Metamaterials and Their Applications on Antenna Gain Enhancement
Total Page:16
File Type:pdf, Size:1020Kb
College of Engineering, Design and Physical Sciences WNCC Research Centre Metamaterials and their Applications on Antenna Gain Enhancement Author: ROOHOLLAH HAGHPANAHAN Supervised by: Dr. RAJAGOPAL NILAVALAN Professor HAMED AL-RAWESHIDY June 2015 A thesis submitted in fulfilment of the requirement for award of the degree of Doctor of Philosophy in Systems Engineering Submitted for examination Abstract This thesis is devoted to potential applications of metamaterials in antenna structures as well as metamaterials behaviour, characterisation, structure design, simulation and extraction of parameters. The focus of this work is on the practical application of metamaterial structures for antenna performance enhancement. This thesis comprises three key parts; In the first part, theory of metamaterials is investigated including fields, polarisation, effective and average parameters, parameters extraction and transmission line (TL) model. In part two, zero index metamaterials (ZIM) theory is studied. The use of ZIM to form a highly directive medium is illustrated. A comparative study between different ZIM structures is conducted with a special attention to their operational bandwidth. ANSYS HFSS is used to model ZIM structures where simulation results show a bandwidth between 7.4% and 14.0%. Then two novel ZIM structures with a bandwidth of up to 33% are proposed. The first proposed ZIM is used to form a highly directive shell. Four directive shells are designed and placed around the dipole antenna where a gain increase of up to 6.8 푑퐵푖 is obtained along the desired direction. Further, proposed ZIM cells are integrated with a quasi-Yagi antenna in order to increase its gain. Simulation results demonstrate gain enhancement for frequencies over which the proposed structure expresses ZIM properties. In part three, a new technique is stablished to design a metamaterial lens. The new technique is based on wave interference phenomena where engineered wave interference results in a desired spatial energy distribution. It is shown theoretically that having 180표 phase difference between interfering waves results in a focused emission. Both hypothetical and metamaterial realisation models of a 180표 phase shifter for a patch antenna are designed and simulated where a gain enhancement of 8 푑퐵푖 and 5.77 푑퐵푖 are achieved, respectively. Further, the concept of intended phase shift between interfering waves is used to design a novel bi-reflectional ground plane which can focus the reflected emission and consequently, increase the antenna directivity. In the theoretical model, the Perfect-E and Perfect-H planes are combined to form a bi-reflectional plane, whereas the practical model is designed using the copper cladding for the Perfect- E plane and the mushroom structure for the perfect-H plane. Both square and hexagonal geometries are used to form the mushroom structure. Simulation results confirm a gain enhancement of 5.4 푑퐵푖 for the design using the square mushroom structure and a gain enhancement of 3.3 푑퐵푖 for the design using the hexagonal mushroom structure. Table of Contents List of Abbreviations................................................................................................ v Glossary of Terms ................................................................................................. vii List of Figures ........................................................................................................ ix List of Tables.......................................................................................................... xv Acknowledgements .............................................................................................. xvi Chapter 1 Introduction ............................................................................................. 1 1 - 1 Motivation .................................................................................................... 1 1 - 2 Metamaterial Definition ............................................................................... 1 1 - 3 Metamaterial Embedded Antennae .............................................................. 3 1 - 3 - 1 Composite Right/Left Handed (CRLH) Metamaterial Antennae ....... 3 1 - 3 - 2 Metamaterial Shell-Based Antennae .................................................. 6 1 - 3 - 3 Near-Field Coupling ........................................................................... 9 1 - 3 - 4 DBE/MPC based Antennae .............................................................. 12 1 - 3 - 5 Mu-Zero Resonance (MZR) Antennae ............................................. 14 1 - 3 - 6 SRR/CSRR Resonator Embedded Antennae ................................... 14 1 - 3 - 7 Meta-Surface Loaded Antennae ....................................................... 17 1 - 4 Scope of the Thesis .................................................................................... 21 1 - 5 Contribution to Knowledge ....................................................................... 22 1 - 6 Thesis Overview ........................................................................................ 23 Chapter 2 Planar Metamaterial Theory and Analysis ............................................ 25 2 - 1 Introduction ................................................................................................ 25 2 - 2 Metamaterial Classification ....................................................................... 26 2 - 2 - 1 Local and Non-Local Field Response of Metamaterials .................. 27 2 - 2 - 2 Strong Spatial Dispersion (SSD) ...................................................... 28 2 - 2 - 3 Weak Spatial Dispersion (WSD) ...................................................... 29 2 - 2 - 4 Polarisation Current in Media with Weak Spatial Dispersion.......... 29 2 - 2 - 5 Electric and Magnetic Polarisation Current ..................................... 30 2 - 2 - 6 Material Parameters .......................................................................... 31 2 - 2 - 7 Metamaterials and Weak Spatial Dispersion .................................... 32 2 - 3 Material Parameter Extraction ................................................................... 33 2 - 3 - 1 Average and Effective Constitutive Parameters ............................... 33 2 - 3 - 2 Effective Parameters ......................................................................... 37 2 - 4 Transmission Line (TL) Theory ................................................................ 46 2 - 4 - 1 Equivalent Circuit for a Two-port Microwave Network .................. 46 2 - 4 - 2 Metamaterial Unit Cell Equivalent Circuit....................................... 49 2 - 5 Summary .................................................................................................... 52 Chapter 3 Zero Index Metamaterials...................................................................... 54 3 - 1 Introduction ................................................................................................ 54 3 - 2 Theory of High Directive Media ............................................................... 55 3 - 3 Wave Propagation and Dispersion Relation in Anisotropic ZIM Medium57 3 - 4 Zero Index Materials (ZIM) Unit Cells ..................................................... 60 3 - 5 ZIM Related Topologies ............................................................................ 62 3 - 5 - 1 Effective and Physical Length .......................................................... 63 3 - 5 - 2 Fixed length ZIM with different Meander Structures ...................... 69 3 - 6 Novel ZIM Structure .................................................................................. 71 3 - 6 - 1 Genetic Algorithm ............................................................................ 72 3 - 6 - 2 Applying GA Optimisation to Proposed Cell ................................... 73 3 - 7 ZIM Embedded Antennae .......................................................................... 81 3 - 7 - 1 Optical Transformation .................................................................... 81 3 - 7 - 2 High Directive Emission Using Transformation Optic .................... 83 3 - 7 - 3 High Directive ZIM Shell ................................................................. 85 ii 3 - 8 ZIM Loaded Planar Antenna ..................................................................... 94 3 - 8 - 1 ZIM loaded Quasi-Yagi Antenna ..................................................... 95 3 - 8 - 2 Fabrication and Measurements ....................................................... 103 3 - 9 Summary .................................................................................................. 108 Chapter 4 Energy Spatial Redistribution based on Propagating Wave Interference using a Metamaterial Phase Shifter ...................................................................... 111 4 - 1 Introduction .............................................................................................. 111 4 - 2 Energy Re-distribution ............................................................................. 116 4 - 2 - 1 Plane Waves Interference ............................................................... 116 4 - 2 - 2 Gaussian Waves Interference ......................................................... 117 4 - 3 Antenna Gain Enhancement .................................................................... 121 4 - 3 - 1 180o Phase Shifter ..........................................................................