Epha2 Promotes Infiltrative Invasion of Glioma Stem Cells in Vivo Through Cross-Talk with Akt and Regulates Stem Cell Properties

Total Page:16

File Type:pdf, Size:1020Kb

Epha2 Promotes Infiltrative Invasion of Glioma Stem Cells in Vivo Through Cross-Talk with Akt and Regulates Stem Cell Properties Oncogene (2015) 34, 558–567 & 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc ORIGINAL ARTICLE EphA2 promotes infiltrative invasion of glioma stem cells in vivo through cross-talk with Akt and regulates stem cell properties H Miao1,2, NW Gale3, H Guo1,2, J Qian1,2, A Petty1,2, J Kaspar1,2, AJ Murphy3, DM Valenzuela3, G Yancopoulos3, D Hambardzumyan4,5, JD Lathia4,5, JN Rich4,5, J Lee4,5 and B Wang1,2,5 Diffuse infiltrative invasion is a major cause for the dismal prognosis of glioblastoma multiforme (GBM), but the underlying mechanisms remain incompletely understood. Using human glioma stem cells (GSCs) that recapitulate the invasive propensity of primary GBM, we find that EphA2 critically regulates GBM invasion in vivo. EphA2 was expressed in all seven GSC lines examined, and overexpression of EphA2 enhanced intracranial invasion. The effects required Akt-mediated phosphorylation of EphA2 on serine 897. In vitro the Akt–EphA2 signaling axis is maintained in the absence of ephrin-A ligands and is disrupted upon ligand stimulation. To test whether ephrin-As in tumor microenvironment can regulate GSC invasion, the newly established Efna1;Efna3;Efna4 triple knockout mice (TKO) were used in an ex vivo brain slice invasion assay. We observed significantly increased GSC invasion through the brain slices of TKO mice relative to wild-type (WT) littermates. Mechanistically EphA2 knockdown suppressed stem cell properties of GSCs, causing diminished self-renewal, reduced stem marker expression and decreased tumorigenicity. In a subset of GSCs, the reduced stem cell properties were associated with lower Sox2 expression. Overexpression of EphA2 promoted stem cell properties in a kinase-independent manner and increased Sox2 expression. Disruption of Akt-EphA2 cross-talk attenuated stem cell marker expression and neurosphere formation while having minimal effects on tumorigenesis. Taken together, the results show that EphA2 endows invasiveness of GSCs in vivo in cooperation with Akt and regulates glioma stem cell properties. Oncogene (2015) 34, 558–567; doi:10.1038/onc.2013.590; published online 3 February 2014 Keywords: EphA2; Akt; stem cells; glioma; invasion; ephrin-A INTRODUCTION causes for phosphatidylinositol 3-kinase/Akt activation, particularly 4,8,9 Glioblastoma multiforme or GBM is the most common form of in primary GBM. However, whether and how Akt activation human primary malignant brain tumors.1 Despite maximum may regulate diffuse infiltrative invasion of GBM remains to be treatment including radio- and chemotherapy, the prognosis of elucidated. GBM remains dismal, with a median survival of around 14 months The 14 members of Eph receptor tyrosine kinases and their and a 5-year survival of only about 3%.2 A major cause for the membrane-anchored ligands called ephrins have important roles lethality is attributed to the diffuse infiltrative invasion of GBM in a diverse array of developmental, physiological and disease 10–13 cells throughout the brain at the time of diagnosis, which is processes. Both the receptors and ligands are divided responsible for virtually invariable recurrence after surgical into two subfamilies with EphA receptors primarily binding to resection of primary tumors.1,3 Understanding the molecular glycosylphosphatidylinisotol-anchored ephrin-A ligands and EphB mechanisms underpinning the highly invasive properties of GBM receptors preferentially engaging the transmembrane ephrin-B 14 has significant basic and clinical implications. ligands. Perturbation of Eph/ephrin systems has been 15 Extensive molecular studies have identified phosphatidylinositol documented in many different types of human cancers. EphA2 3-kinase/Akt signaling cascade as one of the most frequently in particular