<<

Tectonic history of the Kolyvan- folded zone (KTFZ), : Insight from zircon U/Pb geochronology and Nd isotopes

Item Type Article

Authors Zhimulev, Fedor I.; Gillespie, Jack; Glorie, Stijn; Jepson, Gilby; Vetrov, Evgeny V.; De Grave, Johan

Citation Zhimulev, FI, Gillespie, J, Glorie, S, Jepson, G, Vetrov, EV, De Grave, J. Tectonic history of the Kolyvan–Tomsk folded zone (KTFZ), Russia: Insight from zircon U/Pb geochronology and Nd isotopes. Geological Journal. 2020; 55: 1913– 1930. https:// doi.org/10.1002/gj.3679

DOI 10.1002/gj.3679

Publisher WILEY

Journal GEOLOGICAL JOURNAL

Rights © 2019 John Wiley & Sons, Ltd.

Download date 27/09/2021 15:01:23

Item License http://rightsstatements.org/vocab/InC/1.0/

Version Final accepted manuscript

Link to Item http://hdl.handle.net/10150/641031 1 Tectonic history of the Kolyvan-Tomsk folded zone (KTFZ), Russia: insight from zircon

2 U/Pb geochronology and Nd isotopes

3 Fedor I. Zhimuleva*, Jack Gillespieb, Stijn Glorieb, Gilby Jepsonb, c, Evgeny V. Vetrova, d,

4 Johan De Gravee

5 a Sobolev Institute of Geology and Mineralogy Siberian Вrаnch Russian Academy of

6 Sciences, 630090 Koptuga ave. 3, Russia

7 b Tectonics, Resources and Exploration (TraX), Department of Earth Sciences, University of

8 Adelaide, Adelaide, Australia

9 c Department of Geosciences, University of Arizona, Tucson, AZ, USA

10

11 d Siberian Research Institute of Geology, Geophysics and Mineral Resources, Novosibirsk,

12 630099 Krasniy ave. 35, Russia.

13 e Department of Geology, Ghent University, Krijgslaan 281.S8, WE13, 9000 Gent, Belgium

14

15 * Corresponding author:

16 Sobolev Institute of Geology and Mineralogy Siberian Вrаnch Russian Academy of Sciences,

17 Novosibirsk, Russia

18 [email protected], [email protected]

19

20 21 Abstract

22 The Kolyvan-Tomsk folded zone (KTFZ) represents part of the Central Asian Orogenic Belt

23 (CAOB). The KTFZ is mainly composed of detrital late Paleozoic sedimentary deposits, with

24 minor intrusions. Detrital zircon geochronology on the Upper Devonian to lower Permian

25 sedimentary sequences of the KTFZ and the associated Gorlovo foreland basin yield four age

26 peaks, reflecting the magmatic events in the source terranes. These events consist of (1) a

27 minor Neoproterozoic peak (0.9-0.7 Ga), (2) a significant early Paleozoic peak (550-460 Ma)

28 with a maximum at 500 Ma, and two well defined late Paleozoic peaks during (3) the Middle-

29 Late Devonian (385-360 Ma) and (4) the Carboniferous- early Permian (360-280 Ma), with a

30 maximum at 320 Ma. Older zircons (>1 Ga) are quite rare in the sampled sedimentary

31 sequences. Slightly negative εNd values and associated relatively young Nd model ages were

32 obtained (εNd(T)= -0.78, T(DM) ~1.1 Ga for Upper Devonian sandstones, εNd(T)= -1.1,

33 T(DM) ~1.1 Ga for lower Permian sandstones), suggesting only minor contribution of ancient

34 continental crust to the main sedimentary units of the KTFZ. All intrusive and volcaniclastic

35 rocks on the contrary are characterized by high positive εNd(T) values in the range of 3.78–

36 6.86 and a late Precambrian model age (T(DM)=581–916 Ma), which corroborates its

37 juvenile nature and an important depleted mantle component in their source. The oldest unit

38 of the KTFZ, the Bugotak volcanic complex formed at the Givetian – early Frasnian

39 transition, at about 380 Ma. Upper Devonian detrital deposits of the KTFZ were formed in

40 the early Paleozoic accretion belt of the Siberian continent, and specifically in a passive

41 continental margin environment. Deposits of the Gorlovo foreland basin, adjoining the KTFZ,

42 were accumulated as a result of erosion of the Carboniferous – early Permian volcanic rocks,

43 that are now buried under the Meso-Cenozoic sedimentary cover of the West Siberian Basin.

44 The magmatic events, recorded in the KTFZ zircon data, correspond to the most significant

45 magmatic stages that affected the western part of the CAOB as a whole. 46 Highlights

47 Volcanism in the Kolyvan-Tomsk folded zone occurred during the Middle to Late Devonian.

48 Source province for the Kolyvan-Tomsk folded zone sediments was the Salair terrane.

49 Source rocks for the Gorlovo basin deposits were Carboniferous magmatic complexes.

50 There are no early Precambrian crustal blocks in the Kolyvan-Tomsk folded zone.

51

52 Keywords: Atai-Sayan, Central Asian Orogenic Belt, detrital zircon geochronology,

53 Devonian, magmatism, Nd isotope composition, West ,

54 55

56 1. INTRODUCTION

57 The Kolyvan-Tomsk folded zone (KTFZ) is located at the junction of the Altai-Sayan fold

58 belt (ASFA) (e.g. Buslov et al. 2013; Glorie et al. 2011), and the `-Zaisan folded belt

59 (Matveevskaya, 1969) in the northern Central Asian Orogenic Belt (CAOB) (Wilhem,

60 Windley, & Stampfli, 2012; Windley, Alexeiev, Xiao, Kröner, & Badarch 2007, Xiao et al.,

61 2009; Xiao, Huang, Han, Sun, & Li, 2010) (Figure1). The CAOB is the largest Phanerozoic

62 accretionary orogen in the world, located between the East-European, Siberian, Tarim and

63 North cratons (Figure 1) and consists of a collage of different terranes: fragments of

64 microcontinents, volcanic arcs, and accretionary complexes (Wilhem et al., 2012, Windley at

65 al., 2007, Xiao et al., 2009, 2010). In recent decades, the tectonic structure and evolution of

66 the CAOB has been an important topic for various geological and geochronological studies,

67 due to its importance in terms of metallogeny, geohazards and fundamental geoscientific

68 issues such as the growth of the continental crust (e. g. Goldfarb, Taylor, Collins, Goryachev,

69 & Orlandini, 2014, Jahn, Wu, & Chen, 2000, Kröner et al., 2014, Safonova 2017, Sengör,

70 Natal’in, & Burtman, 1993, Wang et al., 2009, 2014, Windley et al., 2007, Xiao et al., 2010).

71 The presumed presence of ancient continental crustal blocks in the basement of the

72 overprinted sedimentary basins, such as Junggar, Ili, Minusa, Kuznetsk and others is a hotly

73 debated topic (Zhao, Chen, Deng, Shao & Ma, 2019). The Ob`-Zaisan folded system runs

74 through eastern Kazakhstan and northwestern China, east of the Altai-Sayan (Figure 1). The

75 Ob`-Zaisan system includes the KTFZ with a characteristic NE strike, and the NW-striking

76 Rudny Altai folded zone. This difference in orientation can be explained as a result of

77 oroclinal bending (Choulet et al., 2011; Li et al., 2017, 2018; Sengör et al., 1993; Vladimirov

78 et al., 2005; Zonenshain, Kuzmin & Natapov, 1990). Berzin et al., (1994) suggested that the

79 propagation of the KTFZ to the south is represented by the Rudny Altai folded zone, although 80 this is difficult to ascertain as the junction between the Rudny Altai and KTFZ is covered by

81 the thick Meso-Cenozoic sediments of the West Siberian Basin (WSB). Despite numerous

82 studies by Russian geologists, which focused on geological mapping (Babin et al., 2015,

83 Belyaev & Nechaev 2015, Kotel’nikov Maksimov, Kotel’nikova, Makarenko & Subbotin

84 2008), paleontology and biostratigraphy (Izokh & Yazikov, 2015, Yazikov, Izokh, Shirokikh

85 & Kutolin, 2015), ore resources (Kalinin, Naumov, Borisenko, Kovalev, & Antropova, 2015),

86 petrology (Kungurtsev et al., 1998; Sotnikov, Fedoseev, Ponomarchuk, Borisenko & Berzina

87 2000), and some associated overview monographs published in Russian (Roslyakov et al.,

88 2001, Sotnikov et al., 1999, Sviridov et al., 1999; Vrublevskii Nagorniy, Rubtsov, & Erv’ye

89 1987), the KTFZ remains very poorly constrained in terms of geochronology. Whereas the

90 geochronology of the Chinese and to a lesser extent the Russian Altai has been intensively

91 studied (e.g. Cai et al., 2016, Chen et al., 2015, 2016, Dong et al., 2018, Glorie et al., 2011, Li

92 et al., 2017, Long et al., 2007, Kruk, Kuibida, Shokalskiy, Kiselev & Gusev, 2018), the

93 northern extension of these structures in the Kolyvan-Tomsk and Salair regions remains very

94 poorly characterized concerning its geochronologic frame work. Currently, there are no zircon

95 U-Pb ages and for magmatic intrusions or sedimentary sequences in the KTFZ published

96 within the international literature. The tectonic environment of sedimentation and magmatism

97 in this zone thus remains poorly understood, making it difficult to accurately correlate the

98 KTFZ with the late Paleozoic folded zones of Eastern Kazakhstan (e.g. Glorie et al., 2012,

99 Vladimirov et al., 2005,) and north-western China in the context of CAOB evolution (e.g.

100 Choulet et al., 2011; 2012; Hong et al., 2017; Li et al., 2017; 2018; Liu, Han, Gong, & Chen,

101 2019; Long et al., 2007; Zhou et al., 2017).

102 The KTFZ along its entire length is composed of fairly homogeneous along-strike late

103 Devonian-Carboniferous carbonate-detrital deposits. Volcanic and intrusive rocks are

104 relatively scarce. The tectonic setting in which this sedimentary unit was deposited is not 105 completely defined. Dating of the detrital zircons from these deposits will provide valuable

106 information about the source provenance, basin evolution, sedimentation rates, and the

107 general character of the tectonic events in the region. Volcanic rocks, lying at the base of the

108 sedimentary unit, have been dated in this work, to provide a geochronological constraint on

109 the onset of this particular regional tectonic cycle. Nd isotope composition of the intrusive,

110 volcanic and sedimentary rocks of the KTFZ was measured to estimate the age of the

111 continental crust and to evaluate a possible contribution of the recycled ancient crustal

112 material. The geochronological results on the KTFZ rocks presented here, are an important

113 contribution to our understanding of the tectonic evolution of the less studied north-western

114 part of CAOB during the late Paleozoic.

115

116 2. GEOLOGICAL SETTING

117 The KTFZ is located at the north-western edge of the Altai-Sayan folded area (ASFA) (Figure

118 1), extending to the north-east for a distance of about 450 km, with a width of 60-100 km

119 (Figure 2). The south-eastern boundary of the KTFZ is defined by a north-westerly dipping

120 thrust zone. Devonian sediments, forming the KTFZ allochthonous nappes, are thrusted onto

121 the early Paleozoic complexes of the Kuznetsk Alatau and Salair terranes, and the

122 Carboniferous-Permian and Jurassic sediments of the Kuznetsk, Gorlovo-Zarubin, and

123 Doronin basins (Zonenshain et al., 1990). The horizontal displacement of the well-studied

124 Tomsk thrust (Figure 2) exceeds 30 km according to drill-hole data (Vrublevskii et al., 1987;

125 Yuzvitskiy, 1966). To the north-west, and to both sides perpendicular to its strike, the KTFZ

126 is overlain by the Meso-Cenozoic cover of the West Siberian Basin (WSB). Available drill-

127 hole data confirms the wide distribution of Devonian – Carboniferous volcanic and

128 sedimentary units, as well as Carboniferous granites in the WSB folded basement (Isaev, 129 2009; Ivanov, Koroteev, Pecherkin, Fedorov, & Erokhin, 2009; Ivanov, Erokhin, Ponomarev,

130 Pogromskaya, & Berzin 2016).

131 The internal structure of the KTFZ consists of a package of tectonic nappes, folded and

132 overthrusted in a south-easterly direction. The frontal part of the KTFZ consists of a chain of

133 uplifts, elongated parallel to strike. These uplifts are the cores of large antiformal folds,

134 consisting of tectonic nappes. The Ordyn, Bugotak, and Mitrofanovo uplifts (Figure 2)

135 contain volcanic and sedimentary rocks of the Bugotak formations of Givetian age. The

136 Bugotak formation is intruded by numerous small subvolcanic bodies of diabase and sub-

137 alkaline dacites and rhyodacites. This volcanic-sedimentary complex is the oldest unit of the

138 KTFZ (Matveyevskaya 1969; Sotnikov et al., 1999). The central zone of the KTFZ consists

139 predominantly of detrital Upper Devonian (Frasnian) - Carboniferous units (Figure 2). The

140 main tectonic units are described in detail below. Simplified stratigraphic columns for the

141 KTFZ and the upper part of Gorlovo Basin are shown in Figure 3.

142 2.1 Bugotak uplift

143 The oldest formations of the KTFZ are situated in the Bugotak uplift. This uplift represents a

144 tectonic nappe of Devonian units overthrusted onto middle Cambrian carbonate-volcanogenic

145 deposits, (Sotnikov et al., 1999). The lower part of the nappe is composed of 400 m thick

146 limestones of Eifelian age that are overlain by a rhyodacite-basalt unit of Givetian age. This

147 volcanogenic unit is known as the Bugotak Formation (Matveevskaya, 1969). Volcanic

148 material in the form of lavas and tuffs of basaltic, andesitic and rhyodacitic composition,

149 comprise up to 75% of the formation. Volcanic rocks are interbedded with sandstones,

150 siltstones and limestones. The total thickness of the Bugotak Formation is about 1500-2000 m

151 (Babin et al., 2015; Matveevskaya, 1969). The volcanic deposits are intruded by subvolcanic

152 units of diabase, gabbro-diabase and plagioclase porphyry. A Rb-Sr isochron age of 334 ± 7 153 Ma was obtained for a sill of pyroxene porphyry, while a K/Ar age of 385 ± 13 Ma for the

154 rhyolites is also reported (Sotnikov et al., 1999). Volcanic rocks are interbedded with clastic

155 deposits and limestones containing fauna. According to biostratigraphic data, the age of the

156 Bugotak Formation is late Eifelian – middle Givetian (~395-385 Ma). New conodont data

157 from limestone interbedded with the volcanic rocks suggests that volcanic activity occurred in

158 a narrow window of time from the end of the Givetian to the earliest Frasnian (~383 Ma,

159 Yazikov et al., 2015). The petrogenesis and context of the complex is still debated and

160 hypotheses vary from island arc to back-arc basin or rift setting (Belyaev & Nechaev, 2015;

161 Kungurtsev et al., 1998; Zonenshain et al., 1990).

162 2.2. Sedimentary deposits of the KTFZ

163 The volcanogenic-sedimentary complex of the Bugotak uplift is covered by a thick,

164 continuous, predominantly clastic sequence. This sedimentary unit is located to the north-west

165 of the Bugotak uplift, and is composed of sandstones, siltstones and shales that formed from

166 the Frasnian to the Serpukhovian (Babin et al., 2015; Sotnikov et al., 1999).

