic Gill Disease † Natasha A. Botwright 1*, Amin R. Mohamed 1 , Joel Slinger 2, Paula C. Lima 1 and James W. Wynne 3 1 Livestock and Aquaculture, CSIRO Agriculture and Food, St Lucia, QLD, Australia, 2 Livestock and Aquaculture, CSIRO Agriculture and Food, Woorim, QLD, Australia, 3 Livestock and Aquaculture, CSIRO Agriculture and Food, Hobart, TAS, Australia Marine farmed Atlantic salmon (Salmo salar) are susceptible to recurrent amoebic gill disease Edited by: (AGD) caused by the ectoparasite Neoparamoeba perurans over the growout production Samuel A. M. Martin, University of Aberdeen, cycle. The parasite elicits a highly localized response within the gill epithelium resulting in United Kingdom multifocal mucoid patches at the site of parasite attachment. This host-parasite response Reviewed by: drives a complex immune reaction, which remains poorly understood. To generate a model Diego Robledo, for host-parasite interaction during pathogenesis of AGD in Atlantic salmon the local (gill) and University of Edinburgh, United Kingdom systemic transcriptomic response in the host, and the parasite during AGD pathogenesis was Maria K. Dahle, explored. A dual RNA-seq approach together with differential gene expression and system- Norwegian Veterinary Institute (NVI), Norway wide statistical analyses of gene and transcription factor networks was employed. A multi- *Correspondence: tissue transcriptomic data set was generated from the gill (including both lesioned and non- Natasha A. Botwright lesioned tissue), head kidney and spleen tissues naïve and AGD-affected Atlantic salmon [email protected] sourced from an in vivo AGD challenge trial.
    [Show full text]
  • The Salmon Louse Genome: Copepod Features and Parasitic Adaptations
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435234; this version posted March 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The salmon louse genome: copepod features and parasitic adaptations. Supplementary files are available here: DOI: 10.5281/zenodo.4600850 Rasmus Skern-Mauritzen§a,1, Ketil Malde*1,2, Christiane Eichner*2, Michael Dondrup*3, Tomasz Furmanek1, Francois Besnier1, Anna Zofia Komisarczuk2, Michael Nuhn4, Sussie Dalvin1, Rolf B. Edvardsen1, Sindre Grotmol2, Egil Karlsbakk2, Paul Kersey4,5, Jong S. Leong6, Kevin A. Glover1, Sigbjørn Lien7, Inge Jonassen3, Ben F. Koop6, and Frank Nilsen§b,1,2. §Corresponding authors: [email protected]§a, [email protected]§b *Equally contributing authors 1Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway 2University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway 3Computational Biology Unit, Department of Informatics, University of Bergen 4EMBL-The European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK 5 Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK 6 Department of Biology, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada 7 Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Oluf Thesens vei 6, 1433, Ås, Norway 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435234; this version posted March 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • Inventory of Parasitic Copepods and Their Hosts in the Western Wadden Sea in 1968 and 2010
    INVENTORY OF PARASITIC COPEPODS AND THEIR HOSTS IN THE WESTERN WADDEN SEA IN 1968 AND 2010 Wouter Koch NNIOZIOZ KKoninklijkoninklijk NNederlandsederlands IInstituutnstituut vvooroor ZZeeonderzoekeeonderzoek INVENTORY OF PARASITIC COPEPODS AND THEIR HOSTS IN THE WESTERN WADDEN SEA IN 1968 AND 2010 Wouter Koch Texel, April 2012 NIOZ Koninklijk Nederlands Instituut voor Zeeonderzoek Cover illustration The parasitic copepod Lernaeenicus sprattae (Sowerby, 1806) on its fish host, the sprat (Sprattus sprattus) Copyright by Hans Hillewaert, licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license; CC-BY-SA-3.0; Wikipedia Contents 1. Summary 6 2. Introduction 7 3. Methods 7 4. Results 8 5. Discussion 9 6. Acknowledgements 10 7. References 10 8. Appendices 12 1. Summary Ectoparasites, attaching mainly to the fins or gills, are a particularly conspicuous part of the parasite fauna of marine fishes. In particular the dominant copepods, have received much interest due to their effects on host populations. However, still little is known on the copepod fauna on fishes for many localities and their temporal stability as long-term observations are largely absent. The aim of this project was two-fold: 1) to deliver a current inventory of ectoparasitic copepods in fishes in the southern Wadden Sea around Texel and 2) to compare the current parasitic copepod fauna with the one from 1968 in the same area, using data published in an internal NIOZ report and additional unpublished original notes. In total, 47 parasite species have been recorded on 52 fish species in the southern Wadden Sea to date. The two copepod species, where quantitative comparisons between 1968 and 2010 were possible for their host, the European flounder (Platichthys flesus), showed different trends: Whereas Acanthochondria cornuta seems not to have altered its infection rate or per host abundance between years, Lepeophtheirus pectoralis has shifted towards infection of smaller hosts, as well as to a stronger increase of per-host abundance with increasing host length.