is the most frequently affected Eph receptors in altered pathways in primary and secondary GBM.4–6 These human cancer. In a number of human cancers, EphA2 is often observations were further validated and supported by recent overexpressed, which is often associated with the late-stage 15,16 results from The Cancer Genome Atlas (TCGA) analyses of a large malignant progression and poor prognosis. Although EphA2 is number of GBM cases. It was found that Akt is activated in a great poorly expressed in the normal brain, it is overexpressed in GBM 17,18 majority (88%) of the GBM cases,6,7 and along with inactivation of and associated with worse prognosis, making it an attractive 19,20 p53 and Rb pathways represents one of the three major molecular target for the development of novel therapeutic strategies. mechanisms of gliomagenesis. Activation of upstream RTK growth Although many of these studies point to the pro-oncogenic factor receptors through amplification, mutation or gene fusion as functions of EphA2, extensive evidence exists that demonstrate 15,16 well as the loss of the negative regulator, PTEN, are the major tumor suppressor functions of EphA2 upon ligand stimulation. 1Rammelkamp Center for Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; 2Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; 3VelociGene Division, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA; 4Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA and 5Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA. Correspondence: Dr B Wang, Rammelkamp Center for Research/R421, MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA. E-mail: [email protected] Received 12 September 2012; revised 17 December 2013; accepted 18 December 2013; published online 3 February 2014 Akt–EphA2 signaling axis promotes glioma invasion in vivo H Miao et al 559 Thus, ligand-activated EphA2 inhibits Ras/ERK and PI3K/Akt slices from Efna1;Efna3;Efna4 triple knockout (TKO) mice and pathways, suppresses cell proliferation and induces apoptosis. observed significantly increased invasion of GSCs in brain slices Moreover, EphA2 KO mice displayed markedly increased from KO mice compared with those from the WT or heterozygous susceptibility to carcinogenesis.21 littermates, which provides experimental evidence for the long We recently discovered a reciprocal regulatory loop between suspected role of ephrins in tumor microenvironment in regulat- EphA2 and Akt, which provides a partial mechanistic explanation ing tumor cells’ dissemination. Taken together, our data reveal for the seemingly conflicting roles of EphA2 in cancer.18 It turns EphA2 as an important driver in the diffuse infiltrative invasion of out that EphA2 has diametrically opposite functions in regulating GBM and help maintain stem cell properties of GSCs. cell migration: ligand-dependent inhibition and ligand- independent stimulation. The ligand-independent promotion of cell migration by EphA2 requires Akt-mediated phosphorylation of EphA2 on serine 897 located in the loop between kinase domain RESULTS and sterile alpha motif.18 However, as these studies were Akt–EphA2 signaling axis is activated in glioma stem cells performed in vitro, an important unanswered question is To investigate the role of EphA2 in glioma cell invasion in vivo,we whether the Akt–EphA2 signaling axis can regulate tumor cell utilized the recently established lines of GSCs at early passages, invasion in vivo. which express multiple stem markers, form tumors in vivo and In this report, we chose to address this outstanding question by are capable of self renewal and differentiation.32,33 These cells using cells at the apex of the cellular hierarchy in GBM,22 glioma recapitulate the gene expression patterns and in vivo biology of stem cells (GSCs). GSCs are responsible for tumor propagation,23–27 human GBM including diffuse infiltrative invasion of brain therapeutic resistance28,29 and have a higher invasive capacity.30,31 parenchyma upon intracranial implantation,32 and therefore Here we report that Akt–EphA2 