167 This sequence includes three major sedimentary formations the Pacha Formation, the Yurga

168 Formation and the Group (Figure 3). The contact between the Pacha Formation and the

169 underlying Bugotak Formation is usually tectonic, although the normal conformable contact is

170 rarely observed. Sediments of the Pacha Formation are typically quite monotonous in terms of

171 lithology. The formation mostly consists of thin-bedded gray to yellow mudstone, chlorite and

172 carbonate schists, interbedded with thin gray siltstones, sandstones and limestones. In the

173 southern part of the KTFZ, the Pacha Formation contains reef limestone massifs up to 500 m

174 thick, while the overall thickness of the formation is at least 1500 m. The age of the Pacha

175 Formation is determined by the fossil record as a whole to be Frasnian to early Famennian

176 (Matveyevskaya 1969). Recent conodont findings confirm this Frasnian age (Izokh & 177 Yazikov, 2015). The Pacha Formation is overlain conformably by the Yurga Formation, with

178 a gradual transitional boundary. The Yurga Formation is composed of gray sandstone, dark

179 gray shales, and siltstones, with interlayers of coarse sands. The age of the Yurga Formation

180 is biostratigraphically constrained to the late Famennian (Babin et al., 2015). The total

181 thickness of the Yurga Formation is 1500-1600 m. It is conformably covered by the Inya

182 Group, which includes deposits from upper Famennian to lower Visean age. These sediments

183 are typically dark gray shales and siltstones, with rare interbedding of sandstone and

184 limestone layers. The total thickness of the Inya Group is about 1600 m (Babin et al., 2015;

185 Belyaev & Nechaev, 1999; Kotel’nikov et al., 2008).

186 The deposits of the Pacha and Yurga formations and Inya Group are folded into inclined and

187 overturned folds of south - western vergence. The cleavage of the axial plane is widely

188 developed, and often masks the bedding. Mudstones are foliated and turned into phyllites.

189 Hinge zones and overturned limbs are often dissected and shifted by the reverse faults and

190 thrusts. The fault and hinge zones contain tectonic breccia and quartz veins. There are no

191 traces of high-grade metamorphism in the Late Paleozoic sedimentary sequences of the

192 KTFZ. All features of the KTFZ interior structure are oriented according to its frontal

193 boundary, and its interpretation as the frontal part of the fold-thrust belt is widely accepted

194 (Sotnikov et al., 1999). This tectonic package is intruded by undeformed intrusions: Late

195 Paleozoic - Early Mesozoic granitoid massifs and Early Triassic mafic dykes (Babin et al.,

196 2015). A more detailed description of the entire sedimentary sequence is hindered due to very

197 poor outcrops, intense folding and lack of marker beds.

198 2.3. Gorlovo Basin.

199 The Gorlovo Basin is located in front of the Tomsk thrust, which separates KTFZ, on the

200 NW, from the Salair with superimposed Gorlovo basin, on the SE (Figure 2). The sediments

201 of the Gorlovo Basin consist of two different units. The lower unit includes fine-grained 202 clastic deposits with cherty and limestone interlayers of Eifelian to Visean age (Figure 3). The

203 total thickness of these deposits is about 1500 m (Kotel’nikov et al., 2008). This unit is

204 similar to the Upper Devonian - lower Carboniferous deposits of the KTFZ, but is less thick,

205 and represents a shallower facies. It can be interpreted as the sedimentary cover of shallow

206 water facies on the Salair continental margin (Babin et al., 2015, Kotel’nikov et al., 2008).

207 From the Serpukhovian onwards, the style of sedimentation changed in the Gorlovo Basin.

208 The upper part of the sedimentary cover is composed of coal-bearing molasse of middle

209 Carboniferous - Permian age (Figure 3). The coal-bearing formation is called the Balakhon

210 Group. The uppermost sediments of the basin are mudstones, siltstones and sandstones that

211 contain only sparse and thin coal layers, and which belong to the Middle – Upper Permian

212 Kolchugin Group (Kotel’nikov et al., 2008). In terms of composition and texture, the deposits

213 of the Balakhon and Kolchugin Groups in the Gorlovo Basin are similar to the same

214 stratigraphic units in the (Davies, Allen, Buslov, & Safonova 2010; De Grave

215 et al., 2011 and references therein). This Serpukhovian-Permian unit has a thickness of about

216 2500 m, 1150 m of which is represented by the Upper Carboniferous - Lower Permian

217 Balakhon Group. The upper unit is interpreted as a syncollisional mollasse deposit (Sotnikov

218 et al., 1999).

219 Sediments of the Gorlovo basin are deformed into linear folds, and the coals are composed of

220 different grades up to anthracite. In terms of its structure, the Gorlovo-Zarubin basin is a

221 graben-syncline that extends for more than 100 km and with a width of 12 -15 km (Figure 2).

222 The basin is separated from the KTFZ by a series of faults that are thought to be NW dipping

223 thrusts on the basis of geological and geophysical data (Kotel’nikov et al., 2008; Sotnikov et

224 al., 1999). The Gorlovo Basin can be considered as a foreland basin that developed during a

225 stage of thrusting of the KTFZ onto the Salair block, at the margin of the Siberian continent

226 (Sotnikov et al., 1999). Upper Devonian rocks of the KTFZ are thrust upon the Permian 227 deposits of the Kuznetsk and Gorlovo Basins, and therefore the timing of thrusting appears to

228 be Late Permian (Babin et al., 2015, Yuzvitskiy, 1966).

229

230 2.4.Granites of KTFZ

231 The granitoids of the region form two distinct magmatic complexes, which differ in

232 composition and age. These complexes are known as the Priob granite-granodiorite-

233 granosyenite complex and the Barlak leucogranite complex (Figure 2), (Sotnikov et al., 2000).

234 The Priob complex includes the Ob’ and Novosibirsk massifs, and consists of three phases of

235 magmatism: 1) monzonite and diorite, 2) monzogranite, and 3) monzo-leucogranites. The

236 zircon U/Pb age (SHRIMP-II) of the granites from the main, second, phase of the Ob and the

237 Novosibirsk massifs lies in the range of 260.7 ± 3.2 – 249 ± 1 Ma (Babin, Fedoseev,

238 Borisenko, Zhigalov, & Vetrov, 2014). The third phase of the Novosibirsk monzogranite

239 intrusion was dated at 249 ± 1 Ma (Babin et al., 2014). Biotite Ar-Ar ages for the granitoids of

240 the second and third phases of the Novosibirsk and Ob plutons range from 251.2 ± 2.4 – 243.7

241 ± 1.8 Ma, while Rb-Sr analysis of the Novosibirsk granitoids produced an isochron age of

242 245.5 ± 3.1 Ma (Sotnikov et al., 2000). Therefore, the age of the Priob complex is interpreted

243 to be Late Permian-Early Triassic. The Barlak leucogranite complex consists of the Barlak

244 and Kolyvan massifs, and associated minor massifs that are completely covered by Cenozoic

245 deposits. Two intrusion phases can be distinguished in the complex. The first and major phase

246 is composed of voluminous monzo-leucogranites. The second phase consists of the intrusion

247 of small bodies and dikes of fine-grained monzo-leucogranites. The zircon U-Pb age

248 (SHRIMP-II) from the granites of the main phase of the Barlak massif is 242 ± 2 Ma, while

249 monzo-leucogranites from the second phase produce an age of 249.1 ± 0.7 Ma. Similar ages

250 (249-247 Ma) were obtained for the Kolyvan’ massif for example (Babin et al., 2014). Ar/Ar

251 ages for feldspar and biotite from the Kolyvan’ massifs are 233.0 ± 1.8 Ma and 235.5 ± 2.6 252 Ma, respectively (Sotnikov et al., 1999). The Rb-Sr isochron age of the granites from the

253 Barlak Complex is 232.0 ± 6.9 Ma, i.e. Early - Middle Triassic (Sotnikov et al., 1999). The

254 granitic outcrops are intersected by the nappe-fold structures of the KTFZ. The Priob

255 Complex corresponds to the collisional stage of the orogen, while the Barlak Complex is

256 related to the post-collisional extension stage (Sotnikov et al., 2000).

257

258 3. SAMPLING

259 Representative samples of some of the magmatic complexes and sedimentary sequences of

260 the KTFZ were collected for zircon U-Pb geochronologic and Nd isotopic composition

261 analysis (Figure 2 - 4).

262 Sample 15-541-2 was collected from the Famennian Yurga Formation, at the open pit quarry

263 on the right bank of the Bugotak River (Figure 2). This sample is composed of yellowish-grey

264 sandstones (greywackes) with a clay matrix (Figure 4a). The sandstones form lenses in the

265 predominantly siltstone and mudstone facies of a distal turbidite sequence. There are no

266 idiomorphic crystals of plagioclase or other evidence to suggest volcanic activity (tuffs) in the

267 vicinity of the sedimentation area. The sample of the Upper Devonian Yurga formation (15-

268 541-2) is characteristic of the marine accumulation of clastic sediments at the continental

269 margin (Sotnikov et al., 1999).

270

271 Sample 15-471 was taken from the Gorlovo open pit coal mine, from the Upper

272 Carboniferous- Lower Permian deposits of the Balakhon Group. The sample was taken from a

273 4 m thick sandstone layer in the coal-bearing siltstones, and is composed of grey, rounded

274 coarse-grained, poorly sorted, cross-bedded sandstone, and can be described as a lithic arenite

275 (Figure 4b). This layer also contains numerous fragments of underlying black siltstones. 276 These sandstone beds appear to be alluvial channel deposits, and are typical features of the

277 Balakhon Group. The Late Mississipian-Cisuralian (Middle Carboniferous-Lower Permian in

278 Russian stratigraphy) Balakhon Group (sample 15-471) was formed in a continental

279 environment as an orogenic molasse deposit, during the collision stage of the Kolyvan-Tomsk

280 orogeny (Sotnikov et al., 1999; Vladimirov et al., 2005).

281 Sample 15-485 was taken from a rhyolite subvolcanic intrusion of the Bugotak complex

282 (Sopka Bolshaya hill, near the town of Gorniy). It is an aphyric, grey, fine-grained rock with a

283 strong felsic (acidic) composition (Figure 4d). Samples 15-515 and 15-539 are also collected

284 from the Bugotak complex. Sample 15-515 is the fine-grained volcanoclastic breccia at the

285 top of volcanic sequence, just below the base layers of the Pacha formation. Sample 15-539 is

286 dolerite from the subvolcanic intrusion of the Bugotak complex.

287 Samples 15-519, MK-1 and 14-264 were taken from the granite intrusions of the KTFZ.

288 Sample 15-519 is granite of the Priob complex, taken from the outcrop near the Novobibeevo

289 village, MK-1 is granite of the Mochishe stock, and 14-264 is leucogranite of the Barlak

290 complex, taken from the Kolyvan open pit mine.

291 Sample locations are summarized in Table 1. Whole-rock major- and trace element

292 composition of the dated rocks are presented in Supplementary Data A.

293 4. METHODOLOGY

294 4.1. Zircon U/Pb geochronology

295 Sample preparation including rock crushing and zircon separation were performed at

296 Novosibirsk State University. Zircon separates were hand-picked and mounted in epoxy resin,

297 then polished to expose the grains. Cathodoluminescence images of the zircon grains

298 (Figure 5) were produced using a FEI Quanta600 Scanning Electron Microscope at Adelaide

299 Microscopy to identify the internal structure. U-Pb geochronology was conducted via LA- 300 ICP-MS at the University of Adelaide using an Agilent 7900 mass spectrometer coupled to a

301 New Wave UP-213 ablation system. Zircons were ablated using a spot size of 30µm and a

302 frequency of 5Hz, with 30 seconds of background acquisition and 30 seconds of sample

303 ablation. The GJ zircon standard (206Pb/238U = 608.5 ± 0.4 Ma, Jackson, Pearson, Griffin, &

304 Belousova, 2004) was used to correct for U-Pb fractionation, while Plešovice (206Pb/238U =

305 337.13 ± 0.37 Ma, Sláma et al., 2008) was used as a secondary standard. Nineteen analyses of

306 this standard over the course of the analytical session yielded a weighted mean 206Pb/238U age

307 of 340.3 ± 1.6 Ma (MSWD = 1.8). U-Pb data reduction was conducted using the Iolite

308 software package (Paton et al., 2011). The complete isotopic dataset and single-spot age

309 results can be found in Supplementary Data B.

