Virus Dynamics in High-Nutrient, Low-Chlorophyll Marine Surface Waters

Total Page:16

File Type:pdf, Size:1020Kb

Virus Dynamics in High-Nutrient, Low-Chlorophyll Marine Surface Waters University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2005 Virus Dynamics in High-Nutrient, Low-Chlorophyll Marine Surface Waters Julie Linda Higgins University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Microbiology Commons Recommended Citation Higgins, Julie Linda, "Virus Dynamics in High-Nutrient, Low-Chlorophyll Marine Surface Waters. " Master's Thesis, University of Tennessee, 2005. https://trace.tennessee.edu/utk_gradthes/4548 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Julie Linda Higgins entitled "Virus Dynamics in High-Nutrient, Low-Chlorophyll Marine Surface Waters." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Microbiology. Steven W. Wilhelm, Major Professor We have read this thesis and recommend its acceptance: John R. Dunlap, Robert N. Moore Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Julie Linda Higgins entitled "Virus Dynamics in High-Nutrient, Low-Chlorophyll Marine Surface Waters." I have examined the final paper copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degreeof Master of Science, with a major in Microbiology. We have read this thesis Acceptance£ r the Council: VIRUS DYNAMICS IN HIGH-NUTRIENT, LOW-CHLOROPHYLL MARINE SURFACEWATERS A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Julie Linda Higgins May2005 DEDICATION This thesis is dedicated to my biggest fans: my parents,Andrew and Linda Higgins who always told me that I could be anything I wanted to be; and my sister, JenniferAnsley Black and brother, Scott Higgins, my best friendsand role models, for their continued love, support and inspiration. 11 ACKNOWLEDGEMENTS I wish to thankall of those people who made this achievement possible. I would like to thankmy advisor, Dr, Wilhelm, forgiving me the guidanceand putting forththe effortto help me become familiarwith the manyfacets in which this thesis is involved and forpresenting me with the opportunitiesto see thingsthat I would have otherwise never experienced. I wish to thankDr. Dunlap forhis assistance with the transmission electron microscope andhis patience during the learningprocess. I would also like to thankDr. Moore forhis time andfeedback while serving on my committee. It is appropriate to also acknowledge the members of the Wilhelm lab: Johanna Rinta-Kantoand Dr. Cecile Mioni for their help with the statistics forthis project; Dr. Melanie Eldridge, Leo Poorvin,andDr. Andy Ouellette fortheir support, guidance,and friendship;Dr. Rinuhi Li, JanetRowe, andLynn Neal forteaching me Japaneseand Lynn Neal forher help while in Japan;Andy Kenst fordwelling as much as I do; Casey Rentz, Matt Smith, andMatt Stedmanfor their help with this project; Matt Carberryfor his help with thisproject andfor being the best house-sitter in history; and finally,Amanda Dean, forher unconditionalsupport, friendship,and patience, and for listening to each storyas if it were the firsttime she'd heardit, even if it was the fifth. I miss you, Pooks ! I wish to acknowledge the captains andcrew of the HakuhoMaru and Tangaroa, andthe chief scientists ofFeCycle and SEEDS II, Dr. PhilBoyd and Dr. Atsushi Tsuda, respectively. I would also like to thankAimee Hodge forher friendshipand support during this process. I wish to thankRick Biddle forhelping me to keep my head on andalways lll reminding me to laugh. Lastly, I would like to thank my family whose encouragement made this work possible, andmy friends,Lilly and Lyle. lV ABSTRACT Iron (Fe) limitationof primaryproductivity in high-nutrient,low-chlorophyll (HNLC)regions is relatively well-studied. Iron fertilizationexperiments as well as bottle incubations have been used to study changesin phytoplankton community biomass and diversity, changes in bacterial growthrates, etc. However, viral activity has been largely ignored in these studies. Viral activity was monitoredduring an iron budget study (FeCycle) in theHNLC waters of the SouthernOcean southwest of New Zealand as well as during a mesoscacle iron fertilizationin the subarctic Pacific(SEEDS II). The goal of these studies was to evaluate the role of viruses in the lysis of bacterial cells and the subsequent regeneration of iron and otherkey nutrients. Two methods, a transmission electronmicroscopy (TEM) approach anda dilution assay, were used to measureviral production in each study andcomparisons were made as to the appropriateness of each. From thesestudies, it appearsthat the viral community indirectly responds to changes in trophicproduction as observed by changes in virus abundanceand production, while burstsize and frequency of infection remain constant. These results suggest that there is a decrease in thelength of lytic cycle afterproductivity is stimulated. Virus-induced lysis was foundto regenerate up to 70 pM Fe in the SouthernOcean, andnearly 200 pM Fe in the subarcticPacific. While thereis little doubt as to the usefulnessof TEM and its importancein determininglytic burst sizes in naturalpopulations, the observations in this study suggest that there are problems associated with inferences concerningcommunity mortality fromsuch observations,especially duringperiods of trophic change. V TABLE OF CONTENTS BACKGROUND ................................................................................................................ 