signaling axis is required for constitute a good model to investigate the role of EphA2 in intracranial invasion of GSCs. We further demonstrate that the GBM invasion. The GSCs were maintained either in suspension or expression of EphA2 has a role in maintaining the stem cell on laminin-coated surface as a monolayer. The latter culturing properties of GSCs, which is in part mediated through Akt-induced method is recently shown to maintain stem cell property during S897 phosphorylation of EphA2. To interrogate invasion in a in vitro culture and facilitate genetic manipulation.34 Figure 1A microenvironment lacking ephrin-A ligands, we utilized brain shows neurosphere formation by two lines of GSCs, 827 and 1228, Suspension Laminin Nestin EphA2 827 1228 Nestin/EphA2/ GFAP/DAPI DAPI 827 456 448 578 131 EA1,10 min. -+-+ 1.2 EA1,10 min. -+-+-+ -+ EphA2 1 EphA2 pY-EphA/B 0.8 pS473-Akt pS897-EphA2 0.6 P=0.013 GAPDH pS473-Akt * 0.4 827 780 1228 NSC Akt phosphor-Akt level 0.2 EA1,10 min. -+ -+-+-+ p-Erk1/2 EphA2 0 Erk 0 10 p-Akt Ephrin-A1 GAPDH LM Sus. Figure 1. EphA2 is expressed in glioma stem cells and is phosphorylated on S897. (A) Phase images of GSCs cultured in suspension or on laminin-coated surface. (B) The 827 line of GSCs were cultured on laminin and subjected to immunofluorescence analysis for nestin (a) and EphA2 (b), which were merged with 40,6-diamidino-2-phenylindole in (c). (d) A fraction of GSCs also express GFAP, a differentiation marker. Scale bar, 50 mm. (C) EphA2 in GSCs was phosphorylated on S897 in the absence of ligand stimulation. Ephrin-A1 treatment led to EphA2 activation, and inhibition of Akt and pS897-EphA2. GSCs cultured on laminin (LM) or in suspension (Sus.) were stimulated with ephrin-A1-Fc and lysed. Whole-cell lysates were subjected to immunoblot with the indicated antibodies. (D) Quantitative densitometry analysis shows significant Akt inhibition by the ligand-activated EphA2. Data from four independent experiments were analyzed. (E) EphA2 receptor is expressed in NSCs and seven independent preparations of GSCs, and mediates Akt inhibition when stimulated with ephrin-A1 ligand.
Recommended publications
  • Ephrin-A1 Expression Contributes to the Malignant Characteristics of A
    843 HEPATOBILIARY DISEASE Ephrin-A1 expression contributes to the malignant Gut: first published as 10.1136/gut.2004.049486 on 11 May 2005. Downloaded from characteristics of a-fetoprotein producing hepatocellular carcinoma H Iida, M Honda, H F Kawai, T Yamashita, Y Shirota, B-C Wang, H Miao, S Kaneko ............................................................................................................................... Gut 2005;54:843–851. doi: 10.1136/gut.2004.049486 Background and aims: a-Fetoprotein (AFP), a tumour marker for hepatocellular carcinoma (HCC), is associated with poor prognosis. Using cDNA microarray analysis, we previously found that ephrin-A1, an angiogenic factor, is the most differentially overexpressed gene in AFP producing hepatoma cell lines. In the present study, we investigated the significance of ephrin-A1 expression in HCC. See end of article for Methods: We examined ephrin-A1 expression and its effect on cell proliferation and gene expression in authors’ affiliations five AFP producing hepatoma cell lines, three AFP negative hepatoma cell lines, and 20 human HCC ....................... specimens. Correspondence to: Results: Ephrin-A1 expression levels were lowest in normal liver tissue, elevated in cirrhotic tissue, and Dr S Kaneko, Department further elevated in HCC specimens. Ephrin-A1 expression was strongly correlated with AFP expression of Cancer Gene (r = 0.866). We showed that ephrin-A1 induced expression of AFP. This finding implicates ephrin-A1 in Regulation, Kanazawa University Graduate the mechanism of AFP induction in HCC. Ephrin-A1 promoted the proliferation of ephrin-A1 School of Medical Science, underexpressing HLE cells, and an ephrin-A1 antisense oligonucleotide inhibited the proliferation of 13-1 Takara-Machi, ephrin-A1 overexpressing Huh7 cells.