310

311 4.2. Nd isotope geochemistry

312 The Sm and Nd concentrations were measured at the Analytical Center for Multi-elemental

313 and Isotope Research SB-RAS (Novosibirsk) using the ICP-MS method. Isotopic

314 compositions were determined at the Geological Institute of the Kola Scientific Center of the

315 Russian Academy of Sciences (Apatity, Russia) using the methods described by Bayanova

316 (2004).

317 The average ratio of 143Nd/144Nd in the JNdi-1 standard over the measurement period was

318 0.512090 ± 13 (N = 9). The error on the 147Sm/144Nd ratio was evaluated at 0.3% (2σ), i.e. an

319 average over seven measurements of the BCR-2 standard (Raczek, Jochum, & Hofmann,

320 2003). The error calculated for the Nd isotopic ratio for an individual analysis is as low as up

321 to 0.005%. In the calculation of the Nd-isochron, these effective errors were used, but not

322 below the level of reproducibility of the measurement (0.003%). The accuracy of the

323 determination of Sm and Nd concentrations is ±0.5%, for minerals with low contents (ppm 324 levels) - up to ± 10%. Isotopic ratios were normalized relatively to 146Nd/144Nd = 0.7219, and

325 then recalculated to the ratio of 143Nd/144Nd in the standard JNdi-1 = 0.512115 (Tanaka et al.,

326 2000). For the calculation of εNd(T) values and model ages T (DM), we used the

327 conventional present-day CHUR values of 143Nd/144Nd = 0.512630, 147Sm/144Nd = 0.1960

328 (Bouvier, Vervoort, & Patchett, 2008) and DM 143Nd/144Nd = 0.513151, 147Sm/144Nd = 0.2136

329 (Goldstein, & Jacobsen, 1988). In order to account for possible Sm–Nd fractionation during

330 intracrustal processes, the two-stage Nd model ages (Keto & Jacobsen, 1987) were calculated

331 for the studied rock samples using the average crustal ratio of 147Sm/144Nd = 0.12 (Taylor &

332 McLennan, 1985).

333

334 5. RESULTS

335 5.1. Zircon U/Pb dаting

336 The CL images show that most detrital zircons from the samples are euhedral to subhedral

337 crystals with sharp edges, and have concentric oscillatory zoning (Figure 5). The Th/U ratio

338 for the zircons from sample 15-541-2 lies in the range of 0.15-1.30, sample 15-471 shows

339 similar values (0.20-1.50). These features are hence typical of magmatic zircons. A few

340 detrital zircons exhibit low luminescent characteristics and homogeneous internal structure

341 but their high Th/U ratios nevertheless also suggest an igneous origin (Hoskin & Black, 2000;

342 Hoskin & Schaltegger, 2003). Zircon grains from the rhyolite sample 15-485 are clearly

343 euhedral crystals showing obvious oscillatory magmatic zoning, and have a Th/U ratio of

344 0.20-0.80 with an average of 0.37.

345 The concordia plots in Figure 6 show that most analyzed zircons are concordant. Age peaks

346 are based on Kernel Density Estimation (KDE) plots (Vermeesch, 2012) that were

347 constructed based on the analyses for each sample that were no more than 10% discordant. 348 The diagram of the relative probability of ages, constructed based on 80 concordant values,

349 for sample 15-541-2 (Yurga Fm) yields three distinct age populations: Paleoproterozoic,

350 2020-1800 Ma - 5% of all concordant values, Neoproterozoic 919-767 Ma - 8.7%, Cambrian-

351 Ordovician 525-455 Ma - 42.5%, with a peak at 500 Ma, and Late Devonian 395-352 Ma -

352 39%, with a peak at 375 Ma, in addition 5% of the grains have a Silurian- Early Devonian age

353 of 425-406 Ma (Figure 6 a, b).

354 The age spectrum of sample 15-471 (Balakhon Gp), constructed from 78 concordant values

355 also includes three significant age populations: Archean-Paleoproterozoic 2700 to 1800 Ga –

356 5% of all values, Neoproterozoic (880-710 Ma, and two grains with slightly deviant ages of

357 1215 and 638 Ma) - 16.5%, Cambrian-Early Ordovician (560-460 Ma with a peak at 500 Ma)

358 - 28% and Carboniferous-Permian (380-280 Ma with a peak at 320 Ma) - 50% (Figure 6 c, d).

359 Therefore, sample 15-471 shows a similar pattern to that of 15-541-2. However, the

360 Neoproterozoic (~830-750 Ma) age peak is more pronounced and the youngest age peak is

361 centered around Carboniferous-Permian ages of 360-280 Ma.

362 Sample 15-485 produced a weighted mean age of 383.3 ± 2.9 Ma (MSWD = 3.9) based on the

363 27 analyses that were no more than 10% discordant (Figure 7).

364

365 5.2. Nd Isotopic data

366 The Late Devonian sandstones of the Yurga Formation and the Carboniferous-Permian

367 Balakhon Group have similar Nd isotopic compositions. The value of εNd for the rocks of the

368 Yurga formation is -0.78, with a T(DM) of ~ 1.1 Ga, and for the sandstones of the Balakhon

369 Group, εNd(T) is -1.1 and T(DM) is ~ 1.1 Ga. 370 All intrusive and volcaniclastic rocks are characterized by high positive values of the εNd(T)

371 in the range of 3.78–6.86 and a Late Precambrian model age (T(DM)=581–916 Ma). The

372 values for the Devonian volcanic formations of the Bugotak complex are all within a narrow

373 range of one another, (εNd(T)= 6.67-6.86, T(DM)=581-649 Ma). Late Permian and Triassic

374 granitoids are characterized by lower values of εNd(T) and higher model ages (εNd(T)= 3.78–

375 6.06, T(DM)=609–916 Ma).

376 All results of the Nd isotopic analyses are presented in table 2 and figure 8.

377

378 6. DISCUSSION

379 6.1 Depositional age

380 Detrital zircon U-Pb geochronology is a widely applied method that is used to determine the

381 maximum depositional age of a sedimentary rock. Various criteria including youngest single

382 grain and youngest cluster (n ≥ 3) can be applied to provide an estimate of the maximum

383 deposition age, although the success of this approach depends on the age and availability of

384 detrital zircons in the sediment. The detrital zircon method has been found to faithfully record

385 useful information about the timing of deposition of strata (Dickinson, Gehrels, 2009).

386 The youngest grain in the sample of the Yurga formation (15-541-2) has a 238U/206Pb age of

387 351.8 ± 7.4 Ma, and the mean age of the youngest three grains is 354 Ma. The stratigraphic

388 age of the Yurga formation is estimated as Late Famennian, based on its brachiopod fauna (e

389 g. Babin et al., 2015; Matveevskaya 1969).Famenian–Tournaisian stratigraphic boundary lies

390 slightly older, at 358.9 Ma, but our data overlap it within analytical error. The Yurga

391 formation is associated with the Mississippian Inya Group by a gradual transition and it

392 cannot be ruled out that in some locations the Yurga Formation includes Lower Mississippian

393 (i.e. Tournasian) deposits. In the Balakhon Group (15-471), the youngest measured 238U/206Pb 394 age is 281.9 ± 6.0 Ma. According to stratigraphic data (Sviridov et al., 1999), the Balakhon

395 Group was deposited from the Moscovian epoch of the Pennsylvanian (315.2 ± 0.2 Ma) to the

396 Kungurian epoch of the Permian period (272.9 ± 0.1 Ma), so the youngest single grain age for

397 the sample from the Balakhon Group lies inside the stratigraphic frames of the Balakhon

398 Group. These detrital chronological data are in agreement with stratigraphy constraints for

399 both sedimentary units, and our results now constrain the deposition in an absolute time

400 frame.

401

402 6.2 Provenance for the sedimentary rocks

403 6.2.1.Precambrian zircons

404 A peculiarity of both these zircon age spectra is the low abundance of zircons older than 1 Ga,

405 in particular the rarity of zircons belonging to the characteristic Siberian craton population

406 with ages of 1.9-1.7 Ga (Gladkochub et al., 2013; Letnikova et al., 2013; Safonova

407 Maruyama, Hirata, Kon, & Rino, 2010). This population is extremely widespread throughout

408 north-eastern Eurasia, and the low abundance of this population in sedimentary rocks on the

409 periphery of the craton is unusual.

410 A minor Neoproterozoic population with ages of ~0.9-0.7 Ga is observed in both detrital

411 samples. There are three possibilities that could explain the source of the Neoproterozoic

412 zircons. The first potential source area could be the Neoproterozoic fold belts framing the

413 Siberian craton, such as the Sayan-Yenisei orogen (Turkina, Nozhkin, Bayanova, Dmitrieva,

414 & Travin, 2007; Vernikovsky, Vernikovskaya, Kotov, Sal’nikova, & Kovach, 2003). The

415 second possibility is represented by the microcontinental blocks of the Altai-Sayan belt, such

416 as the Tuva- or Altai-Mongolia microcontinents that are known to host rocks of that

417 age (Chen et al., 2015; 2016; Kuzmichev, Bibikova, & Zhuravlev, 2001; Kuzmichev & 418 Larionov 2013). A third alternative could be that of the known but poorly described similar

419 buried microcontinents in the basement of the West Siberian Basin is the source. The

420 aforementioned age population is widespread in the Precambrian microcontinental blocks of

421 Central and South Kazakhstan, and this chain of continental blocks might indeed also extend

422 through the West Siberian Basin basement. The first hypothesis is less likely due to the very

423 rare occurrence of "Siberian" zircons with ages of 2.0-1.8 Ga in the samples (four grains in

424 the each detrital sample). The third possibility is also unlikely, because in the most proximal

425 part of the West Siberian Basin, its folded basement mainly consists of Late Paleozoic

426 sediments and magmatic rocks and there is little or no evidence for the existence of

427 Precambrian massifs in this location (Cherepanova, Artemieva, Thybo, & Chemia 2013;

428 Isaev, 2009, Ivanov, Fedorov, Ronkin, & Erokhin 2005; Ivanov et al., 2009; 2016;

429 Kungurtsev et al., 1998; Yolkin et al., 2007). Hence, the most probable sources of the

430 Neoproterozoic zircons are the Tuva-Mongolia and/or Atai-Mongolia microcontinents.

431 Ediacaran (~650-600 Ma) zircons were found in the Paleozoic sediments at the southern

432 margin of the Siberian craton (Glorie, De Grave, Buslov, Zhimulev, & Safonova, 2014). The

433 absence of a 650-600 Ma peak in the sediments of the KTFZ suggests that for the latter a

434 different provenance area must be attributed (Nozhkin, Turkina, Sovetov, & Travin, 2007)

435 was not a source of sediment for the sampled units in the KTFZ.

436 6.2.2. Early Paleozoic zircons

437 An Early Paleozoic magmatic event is clearly expressed in both samples, suggesting that

438 magmatic activity in the source regions occurred at ~550-460 Ma, with a maximum intensity

439 at 500 Ma. Considering the geological position of the KTFZ, it can be concluded that the

440 source rocks were the volcanic and intrusive rocks of the Salair terrane, the Kuznetsk Alatau

441 and the northern Altai region. These regions include widespread volcanic and intrusive rocks

442 of the Cambrian - Early Ordovician, which are considered to be Early Cambrian juvenile, and 443 middle Cambrian-Early Ordovician mature island arc systems (Berzin et al., 1994; Berzin, &

444 Kungurtsev 1996; Glorie et al., 2011; Zonenshian et al., 1990). Furthermore, our data confirm

445 that the basement of the Salair and Kuznetsk Alatau terranes and the KTFZ is composed of

446 Neoproterozoic- early Paleozoic juvenile crust, and does not contain blocks of early

447 Precambrian continental crust.

448 A minor zircon population of igneous affinity of late Silurian – Early Devonian age (425-409

449 Ma) is present in the upper Devonian sandstones. A most likely source for these zircons

450 would be the granite intrusions of the Ulantov complex, which is situated in the northern part

451 of the Salair terrane (Figure 2).

452 From the age spectra of both samples it is clear that, except for this small group, the Silurian-

453 Early Devonian period seems to represent a distinct gap between two discrete peaks of

454 Cambrian-Ordovician and Carboniferous magmatic activity. This gap also corresponds to a

455 large break or hiatus in the sedimentation on a regional scale in the area. The lack of

456 magmatism and sedimentation can be explained as reflecting a contemporaneous episode of

457 tectonic stability. We therefore suggest that the depositional environment for the Upper

458 Devonian sediments on the Early Paleozoic basement is in a passive margin tectonic setting,

459 without contribution from other sources (Figure 9a).

