Thesis Presented to The

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Presented to The UNIVERSITE DU QUEBEC A CHICOUTIMI THESIS PRESENTED TO THE UNIVERSITY OF QUEBEC AT CHICOUTIMI IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ENGINEERING BY ADEL MOHAMED EFFECT OF ADDITIVES ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ALUMINUM-SILICON ALLOYS APRIL 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-43180-1 Our file Notre reference ISBN: 978-0-494-43180-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author's permission. In compliance with the Canadian Conformement a la loi canadienne Privacy Act some supporting sur la protection de la vie privee, forms may have been removed quelques formulaires secondaires from this thesis. ont ete enleves de cette these. While these forms may be included Bien que ces formulaires in the document page count, aient inclus dans la pagination, their removal does not represent il n'y aura aucun contenu manquant. any loss of content from the thesis. Canada UNIVERSITE DU QUEBEC A CHICOUTIMI THESE PRESENTE A L'UNIVERSITE DU QUEBEC A CHICOUTIMI COMME EXIGENCE PARTIELLE DU DOCTORT EN INGENIERIE PAR ADEL MOHAMED EFFET DES ADDITIFS SUR LA MICROSTRUCTURE ET LES PROPRIETES MECANIQUES DES ALLIAGES D'ALUMINIUM-SILICIUM AVRIL 2008 Dedicated to my parents, Reham and my little Mahmoud RESUME Les alliages aluminium-silicium, particulierement a la composition eutectique, sont souvent employes dans l'industrie de 1'automobile en raison de leur de faible densite relative a des materiaux traditionnels. Les proprietes mecaniques de tels alliages sont determinees principalement par les constituants microstructuraux de leur structure apres la coulee, les morphologies et les quantites de leurs phases intermetalliques. Dans l'etat non modifie, les alliages Al-Si montrent un silicium eutectique ayant une forme aciculaire ou lamellaire, de ce fait, ces alliages ont tendance a montrer de faibles resistance et ductilite. Ainsi, les alliages avec une structure principalement eutectique doivent subir la modification afin d'assurer des proprietes mecaniques adequates. La qualite de du produit coule peut etre amelioree par affinement des grains, ceci permet de reduire la taille des grains primaires de la phase a-aluminium qui solidifie autrement dans une structure de grain grossiere. La production des alliages Al-Si avec une structure et des proprietes mecaniques ameliorees implique Implication de deux processus principaux : (i) addition de tels elements d'alliage comme Mg, Cu, Mn, et autres elements semblables, pendant l'etat liquide; et (ii) traitement thermique. Les elements de microalliage ou elements de trace utilises dans les alliages commerciaux d'aluminium sont de 0.5 a 1.0 % en poids de Pb, Bi, Sn et In, qui ont peu ou pas de solubilite en aluminium, c.-a-d. ils ont des coefficients de distribution extremement bas. L'influence du fer (0.5-1 % en poids), du manganese (0.5-1 % en poids), du cuivre (2.25- 3.25 % en poids), et du magnesium (0.3-0.5 % en poids), aussi bien que celle des elements Pb, Bi, Sn, et In, sur la microstructure et les proprietes mecaniques de l'alliage preeutectique Al-10.8%Si modifie et raffine a ete etudiee dans deux conditions, a savoir, tel que coule et application d'un traitement thermique. Les alliages en fusion ont ete verses dans (a) un moule metallique graphite-enduit rectangulaire de forme L prechauffe a 450 °C pour des mesures metallographiques et de durete ; et (b) un moule permanent de type ASTM B-108 et (c) un moule d'essai au choc d'acier doux pour produire les echantillons du test necessaire. devaluation microstructurale a ete effectuee en utilisant la microscopie optique en meme temps que l'analyse d'image pour la quantification. L'identification de phase a ete effectuee en utilisant la microsonde electronique (EPMA), couple aux equipements d'EDX et de WDS. Les barreaux d'essai ont ete divises en sept jeux : un ensemble a ete garde dans la condition de tel que coule, alors que les six autres ensembles etaient traites thermiquement, une mise en solution a 495°C pour 8 h, puis une trempe dans l'eau chaude a 65°C, suivi d'un vieillissement artificiel a 155 °C, 180 °C, 200 °C, 220 °C, et 240°C, respectivement, pendant 5 heures (c.