1 1. The Microbial Food Web ............................................................................................ 2 2. Viruses in Marine Systems ......................................................................................... 4 3. The Iron Hypothesis .................................................................................................... 8 4. Iron Fertiliza.tionExperiments .................................................................................. 11 PART ONE: AN ESTIMATION OF VIRAL DYNAMICS IN AN SF6-LABELED HNLCPATCH .................................................................................................................. 16 1. Introduction............................................................................................................... 1 7 2. Materials and Methods .............................................................................................. 18 2.1 Study site andsampling ...................................................................................... 18 2.2 Phytoplankton, bacterial, and viral abundance................................................... 18 2.3 Determinationof estimated burst size and the frequencyof visibly infectedcells ................................................................................................................................... 20 2.4 Calculating the frequencyof infected cells and viral-mediated bacterial mortality ......................................................................................................................... · ......... 20 2.5 Bacterial and viral production and virus-induced mortality rate estimates ........ 21 3. Results ....................................................................................................................... 24 3.1 Bacterial andviral abundance and production .................................................... 24 3.2 Chlorophyll a, dissolved iron and iron regeneration ........................................... 24 3.3 VMB, burst size other nutrient regeneration....................................................... 26 4. Discussion ................................................................................................................. 28 4.1 Increase in chlorophyll a, dissolved iron, and viral activity (by dilution approach)................................................................................................................... 28 4.2 VMB, burst size and nutrient remobiliza.tion...................................................... 31 5. PartI Conclusions ..................................................................................................... 34 PART TWO: A MESOSCALEIRON FERTILIZATION IN THE SUBARCTIC PACIFIC OCEAN AND ITS EFFECTS ON VIRAL ACTIVITY .................................. 35 1. Introduction............................................................................................................... 36 2. Materials an.dMethods .............................................................................................. 38 2.1 Study site and sampling...................................................................................... 3 8 2.2 Phytoplankton,bacterial and viral abundance, and bacterial production ........... 38 2.3 Additional viral parametersand tests for significance........................................ 40 3. Results ......................................................................................................................
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Effects of the Filter-Feeding Benthic Bivalve Corbicula Fluminea
    water Article Effects of the Filter-Feeding Benthic Bivalve Corbicula fluminea on Plankton Community and Water Quality in Aquatic Ecosystems: A Mesocosm Study Yuqin Rong 1,2, Yali Tang 1,2,† , Lijuan Ren 1,2, William D Taylor 3 , Vladimir Razlutskij 4, Luigi Naselli-Flores 5 , Zhengwen Liu 1,6,7,* and Xiufeng Zhang 1,2,* 1 Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; [email protected] (Y.R.); [email protected] (Y.T.); [email protected] (L.R.) 2 Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China 3 Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; [email protected] 4 State Scientific and Production Amalgamation Scientific-Practical Center of the National Academy of Sciences of Belarus for Biological Resources, 220072 Minsk, Belarus; [email protected] 5 Department STEBICEF, University of Palermo, 90123 Palermo, Italy; [email protected] 6 Sino-Danish Centre for Education and Research (SDC), Beijing 100070, China 7 State Key Laboratory of Lake Science and Environment, Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China * Correspondence: [email protected] (Z.L.); [email protected] (X.Z.) † The author contributed equally to this work. Abstract: The influence of filter-feeding bivalves on plankton communities, nutrients, and water Citation: Rong, Y.; Tang, Y.; Ren, L.; quality in a given aquatic ecosystem is so profound that they can be considered ecosystem engineers. Taylor, W.D; Razlutskij, V.; In a 70-day mesocosm experiment, we tested the hypothesis that Corbicula fluminea would change Naselli-Flores, L.; Liu, Z.; Zhang, X.