460 6.2.3. Late Paleozoic zircons

461 A very significant late Paleozoic peak at 395-358 Ma in the Upper Devonian sample, and at

462 380-280 Ma (with a maximum at 320 Ma) in the Permian sample can be observed. In the

463 Permian sandstone, this peak is the most significant one in the entire distribution and includes

464 50% of the all analyzed grains. In the Upper Devonian sample Early Paleozoic zircons are

465 more prevalent (42.5%). 466 Detrital zircon ages of 395-380 Ma probably indicate the onset of Devonian volcanic activity

467 in the Northern Salair and KTFZ regions. In the Salair, Middle Devonian volcanic rocks make

468 up the lower parts of the overprinted Late Paleozoic basins, and in the KTFZ very similar

469 volcanic rocks are known as the Bugotak complex (Figure2). We propose that the Middle

470 Devonian volcanics of Salair and KTFZ are fragments of a single volcanic belt, which was

471 dismembered and juxtaposed in different structural units after a collision in the

472 Pennsylvanian.

473 The early Frasnian age of the plagiorhyolites (382 Ma; sample 15-485) that form subvolcanic

474 bodies intruding the volcanics of the Bugotak block, correspond well with biostratigraphical

475 data and K/Ar dating (Sotnikov et al., 1999), as well as with our detrital zircons data. This

476 combined evidence allows us to clearly date the volcanic activity in the KTFZ to the Givetian

477 – early Frasnian. Moreover, this result is in good agreement with new biostratigraphical data

478 that indicates a very narrow time range for the deposition of the Bugotak Formation, from the

479 latest Givetian to the earliest Frasnian (Yazikov et al., 2015).

480 Late Paleozoic detrital zircon age peaks are present in both detrital samples and have an

481 asymmetric shape with a very sharp restraint towards the age of deposition and a gentle skew

482 towards more ancient values. This pattern can be explained by the deposition of zircons from

483 volcanic strata that were emplaced immediately before and during deposition of the sampled

484 sedimentary formations. The similarity between the obtained zircon ages and

485 biostratigraphical data constraining the age of sedimentation for the Yurga Formation and the

486 Balakhon Group further confirms this conclusion. Upper Devonian and Carboniferous

487 volcanic rocks are absent in the KTFZ, Salair and Kuznetsk Alatau, but are widespread in the

488 interior part of the Ob’-Zaisan fold system. Complexes of these rocks are well exposed in East

489 Kazakhstan and Rudny Altai (Glorie et al., 2012; Vladimirov et al., 2001), and form the

490 basement of the West Siberian plate to the west and northwest of the KTFZ (Isaev, 2009; 491 Ivanov et al, 2005; Ivanov et al., 2016; Kungurtsev et al. 1998). Carboniferous volcanic rocks

492 of East Kazakhstan are considered to be a part of the Rudny-Altai island-arc system (Berzin,

493 & Kungurtsev, 1996; Zonenshain et al., 1990). Thus, in the Early Permian, the sediment

494 transport to the Gorlovo basin occurred mainly from the northwest, i.e. from the northern-east

495 part of the growing Ob’-Zaisan orogen, composed mainly of magmatic complexes of the

496 Carboniferous island arc system. The similarity of the zircon age spectra and Nd isotopic

497 composition between the Devonian rocks of the continental margin and the Permian-

498 Carboniferous foreland can be explained by the erosion of Devonian sedimentary rocks

499 composing thrust nappes in the KTFZ, and recycling of debris in the syncollisional foreland

500 basin. Therefore, at least part of the "Salair" zircon age signature in the Gorlovo foreland was

501 not sourced directly from the Salair but recycled during nappe formation in the KTFZ and

502 associated erosion (Figure 9b). The abundance of Carboniferous zircons in the deposits of the

503 Gorlovo Basin in comparison with Cambrian-Ordovician and Devonian zircons is an indicator

504 that in the Early Permian, tectonic sheets of Carboniferous volcanics were already included in

505 the collisional fold-and-thrust belt (Figure 9b).

506

507 6.3. Comparison with adjoining regions

508 The magmatic events identified in this study correspond well with the episodes of juvenile

509 mantle-derived magmatic input into the crust defined in the West Junggar region (Choulet et

510 al., 2012), providing evidence that these events represent periods of relatively rapid growth of

511 the continental crust of the CAOB. Narrow age population peaks, rare occurrence of early

512 Precambrian zircons, and consistent short lag times between maximum depositional age and

513 main isotopic peak age population are similar features of the detrital zircons from both the

514 sediments of the KTFZ and the West Junggar region. We consider this to be evidence of 515 similar processes acting in the junction zone of the “Caledonian” Altai-Sayan structures and

516 the “Hercynian” structures of the Ob’-Zaisan folded system.

517 Our results are in a good agreement with the age of populations of detrital zircons in the

518 Chinese Altai (Long et al., 2007). The main population of zircons from the Upper Ordovician

519 and Silurian metasedimentary rocks of the Chinese Altai lies in the range of 460 to 540 Ma,

520 while subordinate population contain Neoproterozoic ages and early Precambrian grains are

521 very rare. Long et al. (2007) hence suggested that the complexes of the Chinese Altai formed

522 in an active continental margin during the Cambrian - Ordovician.

523 As shown in the sandstones from the Upper Ordovician-Silurian Terekta formation in the

524 Russian Altai, detrital zircons have similar age distributions as our samples (Cai et al., 2016).

525 The most prominent peak is at 520 Ma, a subordinate peak is found at 800 Ma, and and minor

526 Paleoproterozoic peak. These data suggest that Precambrian basement blocks may not exist in

527 the Altai-Mongolian terrane after all, and this terrane probably represents a large subduction–

528 accretion complex built on the margin of the Tuva–Mongolian microcontinent in the Early

529 Paleozoic.

530 Extremely minor amounts of Precambrian detrital zircons in the sediments are typical for a

531 wide zone, including Russian and Chinese Altai, East Kazakhstan, and Junggar (Cai et al.,

532 2016, Chen et al., 2017, Dong et al., 2018, Kruk et al., 2018, Long et al., 2007, Liu et al.,

533 2019). These data together with our results enable us to conclude that juvenile Early

534 Paleozoic active marginal sequences or island arc systems can be traced from the Chinese

535 Altai through the Russian Altai to the Salair and Kuznetsk region under investigation here.

536 North and south of this zone, the content of ancient zircons in the sedimentary series

537 increases. At the same time, north of this zone, Precambrian zircons show Siberian affinity —

538 the main peak at 1.8–2.0 and the complete absence of grains with ages of 2.7 - 2.5, 2.0 - 1.75 539 and 0.95 - 0.57 Ga (Priyatkina, Collins, Khudoley, Letnikova, & Huang, 2018). To the south

540 of this zone, zircons with Tarim affinity with age peaks at 2.0 and 0.8 Ga or Kazakhstan

541 affinity, peaks 1.6-1.3 and 0.9-0.7 Ga, (Huang et al., 2016; Liu, Wang, Shu, Jahn, & Lizuka,

542 2014) prevail in the detrital sediments.

543

544 6.4 Nd isotopic analyses

545 Neodymium isotopic geochemistry indicates that the source for the all studied magmatic

546 bodies was the late Precambrian juvenile continental crust, which is typical of granitic

547 intrusions and sedimentary deposits of eastern and some parts of central Kazakhstan

548 (Degtyarev, Shatagin, & Kovach, 2015; Kröner et al., 2008), Russian and Chinese Altai

549 (Kruk, 2015; Tong et al., 2014), Xinjiang (Yin et al., 2013), and other CAOB areas (Jahn et

550 al., 2000; Safonova, 2017).

551 The highest εNd value is obtained for the Middle Devonian volcanic rocks of the Bugotak

552 complex. This represents the oldest volcanic complex of the KTFZ, and its composition is

553 inherited from the KTFZ basement through which it intruded.

554 The KTFZ detrital sediments have a more ancient mean crustal residence age and lower εNd

555 values which indicates some contribution from more ancient continental crustal material that

556 could be delivered from the fold belts adjacent to the Siberian craton, or from the

557 microcontinents of the Altay-Sayan region. Individual grains of ancient zircons in the

558 sediments support this assumption. T(DM) model ages of the Upper Devonian Yurga

559 formation and the Pennsylvanian-lower Permian Balakhon Group are relatively juvenile and

560 are about 1.1-1.0 Ga. Similar Nd whole-rock model ages are typical for the sedimentary,

561 igneous and metamorphic Early Paleozoic rocks of the western part of the broader Altai-

562 Sayan region and Kazakhstan (Jahn et al., 2000; Kruk, 2015; Plotnikov et al, 2003). Nd model 563 ages of ~ 1.2 Ga were obtained for the upper Devonian sandstones and shales of the Takyr

564 formation in the Rudny Atai folded system for example (Plotnikov et al, 2003). The Takyr

565 formation is therefore considered as an analogue facies for the Upper Devonian clastic

566 sediments in the KTFZ. The Neoproterozoic whole-rock model age of the early Paleozoic

567 magmatic source rocks is inherited by their associated upper Paleozoic sediments within the

568 KTFZ. This also holds true for the early Paleozoic detrital zircons from these units. The

569 obtained Nd isotope compositions confirm that their source province consists of the typical

570 and widespread Early Paleozoic “Caledonian” complexes. High values of the εNd (slightly

571 negative) also show that the source regions were mainly composed of juvenile Paleozoic

572 magmatic complexes, rather than ancient blocks of continental crust. Late Paleozoic granites

573 intruded the Devonian-Carboniferous detrital deposits and the Nd isotopic composition

574 apparently reflects a mixed composition between the signature of the lower crust of this block

575 (similar to the volcanics of the Bugotak complex), and its overlying sedimentary sequence

576 with the more ancient crustal residence ages.

577 6.5. Tectonic implication for the geological history of the north-western part of the

578 CAOB.

579 Using the published data cited above regarding the geology of the region, the zircon U-Pb

580 data, and the Nd whole rock geochronology data presented in this work, we propose the

581 following model for the formation of the KTFZ.

582 1. KTFZ formation as a result of riftogenic processes on the margin of the early Paleozoic

583 accretion belt framing the Siberian continent at the end of the Middle Devonian. Indicators of

584 this process are volcanics of the Bugotak complex.

585 2. The development KTFZ as a passive continental margin in the Late Devonian –

586 Mississippian. Accumulation of detrital deposits (Pacha and Yurga formation and Inya 587 Group) as a result of erosion of the early Paleozoic accretion belt, including Salair, Kuznetsk

588 Alatau, and Altai (Figure 9a).

589 3. The collision stage in the late Pennsylvanian - Permian. Carboniferous island arc, now

590 covered by sediments of the West Siberian basin, was accreted to Siberian continent. This

591 process led to the formation of the folded and thrust belt structure in the KTFZ, the

592 appearance of the Gorlovo foreland basin (Figure 9b), and emplacement of the collision

593 granitoids of the Priob complex in the Late Permian.

594 Low content of ancient detrital zircons in the KTFZ sedimentary deposits as well as the high

595 values εNd in the sedimentary and igneous rocks of the region indicate insignificant role of

596 the ancient continental crust material in the region is a whole. Individual ancient zircons in the

597 sedimentary deposits of the KTFZ require additional investigation to determine their source.

598

599 7. CONCLUSIONS

600 (1) Detrital zircon geochronology on the upper Devonian to lower Permian sedimentary

601 sequences of the Kolyvan’-Tomsk folded zone and the Gorlovo foreland basin yields

602 four ages peaks, reflecting the magmatic events in the source regions. There is a minor

603 Neoproterozoic peak (0.9-0.7 Ga), a very significant early Paleozoic peak (550-460

604 Ma), and two well expressed Late Paleozoic peaks: i.e. the Middle-Late Devonian 385-

605 360 Ma and the Carboniferous- Early Permian 360-280 Ma. Zircon grains with ancient

606 ages (>1 Ga) are quite rare in the studied sedimentary sequences. The main magmatic

607 events that provided the source rocks for the KTFZ sediments, correspond to the most

608 significant magmatic stages in the development of the western part of the CAOB.

609 (2) The source province for the Upper Devonian deposits of the KTFZ was an early

610 Paleozoic fold belt, which includes the Salair, and the Kuznetsk Alatau terranes and 611 also seems to include some blocks from the basements of the Kuznetsk and south-

612 western part of the West Siberian basins, now covered by thick late Paleozoic to

613 Cenozoic deposits. This fold belt is composed mainly of Cambrian- earliest Ordovician

614 juvenile island arc magmatic complexes, and does not contain any significant early

615 Precambrian blocks. This early Paleozoic fold belt can be traced from the Kuznetsk

616 Alatau and Salair area through the Russian Altai, all the way to the Chinese Gobi-Altai.

617 (3) The Bugotak volcanic complex in our study area was formed at the Givetian – early

618 Frasnian transition, at about 380 Ma. Middle-Late Devonian volcanic activity

619 eventually led to the riftogenic opening of a marine basin.

620 (4) Deposits of the Gorlovo foreland basin accumulated as a result of erosion of the

621 Carboniferous – early Permian volcanic rocks, that composed collisional fold-and-

622 thrust belts and are now covered by the Meso-Cenozoic sedimentary units of the West

623 Siberian Basin.

624 (5) Relatively young Nd model ages and high εNd, (εNd(t)= -0.78, T(DM) ~1.1 Ga for

625 Late Devonian sandstones, εNd(t)= -1.1, T(DM) ~1.1 Ga for Early Permian

626 sandstones), suggest only a minor contribution of ancient continental crust in the main

627 sedimentary units of the KTFZ. Devonian volcanics and Permain-Triassic granites

628 show positive εNd and late Precambrian model age: εNd(T)= 6.67-6.86, T(DM)=581-

629 649 Ma is measured for the Devonian volcanics and εNd(T)= 3.78–6.06, T(DM)=609–

630 916 Ma for the late Paleozoic granites. The continental crust of the KTFZ is juvenile,

631 and apparently was formed during the accretion of arc complexes to the growing

632 Siberian continent.

633

634 ACKNOWLEDGEMENTS 635 The work was supported by the Russian Foundation of Basic Research (project 16-35-00010),

636 Russian Foundation of Basic Research and Government of the Novosibirsk Region (project

637 17-45-540758), and by state assignment of the IGM SB RAS. Contributions from SG and JG

638 are an output for ARC DP150101730. We are grateful to A. V. Kotlyarov and V. I. Boriskina

639 and the UGent Russia Platform for their assistance.