-a-d. les traitements T6 et T7). Les proprietes mecaniques ont ete evaluees a la temperature ambiante par la durete, les proprietes de traction et d'impact pour les deux conditions, tel que coule et application du traitement thermique. Les mesures de durete ont ete effectuees en utilisant un appareil de controle brinell de durete. Des proprietes de traction ont ete determinees a l'aide d'une machine d'essai mecanique de Servohydraulic MTS. Les proprietes d'impact ont ete evaluees a l'aide d'une machine de test d'impact Charpy. ii En matiere de l'addition des elements d'alliage, les resultats prouvent que l'effet de modification du Sr diminue a mesure que la quantite de cuivre et de magnesium supplementaires est augmentee, en raison des interactions entre ces elements, ce qui cause une segregation grave des phases d'Al2Cu dans les secteurs loin du silicium eutectique modifie et change la sequence de precipitation de la phase a-Ali5(Fe,Mn)3Si2 d'une reaction post-dendritique a pre-dendritique ou l'intermetallique est observe pour se produire dans les dendrites d'a-Al. Dependant de la teneur en Fe et en Mn dans l'alliage, une grande variation dans la phase a est observee sous forme de particules formees polyhedrales connues sous le nom de « sludge ». La phase d'A^Cu est vue pour se dissoudre presque totalement pendant le traitement thermique de mise en solution, alors que les phases Al5Cu2MggSi6 et les phases intermetalliques du fer a-Ali5(Fe,Mn)3Si2 s'averent pour persister pour tous les alliages etudies, particulierement ceux qui contiennent les niveaux eleves du Mg et du Fe. La phase intermetallique de fer de 6-Al5(Fe,Mn)3Si se dissout partiellement dans les alliages modifies par le Sr, et sa dissolution devient plus prononcee apres traitement thermique de mise en solution. Pour les alliages soumis a un traitement thermique, un vieillissement maximal est realise a 180 °C, bien que l'index de la plus haute qualite corresponde a la temperature du vieillissement 155 °C, et ce est pour tous les alliages etudies. En consequence, 155 °C peut etre considere comme traitement de vieillissement optimal. A 0.5% Mn, la phase P-Fe forme quand le contenu de Fe est au-dessus de 0.75%, entrainant une diminution massive au niveau des proprietes mecaniques. Le meme resultat est obtenu quand les niveaux du Fe et du Mn sont augmentes au dela de 0.75%, en raison de la formation du residu « sludge ». D'autre part, les proprietes mecaniques des alliages contenant du cuivre sont affectees legerement aux niveaux eleves du magnesium en raison de la formation de la phase Al5Cu2MggSi6 qui diminue la quantite de magnesium libre disponible pour former la phase d'A^CuMg. Le contour courbe de la correlation entre l'UTS (limite ultime) et l'allongement observe pour tous les alliages soumis au vieillissement reflete la transition d'une forte correlation dans les conditions sous-vieillissement et vieillissement maximal liee a la faible correlation associee avec la condition de survieillissement. L'energie d'impact de Charpy de l'alliage Al-10.8%Si est influencee par sa microstructure qui depend fortement de la composition d'alliage. La morphologie du silicium fibreux en alliages modifies par le Sr augmente la durete en raison de son effet fondamental sur le declenchement des fissures et la resistance de propagation de fissure. Dans les alliages contenant -1% de fer et 1% ou 0.5% Mn, l'addition du fer mene a une plus grande precipitation du residu et des plaquettes P-Fe, respectivement; ces particules intermetalliques agissent en tant qu'emplacements de declenchement de fissures et reduisent les proprietes d'impact considerablement. Dans les alliages contenant des niveaux eleves en cuivre, le niveau de Cu accru abaisse les proprietes d'impact de maniere significative, puisque le comportement de rupture est maintenant egalement influence par la phase d'Al2Cu en plus des particules de silicium. Independamment de la composition d'alliage, le trace combine de l'energie d'impact et le Ill pourcentage d'elongation montre des relations lineaires pour tous les alliages, que ce soit dans la condition tel que coule ou traite thermiquement. Des modeles de regression multiples ont ete developpes afln de prevoir l'mfluence des variations compositionnelles sur les proprietes mecaniques (L.U, L.E, %A, et Ex) de l'alliage Al-10.8%Si soumis a un traitement T6.