    [Show full text]
  • Morphological and Phylogenetic Analysis of Caligus Spp Isolated from Lates Calcarifer Cultured in Floating Net Cages in Malaysia
    MORPHOLOGICAL AND PHYLOGENETIC ANALYSIS OF CALIGUS SPP ISOLATED FROM LATES CALCARIFER CULTURED IN FLOATING NET CAGES IN MALAYSIA MUHD FAIZUL HELMI BIN AHAMAD HASMI FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 MORPHOLOGICAL AND PHYLOGENETIC ANALYSIS OF CALIGUS SPP ISOLATED FROM LATES CALCARIFER CULTURED IN FLOATING NET CAGES IN MALAYSIA MUHD FAIZUL HELMI BIN AHAMAD HASMI DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate: MUHD FAIZUL HELMI BIN AHAMAD HASMI I/C/Passport No: 850809045109 Regisration/Matric No.: SGR090128 Name of Degree: MASTER OF SCIENCE Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): “MORPHOLOGICAL AND PHYLOGENETIC ANALYSIS OF CALIGUS SPP ISOLATED FROM LATES CAILCARIFER CULTURED IN FLOATING NET CAGES IN MALAYSIA” Field of Study: MOLECULAR PARASITOLOGY I do solemnly and sincerely declare that: (1) I am the sole author/writer of this Work, (2) This Work is original, (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work, (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work
    [Show full text]
  • APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
    APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous
    [Show full text]
  • Observing Copepods Through a Genomic Lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace a Wyngaard6
    Bron et al. Frontiers in Zoology 2011, 8:22 http://www.frontiersinzoology.com/content/8/1/22 DEBATE Open Access Observing copepods through a genomic lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace A Wyngaard6 Abstract Background: Copepods outnumber every other multicellular animal group. They are critical components of the world’s freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion: The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored.
    [Show full text]
  • Characterization of the Salmon Louse Lepeophtheirus Salmonis
    Marine Genomics xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Marine Genomics journal homepage: www.elsevier.com/locate/margen Characterization of the salmon louse Lepeophtheirus salmonis miRNome: Sex- biased differences related to the coding and non-coding RNA interplay ⁎ Gustavo Núñez-Acuña, Cristian Gallardo-Escárate Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile ARTICLE INFO ABSTRACT Keywords: The salmon louse Lepeophtheirus salmonis is a marine ectoparasite that has a detrimental impact on salmon farms. miRNAs Genomic knowledge of adult stages is critical to understand the reproductive success and lifecycle completion of Lepeophtheirus salmonis this species. Here, we report a comprehensive characterization of the L. salmonis miRNome with emphasis on the Small RNA sequencing sex-differences of the parasite. Small-RNA sequencing was conducted on males and females, and mRNA-se- Sex differentiation quencing was also conducted to identify miRNA-targets at these stages. Based on bioinformatics analyses, 3101 putative miRNAs were found in L. salmonis, including precursors and variants. The most abundant and over- expressed miRNAs belonged to the bantam, mir-100, mir-1, mir-263a and mir-276 families, while the most differentially expressed mRNAs corresponded to genes related to reproduction and other biological processes involved in cell-differentiation. Target analyses revealed that the most up-regulated miRNAs in males can act by inhibiting the expression of genes related to female differentiation such as vitellogenin genes. Target prediction and expression patterns suggested a pivotal role of miRNAs in the reproductive development of L. salmonis. 1. Introduction inhabit the marine environment.