640

641 REFERENCE

642 Babin, G. A., Chernyh, A. I., Golovina, A. G., Zhigalov, S. V., Dolgushin, S. S., Vetrov, V.

643 E., Korableva, T. V., Bodina, N. A., Svetlova, N. A., Fedoseev, G. S., Hil’ko, A. P., Epifanov,

644 V. A., Loskutov, Yu. I., Loskutov, I. Yu., Miharevich, M. V., & Pihutin, E. A. (2015).

645 Explanation note to the State geological map of Russian Federation, scale 1:1 000 000 (third

646 generation) Atai-Sayan series, sheet N-44 (Novosibirsk), 181 (in Russian).

647

648 Babin, G.A., Fedoseev, G.S., Borisenko, A.S., Zhigalov, S.V., & Vetrov, E.V. (2014). New

649 data on granitoids of the Novosibirsk region () In Granites and Earth’s

650 evolution: Granites and Continental Crust. Proceedings of the 2nd International Geological

651 Conference, Novosibirsk, 28-30 (in Russian).

652

653 Bayanova, T.B. (2004). The Age of Reference Geologic Complexes of the Kola Region and

654 Duration of Magmatism Processes. , St. Petersburg, 172. (in Russian).

655

656 Belyaev, V. I., Nechaev, V. V. (2015). Explanation note to the sheet N-45-VIII () of

657 the geological map of Russian Federation, scale 1:200 000 (second edition), 178. (in

658 Russian).

659 660 Berzin, N.A., & Kungurtsev, L.V., (1996). Geodynamic interpretation of Altai-Sayan

661 Geological complexes. Russian Geology and Geophysics 37, 56-73.

662

663 Berzin, N.A., Coleman, R.G., Dobretsov, N.L., Zonenshain, L.P., Xiao, X., & Chang, E. Z.,

664 (1994). Geodynamic map of the western part of the Paleoasian Ocean. Russian Geology and

665 Geophysics, 35, 5-22.

666

667 Bouvier A., Vervoort J.D.,& Patchett P.J. (2008). The Lu–Hf and Sm–Nd isotopic

668 composition of CHUR: Constraints from unequilibrated chondrites and implications for the

669 bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273 (1–2), 48–

670 57.

671 Buslov, M. M., Geng, H., Travin, A. V., Otgonbaatar, D., Kulikova, A. V., Chen, M., Glorie,

672 S., Semakov, N. N., Rubanova, E. S., Abildaeva, M. A., Voitishek, E. E., & Trofimova, D.

673 A., (2013). Tectonics and geodynamics of Gorny Altai and adjacent structures of the Altai-

674 Sayan folded area Russian Geology and Geophysics, 54, 1250-1271.

675

676 Buslov, M. M., Safonova, I. Yu., Fedoseev, G.S., Reichow, M., Davies, K., & Babin, G.A.,

677 (2010). Permo-Triassic plume magmatism of the Kuznetsk Basin, : geology,

678 geochronology, geochemistry, and geodynamic consequences. Russian Geology and

679 Geophysics 51, 322–327.

680

681 Cai, K.,Sun M., Buslov, M.M.,Jhan, B, Xiao W., Long, X., Chen, H., Wan, Bo,

682 Chen, M., Rubanova, E.S., Kulikova, A.V., & Voytishek, E. E. (2016). Crustal nature

683 and origin of the Russian Altai: Implications for the continental evolution and growth of the

684 Central Asian Orogenic Belt (CAOB). Tectonophysics, 674, 182-194. 685

686 Chen, M., Sun, M., Cai, K., Buslov, M. M., Zhao, G., Rubanova, E. S., & Voytishek, E. E.,

687 (2015). Detrital zircon record of the early Paleozoic meta-sedimentary rocks in Russian Altai:

688 Implications on their provenance and the tectonic nature of the Altai–Mongolian terrane

689 Lithos 233, 209–222.

690

691 Chen, M., Sun, M., Cai, K., Buslov, M. M., Zhao, G., Jiang, Y., Rubanova, E. S., Kulikova,

692 A. V., & Voytishek, E. E., (2016). The early Paleozoic tectonic evolution of the Russian

693 Altai: Implications from geochemical and detrital zircon U–Pb and Hf isotopic studies of

694 meta-sedimentary complexes in the Charysh–Terekta–Ulagan–Sayan suture zone. Gondwana

695 Research, 34, 1–15.

696

697 Chen Y, Xiao W., Windley B. F., Zhang J., Zhou K., & Sang M. (2017). Structures and

698 detrital zircon ages of the Devonian–Permian Tarbagatay accretionary complex in west

699 Junggar, China: imbricated ocean plate stratigraphy and implications for amalgamation of the

700 CAOB, International Geology Review, 59, 1097-1115.

701

702 Cherepanova, Yu., Artemieva, I. M, Thybo, H., & Chemia, Z., (2013). Crustal structure of the

703 Siberian craton and the West Siberian basin: An appraisal of existing seismic data.

704 Tectonophysics 609, 154–183.

705 Choulet F., Chen Y., Wang B., Faure M., Cluzel D., Charvet J., Lin W., & Xu B., (2011).

706 Late Paleozoic paleogeographic reconstruction of Western Central Asia basedvupon

707 paleomagnetic data and its geodynamic implications. Journal of Asian Earth Sciences 42,

708 867–884. 709 Choulet, F., Cluzel, D., Faure, M., Lin, W., Wang, B., Chen, Y., Wu, F., & Ji, W., (2012).

710 New constraints on the pre-Permian continental crust growth of Central Asia (West Junggar,

711 China) by U–Pb and Hf isotopic data from detrital zircon. Terra Nova, 24, 3, 189–198.

712

713 Davies, C., Allen, M. B., Buslov, M. M., &Safonova, I. Yu. (2010). Deposition in the

714 Kuznetsk Basin, Siberia: Insights into the Permian–Triassic transition and the Mesozoic

715 evolution of Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 295 (1–2),

716 307-322.

717

718 De Grave, J., Glorie, S., Zhimulev, F.I., Buslov, M.M., Elburg, M., & Van den haute, P.

719 (2011). Emplacement and exhumation of the Kuznetsk-Alatau basement (Siberia):

720 implications for the tectonic evolution of the Central Asian Orogenic Belt and sediment

721 supply to the Kuznetsk, Minusa and West Siberian Basins. Terra Nova 23, 248 – 256.

722

723 Degtyarev, K. E., Shatagin, K. N., & Kovach, V. P. (2015). Nd isotopic composition of the

724 Paleozoic granitic rocks and structure of the deep crustal levels of the Chingiz Range, East

725 Kazakhstan. Doklady Earth Science, 462, 1, 433-436.

726

727 Dickinson W. R. & Gehrels G. E. (2009) Use of U-Pb ages of detrital zircons to infer

728 maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database.

729 Earth and Planetary Science Letters, 288, 115-125.

730

731 Dong Z., Han Y., Zhao G., Pan F, Wang K., Huang B., & Chen J. (2018). Zircon U-Pb ages

732 and Hf isotopes of Paleozoic metasedimentary rocks from the Habahe Group in the Qinghe 733 area, Chinese Altai and their tectonic implications. Gondwana Research,

734 doi:10.1016/j.gr.2018.05.006

735

736 Jacobsen, S.B., & Wasserburg, G.J. (1984). Sm-Nd evolution of chondrites and achondrites.

737 Earth and Planetary Science Letters 67, 137-150.

738

739 Jackson S. E., Pearson N. J., Griffin W. L., & Belousova E. A. (2004). The application of

740 laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon

741 geochronology. Chemical Geology, 211, 47 – 69.

742

743 Jahn, B.-M., Wu F., & Chen, B. (2000). Massive granitoid generation in Central Asia: Nd

744 isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23, 82-

745 92.

746

747 Gladkochub, D.P., Stanevich, A.M., Donskaya, T.V., Pisarevsky, S.A., Nicoll, G., Motova,

748 Z.L., & Kornilova, T.A. (2013). The early history of the Paleoasian ocean: constraints from

749 LA–ICP–MS ages of detrital zircons from Late Cambrian sediments in the southern Siberian

750 Craton. Russian Geology and Geophysics, 54, 1150–1163.

751

752 Glorie, S., De Grave, J., Buslov, M.M., Zhimulev, F.I., Izmer, A., Elburg, M.A., Ryabinin,

753 A.B., Vandoorne, W., Vanhaeke, F., & Van den haute P. (2011). Formation and Palaeozoic

754 evolution of the Gorny-Altai – Altai-Mongolia suture zone (Siberia): zircon U/Pb constraints

755 on its igneous record. Gondwana Research, 20 (2 – 3), 465 – 484.

756 757 Glorie, S., De Grave, J., Delvaux, D., Buslov, M.M., Zhimulev, F.I., Vanhaecke, F., Elburg,

758 M.A., & Van den haute, P. (2012). Tectonic history of the Irtysh shear zone (NE Kazakhstan):

759 New constraints from zircon U/Pb dating, apatite fission track dating and paleostress analysis.

760 Journal of Asian Earth sciences, 45, 138 – 149.

761

762 Glorie, S., De Grave, J., Buslov, M.M., Zhimulev, F.I., & Safonova, I. Yu. (2014). Detrital

763 zircon provenance of early Palaeozoic sediments at the southwestern margin of the Siberian

764 Craton: Insights from U–Pb geochronology. Journal of Asian Earth Sciences, 82, 115–123.

765

766 Goldfarb, R. J., Taylor, R. D., Collins, G. S., Goryachev, N. A., & Orlandini, O. F. (2014).

767 Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Research, 25, 48-

768 102.

769

770 Goldstein, S.J., & Jacobsen, S.B. (1988). Nd and Sr isotopic systematics of rivers water

771 suspended material: implications for crustal evolution. Earth and Planetary Science Letters

772 87, 249-265.

773

774 Hong, T., Klemd, R., Gao, J., Xiang, P., Xu, X., You, J., Wang, X., Wu, Ch., Li, H., & Ke, Q.

775 (2017). The tectonic evolution of the Irtysh tectonic belt: New zircon U–Pb ages of arc-

776 related and collisional granitoids in the Kalaxiangar tectonic belt, NW China. Lithos 272-273,

777 46-68.

778

779 Hoskin, P. W. O., & Black, L. P. (2000). Metamorphic zircon formation by solid-state

780 recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18, 4, 423-

781 439. 782 Hoskin, P.W.O., & Schaltegger, U. (2003). The composition of zircon and igneous and meta-

783 morphic petrogenesis. Reviews in Mineralogy and Geochemistry ,53, 1, 27–62.

784

785 Huang, Z., Long, X., Yuan, C., Sun, M., Wang, Y., Zhang, Y., & Chen, B. (2016). Detrital

786 zircons from Neoproterozoic sedimentary rocks in the Yili Block: Constraints on the affinity

787 of microcontinents in the southern Central Asian Orogenic Belt. Gondwana Research, 37, 39–

788 52.

789 Isaev, G.D., (2009). Stratigraphy and Geological Model of Paleozoic of ’-Kolyvanskaya

790 structural-facial zone of the West Siberian Plate. Proceedings of Kazan University: Natural

791 Sciences Series 151, 3, 192-204 (in Russian).

792

793 Ivanov, K. S., Fedorov, Yu. N., Ronkin, Yu. L., & Erokhin, Yu. V. (2005). Geochronological

794 studies of the West Siberian oil and gas-bearing megabasin; Results of 50 years of study.

795 Lithosphere, 3, 117-135 (in Russian).

796

797 Ivanov K. S., Koroteev V. A., Pecherkin M. F., Fedorov Yu. N., & Erokhin Yu. V. (2009).

798 The western part of the West Siberian petroleum megabasin: geologic history and structure of

799 the basement. Russian Geology and Geophysics, 50, 365–379.

800

801 Ivanov, K. S., Erokhin, Yu. V., Ponomarev, V. S., Pogromskaya, O. E., & Berzin, S.V.

802 (2016). Geological Structure of the Basement of Western and Eastern Parts of the West-

803 Siberian Plain. International Journal of environmental and science education, 11 (14), 6409-

804 6432.

805 806 Izokh, N. G., & Yazikov, A. Yu. (2015). New data on the age of limestones from the

807 Shipunovo marble quarry (vicinity of town, Novosibirsk region). Interexpo Geo-Sibir’

808 2(1), 63-67 (in Russian).

809

810 Kalinin, Yu. A., Naumov, E. A., Borisenko, A. S., Kovalev, K. R., & Antropova, A. I. (2015).

811 Spatial-temporal and genetic relationships between gold and antimony mineralization at gold-

812 sulfide deposits of the Ob-Zaisan folded zone. Geology of Ore Deposits, 57(3), 157-171.