    [Show full text]
  • Cobalt Publications Rejected As Not Acceptable for Plants and Invertebrates
    Interim Final Eco-SSL Guidance: Cobalt Cobalt Publications Rejected as Not Acceptable for Plants and Invertebrates Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition ). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection ( Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding). No Dose Abdel-Sabour, M. F., El Naggr, H. A., and Suliman, S. M. 1994. Use of Inorganic and Organic Compounds as Decontaminants for Cobalt T-60 and Cesium-134 by Clover Plant Grown on INSHAS Sandy Soil. Govt Reports Announcements & Index (GRA&I) 15, 17 p. No Control Adams, S. N. and Honeysett, J. L. 1964. Some Effects of Soil Waterlogging on the Cobalt and Copper Status of Pasture Plants Grown in Pots. Aust.J.Agric.Res. 15, 357-367 OM, pH Adams, S.
    [Show full text]
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
    [Show full text]
  • Undocumented Water Column Sink for Cadmium in Open Ocean Oxygen-Deficient Zones
    Undocumented water column sink for cadmium in open ocean oxygen-deficient zones David J. Janssena, Tim M. Conwayb, Seth G. Johnb, James R. Christianc, Dennis I. Kramera, Tom F. Pedersena, and Jay T. Cullena,1 aSchool of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada V8W 2Y2; bDepartment of Earth and Ocean Sciences, University of South Carolina, Columbia, SC 29208; and cFisheries and Oceans Canada, Victoria, BC, Canada V8W 3V6 Edited by Edward A. Boyle, Massachusetts Institute of Technology, Cambridge, MA, and approved April 4, 2014 (received for review February 6, 2014) 3− Cadmium (Cd) is a micronutrient and a tracer of biological this sink induces local changes in Cd:PO4 must be understood productivity and circulation in the ocean. The correlation between to correctly interpret paleoceanographic records. dissolved Cd and the major algal nutrients in seawater has led to the use of Cd preserved in microfossils to constrain past ocean nutrient Results and Discussion distributions. However, linking Cd to marine biological processes Cadmium and other trace metals such as copper (Cu) and zinc requires constraints on marine sources and sinks of Cd. Here, we (Zn) are known to form solid sulfide precipitates in the ocean show a decoupling between Cd and major nutrients within oxygen- under conditions of anoxia where sulfide is present. For example, deficient zones (ODZs) in both the Northeast Pacific and North precipitation of Cd sulfide (CdS) (13) leading to dissolved Cd Atlantic Oceans, which we attribute to Cd sulfide (CdS) precipitation depletion is observed at oxic–anoxic interfaces in stratified basins in euxinic microenvironments around sinking biological particles.
    [Show full text]
  • Does a Latitudinal Gradient Exist?