    [Show full text]
  • Detection of Pro Angiogenic and Inflammatory Biomarkers in Patients With
    www.nature.com/scientificreports OPEN Detection of pro angiogenic and infammatory biomarkers in patients with CKD Diana Jalal1,2,3*, Bridget Sanford4, Brandon Renner5, Patrick Ten Eyck6, Jennifer Laskowski5, James Cooper5, Mingyao Sun1, Yousef Zakharia7, Douglas Spitz7,9, Ayotunde Dokun8, Massimo Attanasio1, Kenneth Jones10 & Joshua M. Thurman5 Cardiovascular disease (CVD) is the most common cause of death in patients with native and post-transplant chronic kidney disease (CKD). To identify new biomarkers of vascular injury and infammation, we analyzed the proteome of plasma and circulating extracellular vesicles (EVs) in native and post-transplant CKD patients utilizing an aptamer-based assay. Proteins of angiogenesis were signifcantly higher in native and post-transplant CKD patients versus healthy controls. Ingenuity pathway analysis (IPA) indicated Ephrin receptor signaling, serine biosynthesis, and transforming growth factor-β as the top pathways activated in both CKD groups. Pro-infammatory proteins were signifcantly higher only in the EVs of native CKD patients. IPA indicated acute phase response signaling, insulin-like growth factor-1, tumor necrosis factor-α, and interleukin-6 pathway activation. These data indicate that pathways of angiogenesis and infammation are activated in CKD patients’ plasma and EVs, respectively. The pathways common in both native and post-transplant CKD may signal similar mechanisms of CVD. Approximately one in 10 individuals has chronic kidney disease (CKD) rendering CKD one of the most common diseases worldwide1. CKD is associated with a high burden of morbidity in the form of end stage kidney disease (ESKD) requiring dialysis or transplantation 2. Furthermore, patients with CKD are at signifcantly increased risk of death from cardiovascular disease (CVD)3,4.
    [Show full text]
  • Ephrin-A Binding and Epha Receptor Expression Delineate the Matrix Compartment of the Striatum
    The Journal of Neuroscience, June 15, 1999, 19(12):4962–4971 Ephrin-A Binding and EphA Receptor Expression Delineate the Matrix Compartment of the Striatum L. Scott Janis, Robert M. Cassidy, and Lawrence F. Kromer Department of Cell Biology and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007 The striatum integrates limbic and neocortical inputs to regulate matrix neurons. In situ hybridization for EphA RTKs reveals that sensorimotor and psychomotor behaviors. This function is de- the two different ligand binding patterns strictly match pendent on the segregation of striatal projection neurons into the mRNA expression patterns of EphA4 and EphA7. anatomical and functional components, such as the striosome Ligand–receptor binding assays indicate that ephrin-A1 and and matrix compartments. In the present study the association ephrin-A4 selectively bind EphA4 but not EphA7 in the lysates of ephrin-A cell surface ligands and EphA receptor tyrosine of striatal tissue. Conversely, ephrin-A2, ephrin-A3, and kinases (RTKs) with the organization of these compartments ephrin-A5 bind EphA7 but not EphA4. These observations im- was determined in postnatal rats. Ephrin-A1 and ephrin-A4 plicate selective interactions between ephrin-A molecules and selectively bind to EphA receptors on neurons restricted to the EphA RTKs as potential mechanisms for regulating the com- matrix compartment. Binding is absent from the striosomes, partmental organization of the striatum. which were identified by m-opioid
    [Show full text]
  • Ephrin-A2 Reverse Signaling Negatively Regulates Neural Progenitor Proliferation and Neurogenesis
    Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis Johan Holmberg,1 Annika Armulik,1 Kirsten-André Senti,1,3 Karin Edoff,1 Kirsty Spalding,1 Stefan Momma,1 Rob Cassidy,1 John G. Flanagan,2 and Jonas Frisén1,4 1Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm, Sweden; 2Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA The number of cells in an organ is regulated by mitogens and trophic factors that impinge on intrinsic determinants of proliferation and apoptosis. We here report the identification of an additional mechanism to control cell number in the brain: EphA7 induces ephrin-A2 reverse signaling, which negatively regulates neural progenitor cell proliferation. Cells in the neural stem cell niche in the adult brain proliferate more and have a shorter cell cycle in mice lacking ephrin-A2. The increased progenitor proliferation is accompanied by a higher number of cells in the olfactory bulb. Disrupting the interaction between ephrin-A2 and EphA7 in the adult brain of wild-type mice disinhibits proliferation and results in increased neurogenesis. The identification of ephrin-A2 and EphA7 as negative regulators of progenitor cell proliferation reveals a novel mechanism to control cell numbers in the brain. [Keywords: SVZ; adult; neuronal progenitors; proliferation; ephrins; reverse signaling] Supplemental material is available at http://www.genesdev.org. Received October 1, 2004; revised version accepted December 16, 2004. Most neurons are generated before birth and neurogen- ing proliferation and neurogenesis within the stem cell esis in the adult brain is limited to a few regions.