813

814 Keto, L.S., & Jacobsen, S.B. (1987). Nd and Sr isotopic variations of Early Paleozoic oceans.

815 Earth and Planetary Science Letters, 84, 27-41.

816

817 Kotel’nikov, A. D., Maksikov, S. V., Kotel’nikova, I. V., Makarenko, N. A., & Subbotin, K.

818 S. (2008). Explanation note to the sheet N-44-XVIII (Cherepanovo) of the geological map of

819 Russian Federation, scale 1:200 000 (second edition), 202 (in Russian).

820

821 Kröner A., Hegner E., Lehmann B., Heinhorst J., Wingate M. T. D., Liu D. Y., & Ermelov P.,

822 (2008). Paleozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan:

823 SHRIMP zircon ages and whole-rock Nd isotopic systematics. Journal of Asian Earth Science

824 32, 118-130.

825

826 Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A.,

827 Seltmann, R., Alexeiev, D. V., Hoffmann, J. E., Wong, J., Sun, M.,Cai, K., Wang, T., Tong,

828 Y., Wilde, S. A., Degtyarev, K. E., & Rytsk, E. (2014). Reassesment of continental growth

829 during accretionary history of the Central Asian Orogenic Belt. Gondwana Research, 25, 103

830 – 125. 831

832 Kruk, N. N. (2015). Continental crust of Gorny Altai: stages of formation and evolution;

833 indicative role of granitoids. Russian Geology and Geophysics, 56, 8, 1097-1113.

834

835 Kruk N. N., Kuibida Ya. V., Shokalsky S. P., Kiselev V. I., & Gusev N. I. (2018). Late

836 Cambrian – Early Ordovician turbidites of Gorny Altai (Russia): Compositions, sources,

837 deposition settings, and tectonic implications. Journal of Asian Earth Sciences, 159, 209–232.

838

839 Kungurtsev, L. V., Fedoseev, G. S., Shirokikh, V. А., Obolensky, А. А., Sotnikov, V. 1.,

840 Borisenko, А. S., & Gimon, V. О. (1998). Geodynamic complexes and stages of development

841 of the Kolyvan-Tomsk folded zone (West Siberia). Russian Geology and Geophysics 39, 1,

842 26-37.

843

844 Kuzmichev, A.B., Bibikova, E.V., & Zhuravlev, D. Z. (2001). Neoproterozoic (~800 Ma)

845 orogeny in the Tuva–Mongolia Massif (Siberia): island arc–continent collision at the

846 northeast Rodinia margin. Precambrian Research, 110, 109–126.

847

848 Kuzmichev, A.B., & Larionov, A.N., (2013). Neoproterozoic island arcs in East Sayan:

849 duration of magmatism (from U–Pb zircon dating of volcanic clastics). Russian Geology and

850 Geophysics 54, 34-43.

851

852 Letnikova, E.F., Kuznetsov, A.B., Vishnevskaya, I.A., Veshcheva, S.V., Proshenkin, A.I., &

853 Geng, H. (2013). The Vendian passive continental margin of the southern Siberian craton:

854 geochemical and isotope (Sr, Sm–Nd) evidence and LA–ICP-MS age data on detrital zircons.

855 Russian Geology and Geophysics, 54, 1177-1194. 856

857 Li P., Sun M., Rosenbaum G., Jourdan F., Li S., & Cai K. (2017). Late Paleozoic closure of

858 the Ob-Zaisan Ocean along the Irtysh shear zone (NW China): Implications for arc

859 amalgamation and oroclinal bending in the Central Asian orogenic belt, GSA Bulletin, 129,

860 5/6; 547–569.

861

862 Li P., Sun M., Rosenbaum G., Yuan Ch., Safonova I., Cai K., Jiang Y., & Zhang Y. (2018).

863 Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian

864 Orogenic Belt. Journal of Asian Earth Sciences, 153, 42–56.

865

866 Li T., Daukeev, S. Z., Kim, B. C., Tomurtogoo, O., & Petrov, O. V. (Eds.), (2008). Atlas of

867 geological maps of Central Asia and adjacent areas, scale 1:2 500 000, Publishing House,

868 Beijing.

869

870 Liu B., Han B., Gong E., & Chen J. (2019). The tectono-magmatic evolution of the West

871 Junggar terrane (NW China) unravelled by U–Pb ages of detrital zircons in modern river

872 sands. International Geology Review, 61, 5, 607-621.

873

874 Liu, H., Wang, B., Shu, L., Jahn, B., & Lizuka, Y. (2014). Detrital zircon ages of Proterozoic

875 meta-sedimentary rocks and Paleozoic sedimentary cover of the northern Yili Block:

876 Implications for the tectonics of microcontinents in the Central Asian Orogenic Belt.

877 Precambrian Research, 252, 209–222.

878

879 Long X., Sun M., Yuan Ch., Xiao W., Lin Sh., Wu F., Xia X., & Cai K. (2007). Detrital

880 zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: 881 Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt

882 Tectonics, 26, TC5015.

883

884 Matveyevskaya, A. L. (1969) Variscian depressions of the Ob-Zaisan geosynclinals system

885 and of the adjoining areas, , 284 (in Russian).

886

887 Nozhkin, A. D., Turkina, O. M., Sovetov, Yu. K., & Travin, A. V. (2007). The Vendian

888 accretionary event in the southwestern margin of the Siberian Craton. Doklady Earth Sciences

889 415, 2, 869-873.

890

891 Paton C., Hellstrom J., Paul B., Woodhead J., & Hergt J. (2011). Iolite: Freeware for the

892 visualisation and processing of mass spectrometric data. Journal of Analytical Atomic

893 Spectrometry, 26, 2508–2518.

894

895 Petrov, O.V., Leonov, Yu. G., Tingdong, Li, & Tomurtogoo, O., (Eds.) (2014). Tectonic map

896 of Northern-Central-Eastern Asia and Adjacent Areas at 1:2,500,000 scale. .

897

898 Plotnikov, A. V., Kruk, N. N., Vladimirov, A. G., Moroz, E. N., Kovach, V. P., & Zhuravlev,

899 D. Z. (2003). Sm-Nd isotope systematics of the metamorphic rocks in the western Altai-Sayan

900 fold belt. Doklady Earth Sciece, 388, 1, 63-67.

901

902 Priyatkina N., Collins W.J., Khudoley А.К., Letnikova Е.F , & Huang H-O. (2018). The

903 Neoproterozoic evolution of the western Siberian Craton margin: U-Pb-Hf isotopic records of

904 detrital zircons from the Yenisey Ridge and the Prisayan Uplift. Precambrian Research,

905 305. 197–217. 906 Raczek I., Jochum K. P., & Hofmann A. W. (2003). Neodymium and strontium isotope data

907 for USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, GSP-1,

908 GSP-2 and eight MPI-DING reference glasses. Geostandards and Geoanalytical Research,

909 27, 173–179.

910

911 Rojas-Agramonte, Y., Kröner, A., Demoux, A., Xia, X., Wang, W., Donskaya, T., Liu, D., &

912 Sun, M. (2011). Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc

913 terranes of Mongolia: significance for the origin of crustal fragments in the Central Asian

914 Orogenic Belt. Gondwana Research, 19, 751–763.

915

916 Roslyakov, N. A., Sherbakov, Yu. G., Alabin, L. V., Nesterenko, G. V., Kalinin, Yu. A.,

917 Roslyakova, N. V., Vasiliev, I. P., Nevolko, A. I., & Osintsev, S. R. (2001). Minerageny the

918 junction Salair and Kolyvan-Tomsk folded zone, Novosibirsk, 243.

919

920 Safonova I. (2017) Juvenile versus recycled crust in the Central Asian Orogenic Belt:

921 Implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs. Gondwana

922 Research, 47, 6–27.

923

924 Safonova, I.Y., Maruyama, S., Hirata, T., Kon, Y., & Rino, S. (2010). LA ICP MS U-Pb ages

925 of detrital zircons from Russia largest rivers: Implications for major granitoid events in

926 Eurasia and global episodes of supercontinent formation. Journal of Geodynamics, 50, 134-

927 153.

928

929 Sengör, A.M.C., Natal’in, B.A. & Burtman, V.S. (1993). Evolution of the Altaid tectonic

930 collage and Palaeozoic crustal growth in Eurasia. Nature, 364, 299–307. 931

932 Sláma J., Košler J., Condon D. J., Crowley J. L., Gerdes A., Hanchar J. M., Horstwood M. S.

933 A., Morris G. A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M. N.,

934 Whitehouse M. J. (2008) Plešovice zircon — A new natural reference material for U–Pb and

935 Hf isotopic microanalysis. Chemical Geology, 249, 1–35.

936

937 Sotnikov, V.I., Ponomarchuk, V.A.,Shevchenko, D.O., Berzina, A.P. & Berzina, A.N.,

938 (2001). 40Ar ⁄ 39Ar geochronology of magmatic and metasomatic events in the Sora porphyry

939 Cu-Mo ore cluster (Kuznetsk Alatau). Russian Geology and Geophysics, 42, 744–758.

940

941 Sotnikov, V.I., Fedoseev, G. S., Kungurtsev, L. V., Borisenko, A. S., Obolenskiy, A. A.,

942 Vasiliev, I. P., & Gimon, V. O. (1999). Geodynamics, magmatism, and metallogeny of the

943 Kolyvan’-Tomsk fold zone. Novosibirsk, 227 (in Russian).

944

945 Sotnikov, V. I., Fedoseev, G. S., Ponomarchuk, V. А., Borisenko, А. S., & Berzina, А. N.,

946 (2000). Granitoid complexes of the Kolyvan’-Tomsk folded zone (West Siberia). Russian

947 Geology and Geophysics 41, 1, 120-125.

948

949 Sviridov V. G., Krasnov V. I., Surkov V. S., Kalinin Yu. A., Kanygin A. V., Korobeinikov V.

950 P., Martynov V. A., Nesterenko G. V., Osintsev S. R., Peregoedov L. G.,Roslyakov N. A.,

951 Serduk Z. Ya., Smirnov L. V., & Khomichev V. L. (1999). Geological structure and minerals

952 of Western Siberia, Novosibirsk, 228 (in Russian).

953

954 Tanaka T., Togashi S., Kamioka H., Amakawa H., Kagami H., Hamamoto T., Yuhara M.,

955 Orihashi Y., Yoneda S., Shimizu H., Kunimaru T., Takahashi K., Yanagi T., Nakano T., 956 Fujimaki H., Shinjo R., Asahara Y., Tanimizu M., & Dragusanu C. (2000). JNdi-1: a

957 neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology,

958 168, 279-281.

959

960 Taylor, S.R., & McLennan, S.M. (1985). The Continental Crust: Its Evolution and

961 Composition. Blackwell, London, 312.

962

963 Tong Y., Wang T., Jahn B. M., Sun M., Hong D. W., & Gao J. F. (2014). Post-accretion

964 Permian granitoids in the Chhnese Altai orogen: geochronology, petrogenesis and tectonic

965 implicatios. American Journal of Science, 314, 80-109.

966

967 Turkina, O.M., Nozhkin, A.D., Bayanova, T.B., Dmitrieva, N.V. & Travin, A.V. (2007).

968 Precambrian terranes in the southwestern framing of the Siberian craton: isotopic provinces,

969 stages of crustal evolution and accretion-collision events. Russian Geology and Geophysics,

970 48, 61-70.

971 Vermeesch, P. 2012. On the visualisation of detrital age distributions. Chemical Geology,

972 312-313, 190-194.

973

974 Vernikovsky, V.A., Vernikovskaya, A.E., Kotov, A.B., Sal'nikova, E.B., & Kovach, V.P.

975 (2003). Neoproterozoic accretionary and collisional events on the western margin of the

976 Siberian craton: new geological and geochronological evidence from the Yenisey Ridge.

977 Tectonophysics 375, 147-168.

978

979 Vladimirov, A.G., Kozlov, M.S., Shokal'skii, S.P., Khalilov, V.A., Rudnev, S.N., Kruk, N.N.,

980 Vystavnoi, S.A., Borisov, S.M., Berezikov, Y.K., Metsner, A.N., Babin, G.A., Mamlin, A.N., 981 Murzin, O.M., Nazarov, G.V., & Makarov, V.A. (2001). Major epochs of instrusive

982 magmatism of Kuznetsk Alatau, Altai, and Kalba (from U-Pb isotope dates). Russian Geology

983 and Geophysics 42, 1157-1178.

984

985 Vladimirov, A. G., Kruk, N. N., Polyanskii, O. P., Vladimirov, V. G., Babin, G. A., Rudnev,

986 S. N., Annikova, I. Yu., Travin, A. V., Savinykh, Ya. V., & Palesskii, S. V. (2005).

987 Correlation of Hercynian deformations, sedimentation and magmatism in the Altai collisional

988 system as reflecting plate- and plum-tectonics In: Leonov, M. G. (Eds) Problems of the

989 Central Asia tectonics, Moscow, Geos, 277-308. (in Russian).

990

991 Vrublevskii, V. A., Nagorniy, M. P., Rubtsov, A. F., & Erv'ye, Y. U. (1987). Geological

992 structure of the conjugation domain of the Kuznetsk Alatau and Kolyvan-Tomsk folded zone.