Recommended publications
  • Heat Treating of Aluminum Alloys
    ASM Handbook, Volume 4: Heat Treating Copyright © 1991 ASM International® ASM Handbook Committee, p 841-879 All rights reserved. DOI: 10.1361/asmhba0001205 www.asminternational.org Heat Treating of Aluminum Alloys HEAT TREATING in its broadest sense, • Aluminum-copper-magnesium systems The mechanism of strengthening from refers to any of the heating and cooling (magnesium intensifies precipitation) precipitation involves the formation of co- operations that are performed for the pur- • Aluminum-magnesium-silicon systems herent clusters of solute atoms (that is, the pose of changing the mechanical properties, with strengthening from Mg2Si solute atoms have collected into a cluster the metallurgical structure, or the residual • Aluminum-zinc-magnesium systems with but still have the same crystal structure as stress state of a metal product. When the strengthening from MgZn2 the solvent phase). This causes a great deal term is applied to aluminum alloys, howev- • Aluminum-zinc-magnesium-copper sys- of strain because of mismatch in size be- er, its use frequently is restricted to the tems tween the solvent and solute atoms. Conse- specific operations' employed to increase quently, the presence of the precipitate par- strength and hardness of the precipitation- The general requirement for precipitation ticles, and even more importantly the strain hardenable wrought and cast alloys. These strengthening of supersaturated solid solu- fields in the matrix surrounding the coher- usually are referred to as the "heat-treat- tions involves the formation of finely dis- ent particles, provide higher strength by able" alloys to distinguish them from those persed precipitates during aging heat treat- obstructing and retarding the movement of alloys in which no significant strengthening ments (which may include either natural aging dislocations.
    [Show full text]
  • A Survey of Al7075 Aluminium Metal Matrix Composites
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 A Survey of Al7075 Aluminium Metal Matrix Composites Rajendra .S .K1, Ramesha .C .M2 1Research Scholar, Jain University, Bengaluru, Department of Industrial Engineering and Management, Dr. Ambedkar Institute of Technology, Bengaluru 2Department of Mechanical Engineering, M S Ramaiah Institute of Technology, Bengaluru Abstract:A composite material is a combination of two or more chemically distinct and insoluble phases; its properties and structural performance are superior to those of the constituents acting independently. Metals and ceramics, as well, can be embedded with particles or fibers, to improve their properties; these combinations are known as Metal-Matrix composites. Aluminum 7075 alloy constitutes a very important engineering material widely employed in the aircraft and aerospace industry for the manufacturing of different parts and components. It is due to its high strength to density ratio that it a sought after metal matrix composite. In this paper we present a survey of Al 7075 Metal Matrix Composites. Keywords: Metal Matrix Composites (MMC’s), Aluminium Metal Matrix, Beryl, Al7075, Aluminium alloy 1. Introduction Aluminium alloy 7075 is an aluminium alloy, with zinc as the primary alloying element. It is strong, with a strength The effects of research in Aluminium based Metal Matrix comparable to many steels, and has good fatigue strength and Composites (MMC’s) are far reaching these days. These average machinability, but has less resistance to corrosion composites find various applications in the automobile than many other Al alloys. Its relatively high cost limits its industry, the aerospace industry and in defence and marine use to applications where cheaper alloys are not suitable.
    [Show full text]
  • Machining of Aluminum and Aluminum Alloys / 763
    ASM Handbook, Volume 16: Machining Copyright © 1989 ASM International® ASM Handbook Committee, p 761-804 All rights reserved. DOI: 10.1361/asmhba0002184 www.asminternational.org MachJning of Aluminum and AlumJnum Alloys ALUMINUM ALLOYS can be ma- -r.. _ . lul Tools with small rake angles can normally chined rapidly and economically. Because be used with little danger of burring the part ," ,' ,,'7.,','_ ' , '~: £,~ " ~ ! f / "' " of their complex metallurgical structure, or of developing buildup on the cutting their machining characteristics are superior ,, A edges of tools. Alloys having silicon as the to those of pure aluminum. major alloying element require tools with The microconstituents present in alumi- larger rake angles, and they are more eco- num alloys have important effects on ma- nomically machined at lower speeds and chining characteristics. Nonabrasive con- feeds. stituents have a beneficial effect, and ,o IIR Wrought Alloys. Most wrought alumi- insoluble abrasive constituents exert a det- num alloys have excellent machining char- rimental effect on tool life and surface qual- acteristics; several are well suited to multi- ity. Constituents that are insoluble but soft B pie-operation machining. A thorough and nonabrasive are beneficial because they e,,{' , understanding of tool designs and machin- assist in chip breakage; such constituents s,~ ,.t ing practices is essential for full utilization are purposely added in formulating high- of the free-machining qualities of aluminum strength free-cutting alloys for processing in alloys. high-speed automatic bar and chucking ma- Strain-hardenable alloys (including chines. " ~ ~p /"~ commercially pure aluminum) contain no In general, the softer ailoys~and, to a alloying elements that would render them lesser extent, some of the harder al- c • o c hardenable by solution heat treatment and ,p loys--are likely to form a built-up edge on precipitation, but they can be strengthened the cutting lip of the tool.