    [Show full text]
  • Inhibition of Metastasis by HEXIM1 Through Effects on Cell Invasion and Angiogenesis
    Oncogene (2013) 32, 3829–3839 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE Inhibition of metastasis by HEXIM1 through effects on cell invasion and angiogenesis W Ketchart1, KM Smith2, T Krupka3, BM Wittmann1,7,YHu1, PA Rayman4, YQ Doughman1, JM Albert5, X Bai6, JH Finke4,YXu2, AA Exner3 and MM Montano1 We report on the role of hexamethylene-bis-acetamide-inducible protein 1 (HEXIM1) as an inhibitor of metastasis. HEXIM1 expression is decreased in human metastatic breast cancers when compared with matched primary breast tumors. Similarly we observed decreased expression of HEXIM1 in lung metastasis when compared with primary mammary tumors in a mouse model of metastatic breast cancer, the polyoma middle T antigen (PyMT) transgenic mouse. Re-expression of HEXIM1 (through transgene expression or localized delivery of a small molecule inducer of HEXIM1 expression, hexamethylene-bis-acetamide) in PyMT mice resulted in inhibition of metastasis to the lung. Our present studies indicate that HEXIM1 downregulation of HIF-1a protein allows not only for inhibition of vascular endothelial growth factor-regulated angiogenesis, but also for inhibition of compensatory pro- angiogenic pathways and recruitment of bone marrow-derived cells (BMDCs). Another novel finding is that HEXIM1 inhibits cell migration and invasion that can be partly attributed to decreased membrane localization of the 67 kDa laminin receptor, 67LR, and inhibition of the functional interaction of 67LR with laminin. Thus, HEXIM1 re-expression in breast cancer has therapeutic advantages by simultaneously targeting more than one pathway involved in angiogenesis and metastasis. Our results also support the potential for HEXIM1 to indirectly act on multiple cell types to suppress metastatic cancer.
    [Show full text]
  • Rabbit Anti-Ephrin-A1 Rabbit Anti-Ephrin-A1
    Qty: 100 µg/400 µl Rabbit anti-ephrin-A1 Catalog No. 34-3300 Lot No. See product label Rabbit anti-ephrin-A1 FORM This polyclonal antibody is supplied as a 400 µl aliquot at a concentration of 0.25 mg/ml in phosphate buffered saline (pH 7.4) containing 0.1% sodium azide. The antibody is epitope-affinity-purified from rabbit antiserum. PAD: ZMD.39 IMMUNOGEN Synthetic peptide derived from the C-terminal end of mouse ephrin-A1 protein. SPECIFICITY This antibody is specific for the ephrin-A1 protein. REACTIVITY Reactivity is confirmed with a chimeric protein consisting of the extracellular domain of mouse ephrin-A1 and the Fc region of human IgG1. Cross-reactivity with human ephrin-A1 is confirmed with IHC experiments on human tissue sections and this reactivity was expected because of the 85% shared amino acid identity in the extracellular domain. Sample Western Immunoprecipitation Immunohistochemistry Blotting (FFPE) Mouse +++ +++ NT Human NT NT ++ (Excellent +++, Good++, Poor +, No reactivity 0, Not tested NT) USAGE Working concentrations for specific applications should be determined by the investigator. Appropriate concentrations will be affected by several factors, including secondary antibody affinity, antigen concentration, sensitivity of detection method, temperature and length of incubations, etc. The suitability of this antibody for applications other than those listed below has not been determined. The following concentration ranges are recommended starting points for this product. Western Blotting: 1-5 µg/mL Immunoprecipitation: 5-10 µg/ IP reaction Immunohistochemistry: 4-10 µg/mL Please note that immunohistochemical assays were optimized on formalin-fixed, paraffin-embedded tissue sections and Heat Induced Epitope Retrieval (HIER) with EDTA, pH 8.0 was required for optimal staining.