993 Tomsk, 96 (in Russian).

994

995 Wang T., Jahn B. M., Kovach V. P., Tong Y., Hong D. W., & Han B. F. (2009). Nd-Sr

996 isotopic mapping of the Chinese Altai and implications for continental growth in the Central

997 Asian Orogenic Belt. Lithos, 110, 359-372.

998

999 Wang T., Jahn B. M., Kovach V. P., Tong Y., Wilde S. A., Hong D. W., Li S., & Salnikova

1000 E. B. (2014). Mesozoic intraplate granitic magmatism in the Altai accretionary orogeny, NW

1001 China: implications for the orogenic architecture and crustal growth. American Journal of

1002 Science, 314, 1-42.

1003

1004 Wilhem, C., Windley, B. F., & Stampfli, G. M. (2012). The Altaids of Central Asia: A

1005 tectonic and evolutionary innovative review. Earth-Science Reviews, 113, 303–341. 1006

1007 Windley, B.F., Alexeiev, D., Xiao, W., Kröner, A., & Badarch, G. (2007). Tectonic models

1008 for the accretion of the Central Asion Orogenic Belt. Journal of the Geological Society of

1009 London, 164, 31-47.

1010

1011 Yazikov, A. Yu., Izokh, N. G. Shirokikh, V. A., & Kutolin, V. A. (2015). About the age by

1012 paleontological data of the Bugotak formation in the Kolyvan-Tomsk folded zone. Interexpo

1013 Geo-Sibir’ 2(1), 212-216 (in Russian).

1014

1015 Yin J., Long X., Yuan C., Sun M., Zhao G., & Geng H. (2013) A late Carboniferous –Early

1016 Permain slab window in the west Junggar of the NW China: geochronological and

1017 geochemical evidence from mafic to intermediate dikes. Lithos, 175-176, 146-162.

1018

1019 Yuzvitskiy A. Z. 1966, Tomsk thrust in Kuzbass, Soviet geology (Sovietskaya geologia), 6,

1020 133-136 (In Russian).

1021

1022 Yolkin E. A., Kontorovich A. E., Bakharev N. K., Belyaev S. Yu., Varlamov A. I., Izokh N.

1023 G., Kanygin A. V., Kashtanov V. A., Kirda N. P., Klets A. G., Kontorovich V. A., Krasnov

1024 V. I., Krinin V. A., Moiseev S. A., Obut O. T., Saraev S. V., Sennikov N. V., Tishchenko V.

1025 M., Filippov Yu. F., Khomenko A. V., & Khromykh V. G. (2007). Paleozoic facies

1026 megazones in the basement of the West Siberian geosyncline. Russian Geology and

1027 Geophysics, 48, 491–504.

1028 Xiao, W.J., Windley, B.F., Yuan, C., Sun, M., Han, C.M., Lin, S.F., Chen, H.L., Yan, Q.R.,

1029 Liu, D.Y., Qin, K.Z., Li, J.L., & Sun, S. (2009). Paleozoic multiple subduction-accretion

1030 processes of the southern Altaids. American Journal of Science, 309, 221-270. 1031

1032 Xiao, W., Huang, B., Han, C., Sun, S., & Li, J. (2010). A review of the western part of the

1033 Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research

1034 18, 253-273.

1035

1036 Zhao J., Chen S., Deng G., Shao X., Zhang H., Aminov J., Chen X., Ma Z., (2019) Basement

1037 Structure and Properties of the Western Junggar Basin, China. Journal of Earth Science 30,

1038 223–235.

1039

1040 Zhou H., Pei F., Zhang Y., Zhou Zh., Xu·W., Wang Zh., Cao H., & Yang Ch. (2017). Origin

1041 and tectonic evolution of early Paleozoic arc terranes abutting the northern margin of North

1042 China Craton. International Journal of Earth Sciences, https://doi.org/10.1007/s00531-017-

1043 1578-2

1044

1045 Zonenshain, L. P., Kuzmin, M. P., & Natapov, L. M. (1990). Geology of USSR: A Plate

1046 Tectonic Synthesis. American Geophysical Union, Geodynamic Series, 21. 242.

1047

1048 1049 Figure Captions

1050 Figure 1. Tectonic map of Northern Asia (simplified after Petrov et al., 2014). Our study area

1051 is shown in the box. 1- Early Precambrian cratons; 2-6 –gold belts of various age: 2-

1052 Neoproterozoic, 3- Early Paleozoic, 4- Late Paleozoic, 5- Mesozoic, 6- Cenozoic; 7-

1053 Mesozoic-Cenozoic intracontinental basins; 8- boundaries of the Central Asian Orogenic

1054 Belt. Fb. – fold belt.

1055

1056 Figure 2. Tectonic map of the Kolyvan-Tomsk folded area and sample positions (simplified

1057 after Li et al., 2008).

1058 1 – Early Paleozoic (Caledonian) Salair and Kuznetsk Alatau terranes. 2 – Upper Devonian-

1059 Mississippian (Lower Carboniferous) deposits beyond KTFZ, sedimentary cover of the

1060 basins, overprinted at the early Paleozoic terranes, 3 – Middle Devonian volcanics and

1061 sediments of the KTFZ (Bugotak Formations and its analogues, Mitrofanovo and Toguchin

1062 Formations), 4 – Upper Devonian detrital and carbonate deposits (Pacha and Yurga

1063 Formations,), 5– Mississippian (lower Carboniferous) deposits of the KTFZ, shales and

1064 limestones, 6 – detrital Carboniferous deposits of the Gorlovo, Zarubin and Kuznetsk basins,

1065 including coal molasses. 7-Permian continental molasses of the Gorlovo, Zarubin and

1066 Kuznetsk basins, 8 - Early-Middle Jurassic coal-bearing detrital deposits, 9- undivided granite

1067 intrusions of the Salair terrane, 10 – Late Permian – Early Triassic Priob granite-granodiorite-

1068 syeno-granitecomplex, 11- Early-Middle Triassic Barlak leucogranite complex, 12- Cenozoic

1069 and Cretaceous deposits, sedimentary cover of the West Siberian basin, 13 – faults, 14 –

1070 Tomsk thrust, 15- numbers of tectonic units. 1071 Tectonic units I – Kuznetsk Alatau terrane, II – Salair terrane, II-Kuznetsk basin, III-

1072 Kolyvan-Tomsk folded zone, IV – Kuznetsk basin, V- Zarubin basin, VI – Gorlovo basin, VII

1073 – Doronin basin, VIII – West Siberian basin, IX – - basin.

1074 Squares – detrital zircon U/Pb samples 15-541-2 and 15-471, yellow circle - bedrock zircon

1075 U/Pb sample 15-485, white circles samples for Nd isotopis analyses.

1076

1077 Figure 3 Stratigraphic column for the Kolyvan-Tomsk folded area and the upper part of the

1078 Gorlovo basin, with position of igneous and detrital samples. Based on Kotel’nikov et al.

1079 (2008), Babin et al. (2015), Sotnikov et al. (1999).

1080 1 – limestones; 2 – mudstones; 3 – siltstones, 4 – sandstones; 5 – coals; 6 – felsic lavas and

1081 tuffs, 7 – basalts, 8 – dolerite subvolcanic intrusions; 9 – (plagio)rhyolite subvolcanic

1082 intrusions. Circle - bedrock zircon U/Pb sample, squares – detrital zircon U/Pb samples.

1083

1084 Figure 4 Thin section photographs of the dated rocks.

1085 (a) Greywacke of the Famennian Yurga formation (15-541-2). Sub-rounded to sub-angular

1086 quartz grains are immersed in the clay matrix. (b) Coarse-grained sandstones of the Late

1087 Carboniferous-Early Permian Balakhon Group, Gorlovo open pit (15-471). Quartz grains are

1088 clearly prevalent, indicating the mature character of the sediments. Grains are cemented by

1089 secondary carbonate; (c) –rhyolites of the Bugotak subvolcanic intrusive massif (15-485).

1090 Rock fabric is composed dominantly of fine-grained elongated plagioclase, quartz and a

1091 minor amount of magnetite. The symbols ‘‘(-)’’ and ‘‘(+)’’ in the upper right corners of each

1092 diagram represents plane polarized light and perpendicular polarized light, respectively. 1093

1094 Figure 5 Cathodoluminescence images of representative zircons from samples 15-541-2-

1095 Upper Devonian sandstone, Yurga Formation, 15-471 – Lower Permian sandstone, Balakhon

1096 Group, 15-485 – plagiorhyolites, Givetian-early Frasnian Bugotak Formation.

1097

1098 Figure 6 Zircon U–Pb age–frequency diagrams and Concordia plots for the zircons from the

1099 sedimentary samples (a, b – sample 15-541-2, c, d – sample 15-471). The age (in Ma) on the

1100 x-axis represents the 206Pb/238U age when this age is lower than 1 Ga and the 207Pb/206Pb age

1101 in the other case. The dotted line at the age–frequency diagrams shows the depositional age.

1102 Figure 7 Concordia plot for the zircons from the igneous sample 15-485.

1103 Figure 8 Nd evolution diagram for the magmatic and sedimentary rocks of the KTFZ.

1104 Evolutionary trends of isotope reservoirs from Bouvier et al. (2008) and Goldstein &

1105 Jacobsen (1988)

1106

1107

1108 Figure 9 Simplified out-of-scale geological cross-section through the Kolyvan-Tomsk folded

1109 zone (KTFZ), showing the source provinces and direction of sedimentary pathways in the

1110 Late Devonian (a) and Early Permian (b).

1111 1 – Early Paleozoic (Caledonian) Salair and Kuznetsk Alatau terranes, 2 – Middle and Upper

1112 Devonian volcanics and sediments including the Bugotak Formation and its analogues beyond

1113 the KTFZ, 3 – Upper Devonian – Carboniferous oceanic crust, 4 - Upper Devonian (Frasnian)

1114 mudstones, siltstones and carbonate deposits, Pacha Formation, 5 - Upper Devonian

1115 (Famennian) sandstones and siltstones Yurga Formation, 6- Upper Devonian to Mississippian 1116 carbonate-detrital sedimentary cover of the Salair block, 7- Mississippian black shales,

1117 mudstones, marls, Inya Group, 8- Carboniferous island-arc volcanic complexes, inferred

1118 under the Meso-Cenozoic sedimentary cover of the West Siberian basin, 9- Pennsylvanian to

1119 Permian coal bearing molasse of the Gorlovo foreland basin, 10- thrusts of the Kolyvan-

1120 Tomsk folded zone onto Caledonian basement, 11 – direction of the sediment transport, 12 –

1121 our sample sites.

1122

1123

1124 1125 Table Captions

1126 Table 1. Summary of sample localities, rock types, geological setting for the Kolyvan-Tomsk 1127 folded zone.

1128

Sample N latitude E longitude Rock type sample localities Complex/Formation

15-541-2 55° 8'5.44" 83°47'17.05" sandstone open pit near the Bugotak Yurga formation railway station 15-471 54°34'22.80" 83°35'20.31" sandstone Gorlovo coal open pit Balakhon Group 15-485 55° 7'18.79" 83°56'36.23" rhyolite Sopka Bolshaya hill Bugotak complex 15-539 55° 7'37.97" 83°55'16.13" dolerite Open pit near the Gorniy Bugotak complex town 15-515 55°39'6.65" 85°16'28.79" volcanoclastic Bank of the Tom’ river Bugotak complex breccia 15-519 55°41'19.26" 83°44'32.30" granite Outcrop near the Priob complex Novobibeevo vilage MK-1 55° 7'41.36" 82°54'25.59" granite Open pit in the Novosibirsk Priob complex 14-264 55°21'18.27" 82°45'45.97" leucogranite Open pit near the Kolyvan’ Barlak complex town 1129

1130 1131 Table 2 The Sm–Nd isotope data of the rocks from KTFZ.

Sample Rock Sm, Nd, 147Sm/144Nd 143Nd/144Nd εNd(0) Age, εNd(T) T(DM) T(DM-2) T(CHUR) ppm ppm Ma 15-541-2 sandstone 5.099 27.448 0.112285 0.512399±13 -4.67 360 -0.78 1131 1194 433 15-471 sandstone 4.305 24.291 0.107113 0.512406±13 -4.53 280 -1.10 1066 1174 396 14-264 leucogranite 11.235 46.223 0.146912 0.512750±4 2.19 250 3.78 916 725 МК-1 granite 4.368 22.243 0.118701 0.512772±6 2.62 250 5.11 609 614 15-519 granite 4.036 16.502 0.147820 0.512867±16 4.47 255 6.06 658 539 15-539 dolerite 32.128 0.143585 0.512853±10 4.20 380 6.78 649 581 7.632 15-485 rhyolite 20.461 0.115711 0.512778±11 2.73 380 6.67 581 591 3.917 15-515 Volcanoclastic 37.116 0.134568 0.512837±17 3.88 375 6.86 607 571 breccia 8.263 1132

1133

1134 1135 Supplementary materials

1136 Supplementary data A: Chemical composition of the dated rocks.

1137 Supplementary data B: Zircon U-Pb LA-ICP-MS results.

1138

Table 1. Summary of sample localities, rock types, geological setting for the Kolyvan-Tomsk folded zone.

Sample N latitude E longitude Rock type sample localities Complex/Formation

15-541-2 55° 8'5.44" 83°47'17.05" sandstone open pit near the Bugotak Yurga formation railway station 15-471 54°34'22.80" 83°35'20.31" sandstone Gorlovo coal open pit Balakhon Group 15-485 55° 7'18.79" 83°56'36.23" rhyolite Sopka Bolshaya hill Bugotak complex 15-539 55° 7'37.97" 83°55'16.13" dolerite Open pit near the Gorniy Bugotak complex town 15-515 55°39'6.65" 85°16'28.79" volcanoclastic Bank of the Tom’ river Bugotak complex breccia 15-519 55°41'19.26" 83°44'32.30" granite Outcrop near the Priob complex Novobibeevo vilage MK-1 55° 7'41.36" 82°54'25.59" granite Open pit in the Novosibirsk Priob complex 14-264 55°21'18.27" 82°45'45.97" leucogranite Open pit near the Kolyvan’ Barlak complex town

1

Table 2 The Sm–Nd isotope data of the rocks from KTFZ.