    [Show full text]
  • Aluminium Alloys Chemical Composition Pdf
    Aluminium alloys chemical composition pdf Continue Alloy in which aluminum is the predominant lye frame of aluminum welded aluminium alloy, manufactured in 1990. Aluminum alloys (or aluminium alloys; see spelling differences) are alloys in which aluminium (Al) is the predominant metal. Typical alloy elements are copper, magnesium, manganese, silicon, tin and zinc. There are two main classifications, namely casting alloys and forged alloys, both further subdivided into heat-treatable and heat-free categories. Approximately 85% of aluminium is used for forged products, e.g. laminated plates, foils and extrusions. Aluminum cast alloys produce cost-effective products due to their low melting point, although they generally have lower tensile strength than forged alloys. The most important cast aluminium alloy system is Al–Si, where high silicon levels (4.0–13%) contributes to giving good casting features. Aluminum alloys are widely used in engineering structures and components where a low weight or corrosion resistance is required. [1] Alloys composed mostly of aluminium have been very important in aerospace production since the introduction of metal leather aircraft. Aluminum-magnesium alloys are both lighter than other aluminium alloys and much less flammable than other alloys containing a very high percentage of magnesium. [2] Aluminum alloy surfaces will develop a white layer, protective of aluminum oxide, if not protected by proper anodization and/or dyeing procedures. In a wet environment, galvanic corrosion can occur when an aluminum alloy is placed in electrical contact with other metals with a more positive corrosion potential than aluminum, and an electrolyte is present that allows the exchange of ions.
    [Show full text]
  • Thermophysical Properties of Materials for Water Cooled Reactors
    XA9744411 IAEA-TECDOC-949 Thermophysical properties of materials for water cooled reactors June 1997 ¥DL 2 8 fe 2 Q The IAEA does not normally maintain stocks of reports in this series. However, microfiche copies of these reports can be obtained from IN IS Clearinghouse International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria Orders should be accompanied by prepayment of Austrian Schillings 100,- in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the IN IS Clearinghouse. IAEA-TECDOC-949 Thermophysical properties of materials for water cooled reactors WJ INTERNATIONAL ATOMIC ENERGY AGENCY /A\ June 1997 The originating Section of this publication in the IAEA was: Nuclear Power Technology Development Section International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria THERMOPHYSICAL PROPERTIES OF MATERIALS FOR WATER COOLED REACTORS IAEA, VIENNA, 1997 IAEA-TECDOC-949 ISSN 1011-4289 ©IAEA, 1997 Printed by the IAEA in Austria June 1997 FOREWORD The IAEA Co-ordinated Research Programme (CRP) to establish a thermophysical properties data base for light and heavy water reactor materials was organized within the framework of the IAEA's International Working Group on Advanced Technologies for Water Cooled Reactors. The work within the CRP started in 1990. The objective of the CRP was to collect and systematize a thenmophysical properties data base for light and heavy water reactor materials under normal operating, transient and accident conditions. The important thermophysical properties include thermal conductivity, thermal diffusivity, specific heat capacity, enthalpy, thermal expansion and others.