    [Show full text]
  • Expression of the Tyrosine Kinase Receptor Epha5 and Its Ligand Ephrin- AS During Mouse Spinal Cord Development
    Expression of the tyrosine kinase receptor EphA5 and its ligand ephrin- AS during mouse spinal cord development Susan Lehman Cullman Laboratory for Cancer Research, Departmellt of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA Abstract: Objectives To study the expression patterns of two Eph family molecules, the receptor EphAS, and the ligand ephrin-A5. during spinal cord development. Methods The receptor expression was analyzed using beta-galactosidase knockin mice, and affinity ligand probe binding. The ligand expression was assessed using two different affinity probes, and knockout mouse tissues as controls. Results EphA5 was expressed in the ventral spinal cord, while ephrin-A5 was located in the dorsolateral regions of the spinal cord throughout development. Conclusions These results show that EphA5 and ephrin-A5 are expressed over broad developmental stages and may play important roles in establishing the dorsoventral organization of the spinal cord. Keywords: axon guidance; embryogenesis; dorsal root ganglion; histochemistry; alkaline phosphatase affinity probe; /3- galactosidase and an intracellular domain with tyrosine kinase activity, and play multiple roles in cellular differentiation during de- Cell migration and differentiation are tightly regulated velopmentl)l. There are eight ephrins, the ligands that bind by various environmental cues during development. Re- to the Eph receptors, which can be divided into two ceptor tyrosine kinases are transmembrane proteins, which. sulx:lasses: glycosylphosphatidylinositol (GPI)-anchored as key components in the transduction of certain extra- ephrin-A (ephrin-AI to ephrin-A5) and ephrin-B (ephrin- cellular signals across the cell membrane, regulate cell B I to ephrin-B3) proteins that have a transmembrane and a growth, differentiation, survival and migrationili.
    [Show full text]
  • Ephrin-A2 (L-20): Sc-912
    SANTA CRUZ BIOTECHNOLOGY, INC. ephrin-A2 (L-20): sc-912 The Power to Question BACKGROUND RECOMMENDED SECONDARY REAGENTS The Eph subfamily represents the largest group of receptor protein kinases To ensure optimal results, the following support (secondary) reagents are identified to date. There is increasing evidence that Eph family members are recommended: 1) Western Blotting: use goat anti-rabbit IgG-HRP: sc-2004 involved in central nervous system function and in development. Ligands for (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible goat anti- Eph receptors include ephrin-A1 (LERK-1/B61), identified as a ligand for the rabbit IgG-HRP: sc-2030 (dilution range: 1:2000-1:5000), Cruz Marker™ EphA2 (Eck) receptor; ephrin-A2 (ELF-1), identified as a ligand for the EphA3 Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: and EphA4 (Sek) receptors; ephrin-A3 (LERK-3), identified as a ligand for sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immuno- EphA5 (Ehk1) and EphA3 (Hek) receptors; ephrin-A4 (LERK-4), identified as a fluorescence: use goat anti-rabbit IgG-FITC: sc-2012 (dilution range: 1:100- ligand for the EphA3 receptor; ephrin-A5 (AL-1), identified as a ligand for 1:400) or goat anti-rabbit IgG-TR: sc-2780 (dilution range: 1:100-1:400) with EphA5 (REK7); ephrin-B1 (LERK-2), identified as a ligand for the EphB1 (Elk) UltraCruz™ Mounting Medium: sc-24941. 3) Immunohistochemistry: use and EphB2 (Cek5) receptors; ephrin-B2 (LERK-5), identified as a ligand for the ImmunoCruz™: sc-2051 or ABC: sc-2018 rabbitIgG Staining Systems.