    Notes 1813 Limnol. Oceatzogr., 38(8). 1993, 1813-1818 (0 1993, by the Ameruzan Society of Limnology and Oceanography. Inc Chlorophyll a concentrations in the North Pacific: Does a latitudinal gradient exist? Abstract -Chlorophyll a concentrations were tion properties of glass-fiber and membrane measured as a function of depth from 28 to 48”N filters have demonstrated that glass-fiber filters along 152”W in March 199 1 with Whatman GF/F and 0.2~pm Nuclepore filters. Surface Chl a concen- inadequately retain < 1-pm-diameter cells due trations measured with 0.2~ym Nuclepore filters were to their large nominal pore size (0.7 and 1.2 up to fourfold higher than those measured with pm for Whatman GF/F and GF/C filters). Low Whatman GF/F filters. The largest difference be- retention efficiencies of glass-fiber filters result tween the two filter types was found in subtropical waters, where picoplankton were a major constituent when Chl a concentrations are low (<0.5-l .O of the phytoplankton assemblage. Chl a concentra- pg Chl a liter-‘) and when picoplankton are a tions integrated from 0 to 175 m showed a threefold dominant fraction of the phytoplankton as- increase (9-26 mg Chl a m-I) between 28 and 48”N semblage (Phinney and Yentsch 1985; Taguchi when Whatman GF/F filters were used. However, integrated Chl a concentrations based on measure- and Laws 1988). Under such conditions the ments with 0.2~pm Nuclepore filters were nearly con- use of membrane filters with submicron pore stant (25-3 1 mg Chl a mpZ) over the transect.
    [Show full text]
  • Measurements of Plankton Distribution in the Ocean Using
    Measurements of Plankton Distribution in the Ocean Using Submersible Holography Edwin Malkiel, Omar Alquaddoomi and Joseph Katz Department of Mechanical Engineering, The Johns Hopkins University Baltimore, MD 21218 USA Abstract A submersible holography system for in situ recordings of the spatial distribution of plankton has been developed and deployed. The system utilizes a ruby laser with an in-line recording configuration and has a sample volume of 732 ml. The reconstructed images have a resolution ranging from 10 - 20 µm for spherical particles and 3 µm for linear particles that lie within 100 mm from the film. Reconstructed volumes from holograms recorded during two recent deployments in the Strait of Georgia are scanned to obtain focused images of the particles, their position, size, orientation. The particles are also classified to several groups based on their morphological characteristics. One of the sets includes holograms recorded during a 15 minute vertical transect of the top 30 m of the water column. Along with the holograms, the data includes records of depth, temperature, salinity, dissolved oxygen and optical transmissivity. The results show substantial variations in population makeup between layers spaced a short distance apart, particle concentration maxima at and near a pycnocline and evidence of zooplankton migration. A predominant horizontal diatom orientation is indicated in the region of peak diatom concentration. Individual holograms show clustering within different classes of plankton. Keywords: holography, plankton distribution, thin layer, copepod 1.0 Introduction As demand on the world's fisheries increase, there is considerable concern over the sustainability of such resources. There is also concern over the increasing frequency of harmful algal blooms in coastal waters, not only because of their effect on the fisheries, but also because their effect on people.
    [Show full text]
  • Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun
    OCEANOGRAPHY – Vol.II - Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun BIOLOGICAL OCEANOGRAPHY Legendre, Louis and Rassoulzadegan, Fereidoun Laboratoire d'Océanographie de Villefranche, France. Keywords: Algae, allochthonous nutrient, aphotic zone, autochthonous nutrient, Auxotrophs, bacteria, bacterioplankton, benthos, carbon dioxide, carnivory, chelator, chemoautotrophs, ciliates, coastal eutrophication, coccolithophores, convection, crustaceans, cyanobacteria, detritus, diatoms, dinoflagellates, disphotic zone, dissolved organic carbon (DOC), dissolved organic matter (DOM), ecosystem, eukaryotes, euphotic zone, eutrophic, excretion, exoenzymes, exudation, fecal pellet, femtoplankton, fish, fish lavae, flagellates, food web, foraminifers, fungi, harmful algal blooms (HABs), herbivorous food web, herbivory, heterotrophs, holoplankton, ichthyoplankton, irradiance, labile, large planktonic microphages, lysis, macroplankton, marine snow, megaplankton, meroplankton, mesoplankton, metazoan, metazooplankton, microbial food web, microbial loop, microheterotrophs, microplankton, mixotrophs, mollusks, multivorous food web, mutualism, mycoplankton, nanoplankton, nekton, net community production (NCP), neuston, new production, nutrient limitation, nutrient (macro-, micro-, inorganic, organic), oligotrophic, omnivory, osmotrophs, particulate organic carbon (POC), particulate organic matter (POM), pelagic, phagocytosis, phagotrophs, photoautotorphs, photosynthesis, phytoplankton, phytoplankton bloom, picoplankton, plankton,