    [Show full text]
  • International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys
    International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys 1525 Wilson Boulevard, Arlington, VA 22209 www.aluminum.org With Support for On-line Access From: Aluminum Extruders Council Australian Aluminium Council Ltd. European Aluminium Association Japan Aluminium Association Alro S.A, R omania Revised: January 2015 Supersedes: February 2009 © Copyright 2015, The Aluminum Association, Inc. Unauthorized reproduction and sale by photocopy or any other method is illegal . Use of the Information The Aluminum Association has used its best efforts in compiling the information contained in this publication. Although the Association believes that its compilation procedures are reliable, it does not warrant, either expressly or impliedly, the accuracy or completeness of this information. The Aluminum Association assumes no responsibility or liability for the use of the information herein. All Aluminum Association published standards, data, specifications and other material are reviewed at least every five years and revised, reaffirmed or withdrawn. Users are advised to contact The Aluminum Association to ascertain whether the information in this publication has been superseded in the interim between publication and proposed use. CONTENTS Page FOREWORD ........................................................................................................... i SIGNATORIES TO THE DECLARATION OF ACCORD ..................................... ii-iii REGISTERED DESIGNATIONS AND CHEMICAL COMPOSITION
    [Show full text]
  • AAM > Applications
    Materials – Microstructure and properties Table of contents 4 Microstructure and properties .................................................................................................. 2 4.1 Properties & microstructure determine the behaviour of automotive aluminium ............. 2 4.2 Mechanical behaviour ...................................................................................................... 3 4.2.1 Mechanical behaviour: elastic behaviour, plastic behaviour and fracture behaviour3 4.2.2 Elastic behaviour....................................................................................................... 5 4.2.3 Plastic behaviour....................................................................................................... 7 4.2.4 Fracture behaviour .................................................................................................... 8 4.2.5 Effects of microstructure on ductility and fracture ................................................... 10 4.2.6 Mechanical properties at elevated temperatures .................................................... 11 4.2.7 Fatigue behaviour ................................................................................................... 12 4.3 Physical properties ......................................................................................................... 13 4.3.1 Physical properties of 99.99% pure aluminium ...................................................... 13 4.3.2 Physical properties of wrought alloys and casting alloys ......................................
    [Show full text]
  • Applications – Power Train – Pistons
    Applications – Power train – Pistons Table of Contents 1 Pistons .................................................................................................................................... 2 1.1 Pistons for gasoline and diesel engines .......................................................................... 2 1.2 Operating conditions ........................................................................................................3 1.3 Piston materials ............................................................................................................... 5 1.4 Design considerations for automotive pistons ................................................................. 8 1.5 Current examples of aluminium pistons......................................................................... 10 1.6 Outlook........................................................................................................................... 13 Version 2011 © European Aluminium Association ([email protected]) 1 1 Pistons 1.1 Pistons for gasoline and diesel engines In an internal combustion engine, pistons convert the thermal into mechanical energy. The functions of the pistons are to transmit the gas forces via the connecting rod to the crank shaft, to seal - in conjunction with the piston rings - the combustion chamber against gas leakage to the crankcase and to prevent the infiltration of oil from the crankcase into the combustion chamber, to dissipate the absorbed combustion heat to the cylinder liner and the cooling oil. Aluminium alloys
    [Show full text]
  • Aluminium Sheet, Coil, Plate, Treadplate & Extrusions
    Aluminium Sheet, Coil, Plate, Treadplate & Extrusions & & Treadplate , luminium Sheet, Coil, Plate Coil, Sheet, luminium A Extrusions 8 8 Photography courtesy of Alcoa Aluminium and INCAT. www.atlassteels.com.au Atlas Steels – Product Reference Manual Section 8 – Aluminium Sheet, Coil, Plate, Treadplate & Extrusions Aluminium Advantages of using Aluminium 1 Light weight – approximately /3 the density of steel. Strength – some alloys can be substantially strengthened by work or by heat treatment. Workability – easy formability, machinability and readily welded. Corrosion resistance – varies depending on the alloy; the best resist marine exposure. Non-toxic – often used in contact with food. Non-magnetic and non-sparking. Electrical conductivity – very high; sometimes used for electrical conductors. Thermal conductivity – high. Reflectivity – bright finish options available. Specifications Flat rolled aluminium alloy products stocked by Atlas generally comply with ASTM B209M or ASTM B928M with dimensions in ANSI H35.2. There is very close agreement between these standards and Australian/New Zealand standard AS/NZS 1734 and again close agreement with European standard EN 573. Aluminium Association publication “Aluminium standards and data” gives a very accessible summary of both specified data and useful information. Aluminium products are often cited as compliant with “AA specs” based on this. Treadplate is specified in ASTM B632M but this does not cover the product well. Most mills produce to their own specifications and particularly