    [Show full text]
  • Oust the Louse: Leaping Behaviour Removes Sea Lice from Wild Juvenile Sockeye Salmon Oncorhynchus Nerka
    Received: 21 March 2018 Accepted: 2 June 2018 DOI: 10.1111/jfb.13684 FISH REGULAR PAPER Oust the louse: leaping behaviour removes sea lice from wild juvenile sockeye salmon Oncorhynchus nerka Emma M. Atkinson1 | Andrew W. Bateman2,3 | Lawrence M. Dill1 | Martin Krkošek3,4 | John D. Reynolds1 | Sean C. Godwin1 1Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser We conducted a manipulative field experiment to determine whether the leaping behaviour of University, Burnaby, British Columbia, Canada wild juvenile sockeye salmon Oncorhynchus nerka dislodges ectoparasitic sea lice Caligus clem- 2Department of Geography, University of ensi and Lepeophtheirus salmonis by comparing sea-lice abundances between O. nerka juveniles Victoria, Victoria, British Columbia, Canada prevented from leaping and juveniles allowed to leap at a natural frequency. Juvenile O. nerka 3 Salmon Coast Field Station, Simoom Sound, allowed to leap had consistently fewer sea lice after the experiment than fish that were pre- British Columbia, Canada vented from leaping. Combined with past research, these results imply potential costs due to 4Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, parasitism and indicate that the leaping behaviour of juvenile O. nerka does, in fact, dislodge Ontario, Canada sea lice. Correspondence Emma M. Atkinson, Earth to Ocean Research KEYWORDS Group, Department of Biological Sciences, – Simon Fraser University, Burnaby, British aquaculture, host parasite, leaping, louse, sub-lethal effects, trade-offs Columbia, V5A 1S6, Canada. Email: [email protected] Funding information This work was supported by Simon Fraser University, the University of Toronto, V. and D. Bradshaw, a Natural Sciences and Engineering Research Council of Canada (NSERC) Undergraduate Student Research Award (E.
    [Show full text]
  • Marine Biodiversity: Responding to the Challenges Posed by Climate Change, Fisheries, and Aquaculture
    e Royal Society of Canada Expert Panel Sustaining Canada’s Marine Biodiversity: Responding to the Challenges Posed by Climate Change, Fisheries, and Aquaculture REPORT February 2012 Prof. Isabelle M. Côté Prof. Julian J. Dodson Prof. Ian A. Fleming Prof. Je rey A. Hutchings (Chair) Prof. Simon Jennings Prof. Nathan J. Mantua Prof. Randall M. Peterman Dr. Brian E. Riddell Prof. Andrew J. Weaver, FRSC Prof. David L. VanderZwaag SUSTAINING CANADIAN MARINE BIODIVERSITY An Expert Panel Report on Sustaining Canada's Marine Biodiversity: Responding to the Challenges Posed by Climate Change, Fisheries, and Aquaculture Prepared by: The Royal Society of Canada: The Academies of Arts, Humanities and Sciences of Canada February 2012 282 Somerset Street West, Ottawa ON, K2P 0J6 • Tel: 613-991-6990 • www.rsc-src.ca | 1 Members of the Expert Panel on Sustaining Canadian Marine Biodiversity Isabelle M. Côté, Professor, Department of Biological Sciences, Simon Fraser University Julian J. Dodson, Professeur titulaire, Département de biologie, Université Laval Ian A. Fleming, Professor, Ocean Sciences Centre, Memorial University of Newfoundland Jeffrey A. Hutchings, Killam Professor and Canada Research Chair in Marine Conservation and Biodiversity, Department of Biology, Dalhousie University Panel Chair Simon Jennings, Principal Scientist, Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, UK, and Honorary Professor of Environmental Sciences at the University of East Anglia, UK Nathan J. Mantua, Associate Research Professor, Aquatic and Fisheries Sciences, University of Washington, USA Randall M. Peterman, Professor and Canada Research Chair in Fisheries Risk Assessment and Management, School of Resource and Environmental Management, Simon Fraser University Brian E. Riddell, PhD, CEO, Pacific Salmon Foundation, Vancouver, British Columbia Andrew J.
    [Show full text]