    [Show full text]
  • Identification of Associations Between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters
    fmicb-07-00339 March 22, 2016 Time: 11:12 # 1 ORIGINAL RESEARCH published: 22 March 2016 doi: 10.3389/fmicb.2016.00339 Identification of Associations between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters Hanna M. Farnelid1,2*, Kendra A. Turk-Kubo1 and Jonathan P. Zehr1 1 Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA, 2 Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden Photosynthetic picoeukaryotes are significant contributors to marine primary productivity. Associations between marine bacterioplankton and picoeukaryotes frequently occur and can have large biogeochemical impacts. We used flow cytometry to sort cells from seawater to identify non-eukaryotic phylotypes that are associated with photosynthetic picoeukaryotes. Samples were collected at the Santa Cruz wharf on Monterey Bay, CA, USA during summer and fall, 2014. The phylogeny of associated microbes was assessed through 16S rRNA gene amplicon clone and Illumina MiSeq libraries. The most frequently detected bacterioplankton phyla Edited by: within the photosynthetic picoeukaryote sorts were Proteobacteria (Alphaproteobacteria Xavier Mayali, and Gammaproteobacteria) and Bacteroidetes. Intriguingly, the presence of free-living Lawrence Livermore National Laboratory, USA bacterial genera in the photosynthetic picoeukaryote sorts could suggest that some Reviewed by: of the photosynthetic picoeukaryotes were mixotrophs. However, the occurrence of Cécile Lepère, bacterial sequences, which were not prevalent in the corresponding bulk seawater Blaise Pascal University, France Manuela Hartmann, samples, indicates that there was also a selection for specific OTUs in association with National Oceanography Centre, UK photosynthetic picoeukaryotes suggesting specific functional associations. The results Michael Morando, show that diverse bacterial phylotypes are found in association with photosynthetic University of Southern California, USA picoeukaryotes.
    [Show full text]
  • Marine Plankton Diatoms of the West Coast of North America
    MARINE PLANKTON DIATOMS OF THE WEST COAST OF NORTH AMERICA BY EASTER E. CUPP UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES 1943 BULLETIN OF THE SCRIPPS INSTITUTION OF OCEANOGRAPHY OF THE UNIVERSITY OF CALIFORNIA LA JOLLA, CALIFORNIA EDITORS: H. U. SVERDRUP, R. H. FLEMING, L. H. MILLER, C. E. ZoBELL Volume 5, No.1, pp. 1-238, plates 1-5, 168 text figures Submitted by editors December 26,1940 Issued March 13, 1943 Price, $2.50 UNIVERSITY OF CALIFORNIA PRESS BERKELEY, CALIFORNIA _____________ CAMBRIDGE UNIVERSITY PRESS LONDON, ENGLAND [CONTRIBUTION FROM THE SCRIPPS INSTITUTION OF OCEANOGRAPHY, NEW SERIES, No. 190] PRINTED IN THE UNITED STATES OF AMERICA Taxonomy and taxonomic names change over time. The names and taxonomic scheme used in this work have not been updated from the original date of publication. The published literature on marine diatoms should be consulted to ensure the use of current and correct taxonomic names of diatoms. CONTENTS PAGE Introduction 1 General Discussion 2 Characteristics of Diatoms and Their Relationship to Other Classes of Algae 2 Structure of Diatoms 3 Frustule 3 Protoplast 13 Biology of Diatoms 16 Reproduction 16 Colony Formation and the Secretion of Mucus 20 Movement of Diatoms 20 Adaptations for Flotation 22 Occurrence and Distribution of Diatoms in the Ocean 22 Associations of Diatoms with Other Organisms 24 Physiology of Diatoms 26 Nutrition 26 Environmental Factors Limiting Phytoplankton Production and Populations 27 Importance of Diatoms as a Source of food in the Sea 29 Collection and Preparation of Diatoms for Examination 29 Preparation for Examination 30 Methods of Illustration 33 Classification 33 Key 34 Centricae 39 Pennatae 172 Literature Cited 209 Plates 223 Index to Genera and Species 235 MARINE PLANKTON DIATOMS OF THE WEST COAST OF NORTH AMERICA BY EASTER E.