    [Show full text]
  • Aluminum Foundry Products
    ASM Handbook, Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials Copyright © 1990 ASM International® ASM Handbook Committee, p 123-151 All rights reserved. DOI: 10.1361/asmhba0001061 www.asminternational.org Aluminum Foundry Products Revised by A. Kearney, Avery Kearney & Company Elwin L. Rooy, Aluminum Company of America ALUMINUM CASTING ALLOYS are wrought alloys. Aluminum casting alloys cast aluminum alloys are grouped according the most versatile of all common foundry must contain, in addition to strengthening to composition limits registered with the alloys and generally have the highest cast- elements, sufficient amounts of eutectic- Aluminum Association (see Table 3 in the ability ratings. As casting materials, alumi- forming elements (usually silicon) in order article "Alloy and Temper Designation Sys- num alloys have the following favorable to have adequate fluidity to feed the shrink- tems for Aluminum and Aluminum Al- characteristics: age that occurs in all but the simplest cast- loys"). Comprehensive listings are also • Good fluidity for filling thin sections ings. maintained by general procurement specifi- The phase behavior of aluminum-silicon • Low melting point relative to those re- cations issued through government agencies compositions (Fig. 1) provides a simple quired for many other metals (federal, military, and so on) and by techni- • Rapid heat transfer from the molten alu- eutectic-forming system, which makes pos- cal societies such as the American Society sible the commercial viability of most high- minum to the mold, providing shorter for Testing and Materials and the Society of casting cycles volume aluminum casting. Silicon contents, Automotive Engineers (see Table 1 for ex- • Hydrogen is the only gas with apprecia- ranging from about 4% to the eutectic level amples).
    [Show full text]
  • Catalogue of European Standards in the Aluminium and Aluminium Alloys Field
    Catalogue of European standards in the aluminium and aluminium alloys field Under revision New publications during last two years (2017-2018) September 2018 David KRUPKA AFNOR Normalisation Industrial Engineering and Environment Department 11 rue Francis de Pressensé F-93571 La Plaine Saint Denis Cedex 1 Content 1. Designations systems, chemical composition and environmental aspects .................................... 3 2. Terms and definitions ...................................................................................................................... 5 3. Sheet, strips and plate and related products .................................................................................. 6 3.1. General applications ........................................................................................................ 6 3.2. Particular requirements ................................................................................................... 7 4. Foil and finstock ............................................................................................................................... 9 5. Extruded rod/bar, tube and profiles.............................................................................................. 10 5.1. General applications ...................................................................................................... 10 5.2. Particular requirements ................................................................................................. 12 6. Forgings and forging stock ............................................................................................................
    [Show full text]
  • 6061 Aluminum
    Alro Steel Metals Guide Aluminum Bar, Sheet, Plate, Structurals, Tube & Pipe Aluminum Cold Finished Bar ................. 6-2 thru 6-16 Aluminum CF Tolerances ..................... 6-17 thru 6-18 Aluminum Extruded Bar ....................... 6-19 thru 6-31 Aluminum Extruded Structurals .......... 6-32 thru 6-40 Aluminum Tube & Pipe ........................ 6-41 thru 6-51 Aluminum Extruded Tolerances .......... 6-52 thru 6-57 Aluminum Sheet & Plate ...................... 6-58 thru 6-65 Aluminum Cast Plate ............................ 6-66 thru 6-74 Aluminum Tread Plate .......................................... 6-75 Sheet & Plate Tolerances & Data ........ 6-76 thru 6-92 Comparative Characteristics .............. 6-93 thru 6-97 Specification Cross Reference .......... 6-98 thru 6-102 NOTE: Typical properties shown for alloys are not guaranteed by publication herein. In most cases, the values are averages for various sizes, product forms and manufacturing practices. The typical properties do not exactly represent particular products or sizes. The data is intended only as a basis for comparing alloys and tempers and should not be specified as engineering requirements or used for design purposes. Aluminum WARNING: These products can potentially expose you to chemicals including Nickel, Chromium, Lead, Cobalt, Mercury and Beryllium, which are known to the state of California to cause cancer and/or birth defects or other reproductive harm. For more information, visit www.P65Warnings.ca.gov 6-1 alro.com ® Alro Steel Metals Guide Aluminum Rod, Bar and Wire (Cold Finished) Rounds • Flats • Hexagons • Squares Alloy Descriptions and Applications 2011 – This free machining alloy compares favorably with free cutting brass. It is the most suitable alloy for machining on automatics, milling machines, lathes, planers, shapers and other machine tools, and is the most widely used alloy for all types of screw machine parts.
    [Show full text]