    [Show full text]
  • Eph Receptor Signalling: from Catalytic to Non-Catalytic Functions
    Oncogene (2019) 38:6567–6584 https://doi.org/10.1038/s41388-019-0931-2 REVIEW ARTICLE Eph receptor signalling: from catalytic to non-catalytic functions 1,2 1,2 3 1,2 1,2 Lung-Yu Liang ● Onisha Patel ● Peter W. Janes ● James M. Murphy ● Isabelle S. Lucet Received: 20 March 2019 / Revised: 23 July 2019 / Accepted: 24 July 2019 / Published online: 12 August 2019 © The Author(s) 2019. This article is published with open access Abstract Eph receptors, the largest subfamily of receptor tyrosine kinases, are linked with proliferative disease, such as cancer, as a result of their deregulated expression or mutation. Unlike other tyrosine kinases that have been clinically targeted, the development of therapeutics against Eph receptors remains at a relatively early stage. The major reason is the limited understanding on the Eph receptor regulatory mechanisms at a molecular level. The complexity in understanding Eph signalling in cells arises due to following reasons: (1) Eph receptors comprise 14 members, two of which are pseudokinases, EphA10 and EphB6, with relatively uncharacterised function; (2) activation of Eph receptors results in dimerisation, oligomerisation and formation of clustered signalling centres at the plasma membrane, which can comprise different combinations of Eph receptors, leading to diverse downstream signalling outputs; (3) the non-catalytic functions of Eph receptors have been overlooked. This review provides a structural perspective of the intricate molecular mechanisms that 1234567890();,: 1234567890();,: drive Eph receptor signalling, and investigates the contribution of intra- and inter-molecular interactions between Eph receptors intracellular domains and their major binding partners. We focus on the non-catalytic functions of Eph receptors with relevance to cancer, which are further substantiated by exploring the role of the two pseudokinase Eph receptors, EphA10 and EphB6.
    [Show full text]
  • Rabbit Anti-Ephrin-A2 Catalog No
    Qty: 100 µg/400 µl Rabbit anti-ephrin-A2 Catalog No. 34-3400 Lot No. See product label Rabbit anti-ephrin-A2 FORM This polyclonal antibody is supplied as a 400 µl aliquot at a concentration of 0.25 mg/ml in phosphate buffered saline (pH 7.4) containing 0.1% sodium azide. The antibody is epitope-affinity-purified from rabbit antiserum. PAD: ZMD.40 IMMUNOGEN Synthetic peptide derived from the N-terminus of mouse ephrin-A2 protein. SPECIFICITY This antibody is specific for the ephrin-A2 protein. REACTIVITY Reactivity is confirmed with a chimeric protein consisting of the extracellular domain of mouse ephrin-A2 and the Fc region of human IgG1. Cross-reactivity with human ephrin-A2 is confirmed with IHC experiments on human tissue sections and this reactivity was expected because of the 93% shared amino acid identity in the extracellular domains. Sample Western Immunoprecipitation Immunohistochemistry Blotting (FFPE) Mouse +++ +++ NT Human NT NT ++ (Excellent +++, Good++, Poor +, No reactivity 0, Not tested NT) USAGE Working concentrations for specific applications should be determined by the investigator. Appropriate concentrations will be affected by several factors, including secondary antibody affinity, antigen concentration, sensitivity of detection method, temperature and length of incubations, etc. The suitability of this antibody for applications other than those listed below has not been determined. The following concentration ranges are recommended starting points for this product. Western Blotting: 1-5 µg/mL Immunoprecipitation: 5-10 µg/ IP reaction Immunohistochemistry: 5-10 µg/mL Please note that Immunohistochemical assays were optimized on formalin-fixed, paraffin-embedded tissue sections and Heat Induced Epitope Retrieval (HIER) with EDTA, pH 8.0 was required for optimal staining.