    [Show full text]
  • Evaluation of the Trace Metal Supplements for a Synthetic Low Lactose Diet
    Arch Dis Child: first published as 10.1136/adc.58.6.433 on 1 June 1983. Downloaded from Archives of Disease in Childhood, 1983, 58, 433-437 Evaluation of the trace metal supplements for a synthetic low lactose diet P J AGGETT, J MORE, J M THORN, H T DELVES, M CORNFIELD, AND B E CLAYTON Department of Chemical Pathology, Institute of Child Health, London SUMMARY A trace element supplement used with a synthetic low lactose milk (Galactomins 17 and 18) has been evaluated by means of metabolic balance studies in 4 infants with dissacharide intolerances. The supplement was considered satisfactory for iron and manganese but increases in its zinc and copper content are probably necessary to ensure adequate retentions ofthese metals. Diets used in the management of infants with synthetic low lactose milks (Galactomins 17 and 18, inborn errors of metabolism or dietary intolerances Cow and Gate Ltd) has been assessed. There may have an inadequate essential trace element are three similar Galactomin products which are content."-3 This deficiency may be quantitative in derived from demineralised casein and which are as much as these micronutrients are lost during prepared according to a formula elaborated in this manufacture of the diet, or it may be a qualitative department.5 They are used in the management of defect resulting from postulated interactions between dietary lactose intolerances (Galactomins 17, 18, and these elements and other inorganic and organic 19) and of inborn errors of galactose metabolism dietary constituents which reduce intestinal
    [Show full text]
  • Cyanobacteria Blooms in the Baltic Sea: a Review of Models and Facts
    https://doi.org/10.5194/bg-2020-151 Preprint. Discussion started: 19 May 2020 c Author(s) 2020. CC BY 4.0 License. Cyanobacteria Blooms in the Baltic Sea: A Review of Models and Facts Britta Munkes1, Ulrike Löptien1,2, and Heiner Dietze1,2 1GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany. 2Institute of Geosciences, Christian-Albrechts-University of Kiel, Ludewig-Meyn-Str. 10, 24 118 Kiel, Germany Correspondence: Britta Munkes ([email protected]) Abstract. The ecosystem of the Baltic Sea is endangered by eutrophication. This has triggered expensive international man- agement efforts. Some of these efforts are impeded by natural processes such as nitrogen-fixing cyanobacteria blooms that add bioavailable nitrogen to the already over-fertilised system and thereby enhance primary production, export of organic matter to depth and associated oxygen consumption. Controls of cyanobacteria blooms are not comprehensively understood and this 5 adds to the uncertainty of model-based projections into the warming future of the Baltic Sea. Here we review our current un- derstanding of cyanobacteria bloom dynamics. We summarise published field studies, laboratory experiments and dissect the basic principles ingrained in state-of-the-art coupled ocean-circulation biogeochemical models. 1 Introduction 10 The Baltic Sea is a shallow, brackish and semi-enclosed sea in central Northern Europe. It’s drainage basin is densely populated by around 84 million people. Their footprint exerts pressure on the ecosystem (Unger et al., 2013; Hannerz and Destouni, 2006). One, particularly severe, problem is eutrophication. Antropogenic nutrients enter the Baltic Sea via rivers and air-sea fluxes (Helcom, 2018, 2014).
    [Show full text]