    [Show full text]
  • Ephrin-A2 Affects Wound Healing and Scarring in a Murine Model of Excisional Injury
    b u r n s 4 5 ( 2 0 1 9 ) 6 8 2 – 6 9 0 Available online at www.sciencedirect.com ScienceDirect jo urnal homepage: www.elsevier.com/locate/burns Ephrin-A2 affects wound healing and scarring in a murine model of excisional injury a b a Dulharie Wijeratne , Jennifer Rodger , Andrew Stevenson , a c,d a,d,e,f Hilary Wallace , Cecilia M. Prêle , Fiona M. Wood , a,c,e, Mark W. Fear * a Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Australia b Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Australia c The Institute for Respiratory Health, The University of Western Australia, Nedlands, Western Australia, Australia d Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia e The Fiona Wood Foundation, Perth, Western Australia, Australia f Burns Service of Western Australia, WA Department of Health, Perth, Western Australia, Australia a r t i c l e i n f o a b s t r a c t Article history: Ephrin ligand/Eph receptor signaling is important in both tissue development and Accepted 4 October 2018 homeostasis. There is increasing evidence that Ephrin/Eph signaling is important in the skin, involved in hair follicle cycling, epidermal differentiation, cutaneous innervation and skin cancer. However, there is currently limited information on the role of Ephrin/Eph signaling in cutaneous wound healing. Here we report the effects of the Ephrin-A2 and À/À À/À À/À Keywords: A5 ligands on wound healing.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0052982 A1 Cohen Et Al
    US 2016.0052982A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0052982 A1 Cohen et al. (43) Pub. Date: Feb. 25, 2016 (54) METHODS AND SYSTEMIS FOR DESIGNING Related U.S. Application Data AND/OR CHARACTERIZING SOLUBLE (60) Provisional application No. 61/813,835, filed on Apr. LPIDATED LGAND AGENTS 19, 2013, provisional application No. 61/811.249, filed on Apr. 12, 2013. (71) Applicants: TUFTS MEDICAL CENTER, Boston, Publication Classification MA (US); TRUSTEES OF TUFTS COLLEGE, Medford, MA (US) (51) Int. C. C07K 4/47 (2006.01) (72) Inventors: Charles Cohen, Weston, MA (US); C07K 7/06 (2006.01) Krishna Kumar, Cambridge, MA (US); C07K 7/08 (2006.01) Jamie Raudensky Doyle, Newton, MA GOIN33/50 (2006.01) (52) U.S. C. (US); Alan S. Kopin, Wellesley, MA CPC ........ C07K 14/4703 (2013.01); G0IN33/5023 (US) (2013.01); C07K 7/06 (2013.01); C07K 7/08 (2013.01); A61 K38/00 (2013.01) (21) Appl. No.: 14/783,489 (57) ABSTRACT (22) PCT Fled: Mar. 13, 2014 The present application provides methods for preparing soluble lipidated ligandagents comprising a ligand entity and (86) PCT NO.: PCT/US2O14/026.662 a lipid entity, and in some embodiments, provides relevant parameters of each of these components, thereby enabling S371 (c)(1), appropriate selection of components to assemble active (2) Date: Oct. 9, 2015 agents for any given target of interest. Patent Application Publication Feb. 25, 2016 Sheet 1 of 13 US 2016/0052982 A1 hita CKR wM S-C& 8-5 wn S-88 - Sif the saxes ..? s ligard, log(N) Riotse CXR wha S-C8 &S-Sf e S-882.
    [Show full text]