Sample Rock Sm, ppm Nd, ppm 147Sm/144Nd 143Nd/144Nd εNd(0) Age, εNd(T) T(DM) T(DM-2) T(CHUR) Ma 15-541-2 sandstone 5.099 27.448 0.112285 0.512399±13 -4.67 360 -0.78 1131 1194 433 15-471 sandstone 4.305 24.291 0.107113 0.512406±13 -4.53 280 -1.10 1066 1174 396 14-264 leucogranite 11.235 46.223 0.146912 0.512750±4 2.19 250 3.78 916 725 МК-1 granite 4.368 22.243 0.118701 0.512772±6 2.62 250 5.11 609 614 15-519 granite 4.036 16.502 0.147820 0.512867±16 4.47 255 6.06 658 539 15-539 dolerite 32.128 0.143585 0.512853±10 4.20 380.00 6.78 649 581 7.632 15-485 rhyolite 20.461 0.115711 0.512778±11 2.73 380.00 6.67 581 591 3.917 15-515 Volcanoclastic 37.116 0.134568 0.512837±17 3.88 375.00 6.86 607 571 breccia 8.263

Supplementary data A: Chemical composition of the dated rocks.

Major elements are in mass percentages, trace elements in the ppm.

Sedimentary rocks Subvolcanic and volcanic Granites rocks

Samples 15-541-2 15-471 15-485 15-539 15-515 15-519 MK-1 14-264

SIO2 76.72 82.12 74.88 52.97 55.25 70.18 74.19 75.28

TIO2 0.50 0.23 0.11 1.46 0.61 0.33 0.18 0.11

AL2O3 11.84 8.11 13.35 15.46 19.63 15.76 13.68 12.81

FE2O3 2.78 1.79 2.22 10.42 7.74 2.24 1.56 1.62

MNO 0.02 0.02 0.02 0.21 0.10 0.03 0.03 0.03

MGO 1.14 0.71 0.19 3.13 3.76 0.61 0.17 0.35

CAO 0.35 1.28 0.20 7.38 1.23 1.98 0.76 0.55

NA2O 3.74 0.87 5.58 3.13 1.68 4.64 3.68 3.62

K2O 0.99 1.43 3.07 1.44 5.86 3.53 4.65 4.69

P2O5 0.14 0.05 0.03 0.97 0.15 0.11 0.04 0.03

BAO 0.02 0.04 0.07 0.03 0.15 0.12 0.10 0.03

SO3 <0,03 0.16 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03

V2O5 0.01 <0,01 <0,01 0.03 0.01 0.01 <0,01 <0,01

CR2O3 0.01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 0.01

NIO 0.01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 0.01

LOI 1.69 3.01 0.29 2.90 4.28 0.19 0.55 0.46

Total 99.98 99.82 100.03 99.59 100.50 99.75 99.59 99.65

Rb 31 34 37 17.9 124 79 112 346

Sr 106 126 68 689 314 788 213 47

Y 27 17.7 24 38 48 22 44 107

Zr 211 98 143 113 243 149 131 145

Nb 9.9 4.8 5.0 4.2 9.2 6.3 12.8 24

Cs 1.39 0.97 0.15 0.14 5.2 3.9 1.85 8.6

Ba 163 294 570 288 1 197 978 727 231 La 29 31 23 21 35 16.3 26 47

Ce 60 62 48 51 74 34 51 85

Pr 7.6 7.2 6.2 7.5 9.7 4.6 6.6 14.0

Nd 28 27 21 33 38 17.1 22 48

Sm 5.6 4.3 3.9 7.1 7.8 4.0 4.5 11.4

Eu 1.19 0.92 0.50 2.2 1.40 0.81 0.63 0.60

Gd 5.3 3.9 4.2 7.7 8.0 4.7 5.8 12.8

Tb 0.75 0.54 0.66 1.16 1.24 0.75 0.99 2.4

Dy 4.6 3.0 4.1 6.8 8.3 4.3 6.3 15.6

Ho 0.90 0.57 0.90 1.42 1.65 0.81 1.40 3.6

Er 2.8 1.73 2.8 4.0 5.1 2.3 4.8 12.1

Tm 0.43 0.25 0.51 0.56 0.77 0.36 0.78 2.3

Yb 2.7 1.70 3.6 3.4 5.2 1.94 5.4 16.7

Lu 0.39 0.25 0.57 0.51 0.78 0.24 0.81 2.5

Hf 5.2 2.6 5.5 3.0 6.9 4.9 5.1 8.1

Ta 0.67 0.35 0.45 0.24 0.59 1.22 1.82 5.8

Th 8.0 4.4 9.4 2.9 8.7 8.1 17.4 35

U 1.97 1.33 2.8 1.14 3.6 2.1 5.9 8.8

Supplementary data B: Zircon U-Pb LA-ICP-MS results. sample 15-471

N U Th Pb Th/U 207Pb/235U ±2σ 206Pb/238U ±2σ 207Pb/206Pb ±2σ Er.cor.206Pb/238U 207Pb/235U ±2σ 206Pb/238U ±2σ 207Pb/206Pb ±2σ conc. (ppm) (ppm) (ppm) - 207Pb/206Pb (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) 3_01.d 235 242 71 1.03 0.871 0.030 0.104 0.002 0.060 0.002 0.043 631 16 638.5 9.5 567 70 101

3_02.d 104 59 82 0.56 13.910 0.250 0.538 0.009 0.188 0.003 0.362 2741 16 2771.0 37.0 2718 25 101

3_03.d 45 19 20 0.43 8.240 0.280 0.399 0.008 0.149 0.005 0.120 2244 32 2161.0 35.0 2314 54 96

3_04.d 68 66 15 0.98 0.629 0.039 0.082 0.002 0.055 0.003 0.271 484 24 507.0 11.0 320 130 105

3_05.d 351 226 49 0.64 0.599 0.020 0.075 0.001 0.058 0.002 0.151 474 13 467.7 7.9 477 67 99

3_06.d 263 151 33 0.56 0.627 0.023 0.080 0.002 0.057 0.002 0.202 492 14 495.9 9.0 437 75 101

3_07.d 70 14 3 0.20 0.634 0.042 0.080 0.002 0.058 0.004 0.156 486 26 497.0 12.0 370 130 102

3_08.d 121 47 12 0.39 0.601 0.038 0.061 0.001 0.074 0.005 0.088 477 25 382.3 8.1 850 130 80

3_09.d 281 104 24 0.37 0.665 0.021 0.081 0.001 0.060 0.002 0.295 516 13 504.0 7.5 549 74 98

3_10.d 153 122 50 0.78 1.366 0.045 0.146 0.003 0.068 0.002 0.185 867 20 875.0 15.0 826 67 101

3_11.d 134 162 174 1.20 8.860 0.160 0.417 0.006 0.154 0.002 0.338 2321 17 2243.0 29.0 2382 27 97

3_12.d 78 85 29 1.08 1.079 0.048 0.122 0.003 0.064 0.003 0.169 736 23 744.0 14.0 670 94 101

3_13.d 284 57 29 0.20 1.978 0.045 0.176 0.003 0.081 0.002 0.404 1104 15 1043.0 16.0 1215 40 94

3_14.d 107 59 9 0.55 0.384 0.026 0.049 0.001 0.056 0.004 0.232 323 19 306.8 7.1 350 140 95

3_15.d 265 176 32 0.66 0.465 0.018 0.055 0.001 0.061 0.003 0.324 385 12 347.2 5.8 562 89 90

3_16.d 38 43 7 1.13 0.475 0.052 0.055 0.002 0.063 0.007 0.189 372 35 345.0 11.0 380 210 93

3_17.d 187 108 23 0.57 0.608 0.023 0.077 0.001 0.058 0.002 0.107 482 15 478.7 8.1 452 80 99

3_18.d 101 81 12 0.81 0.388 0.026 0.054 0.001 0.052 0.004 0.286 329 19 341.2 7.3 200 140 104

3_19.d 346 294 64 0.82 0.853 0.053 0.051 0.001 0.121 0.007 -0.132 617 29 320.2 7.2 1903 99 52

3_20.d 222 171 27 0.77 0.412 0.018 0.049 0.001 0.061 0.003 0.319 351 13 307.4 6.2 588 95 88 3_21.d 77 20 5 0.26 0.683 0.042 0.085 0.002 0.059 0.004 0.328 521 26 527.0 10.0 430 140 101

3_22.d 124 129 18 1.04 0.364 0.024 0.049 0.001 0.054 0.004 0.200 309 18 307.5 6.3 250 130 100

3_23.d 66 50 42 0.76 4.850 0.130 0.310 0.006 0.114 0.003 0.418 1785 22 1736.0 28.0 1839 50 97

3_24.d 97 102 23 1.05 0.658 0.036 0.079 0.002 0.060 0.003 0.278 504 22 490.0 10.0 500 120 97

3_25.d 27 9 2 0.31 0.617 0.064 0.080 0.003 0.057 0.006 0.266 457 41 494.0 15.0 210 210 108

3_26.d 94 148 56 1.56 1.293 0.055 0.138 0.003 0.068 0.003 0.312 834 25 833.0 16.0 806 92 100

3_27.d 211 119 20 0.56 0.429 0.023 0.053 0.001 0.059 0.003 0.140 359 17 335.2 6.0 430 110 93

3_28.d 455 410 63 0.91 0.389 0.013 0.054 0.001 0.052 0.002 0.232 332 9.7 340.2 5.9 277 71 102

3_29.d 113 118 17 1.03 0.370 0.024 0.049 0.001 0.055 0.004 0.234 314 17 306.2 7.3 300 130 98

3_30.d 195 254 37 1.26 0.367 0.020 0.050 0.001 0.053 0.003 0.268 313 15 316.0 6.6 250 120 101

3_31.d 78 40 9 0.51 0.625 0.042 0.078 0.002 0.058 0.004 0.122 483 26 485.0 10.0 390 140 100

3_32.d 132 111 33 0.84 1.124 0.044 0.057 0.001 0.143 0.006 0.302 758 21 358.4 8.2 2210 70 47

3_33.d 132 146 24 1.02 0.391 0.025 0.052 0.001 0.055 0.004 0.415 331 18 325.4 8.2 320 140 98

3_34.d 144 108 18 0.75 0.398 0.022 0.055 0.001 0.052 0.003 0.284 336 16 346.8 6.8 220 110 103

3_35.d 47 30 5 0.64 0.411 0.041 0.052 0.002 0.058 0.006 0.240 333 29 325.0 10.0 260 190 98

3_36.d 111 106 24 0.96 0.640 0.038 0.080 0.002 0.057 0.003 0.164 493 23 496.1 8.7 400 120 101

3_37.d 208 132 21 0.63 0.405 0.020 0.051 0.001 0.059 0.003 0.417 341 15 321.2 5.9 430 110 94

3_38.d 271 195 33 0.72 0.417 0.017 0.055 0.001 0.054 0.002 0.263 351 12 345.3 6.0 344 89 98

3_39.d 208 213 31 1.02 0.359 0.018 0.050 0.001 0.052 0.003 0.291 308 13 316.1 5.5 220 110 103

3_40.d 270 154 22 0.57 0.360 0.015 0.050 0.001 0.053 0.002 0.234 312 11 312.6 5.3 265 90 100

3_41.d 86 112 20 1.30 0.484 0.035 0.056 0.001 0.064 0.005 0.070 394 24 352.9 8.0 560 150 90

3_42.d 75 69 23 0.90 1.128 0.054 0.124 0.002 0.066 0.003 0.321 760 26 754.0 13.0 720 110 99

3_43.d 109 70 12 0.65 0.479 0.030 0.057 0.001 0.061 0.004 0.228 390 20 357.2 7.6 500 130 92

3_44.d 131 60 11 0.44 0.466 0.026 0.061 0.001 0.056 0.003 0.305 385 18 380.6 8.1 340 120 99 3_45.d 80 64 26 0.81 1.229 0.058 0.139 0.003 0.065 0.003 0.191 806 26 837.0 16.0 670 98 104

3_46.d 116 81 11 0.69 0.345 0.024 0.045 0.001 0.056 0.004 0.179 297 19 281.9 6.0 310 150 95

3_47.d 183 72 16 0.40 0.618 0.028 0.078 0.001 0.057 0.003 0.175 483 18 482.1 8.2 432 96 100

3_48.d 132 158 25 1.20 0.406 0.023 0.054 0.001 0.055 0.003 0.347 343 17 337.0 6.6 320 120 98

3_49.d 64 42 16 0.66 1.264 0.063 0.137 0.003 0.067 0.003 0.160 815 28 828.0 15.0 730 100 102

3_50.d 33 27 9 0.82 1.114 0.078 0.117 0.003 0.070 0.005 0.200 737 39 712.0 17.0 710 150 97

3_51.d 177 143 22 0.80 0.448 0.021 0.055 0.001 0.059 0.003 0.263 374 15 346.8 6.6 490 100 93

3_52.d 132 50 9 0.37 0.459 0.027 0.056 0.001 0.060 0.004 0.280 377 19 349.1 6.5 460 130 93

3_53.d 361 384 59 1.07 0.406 0.015 0.054 0.001 0.054 0.002 0.275 344 11 341.2 4.7 321 83 99

3_54.d 87 41 7 0.47 0.425 0.030 0.054 0.001 0.057 0.004 0.169 351 21 338.3 6.7 330 150 96

3_55.d 116 125 21 1.08 0.447 0.025 0.057 0.001 0.057 0.003 0.276 369 17 357.0 6.1 390 120 97

4_56.d 56 77 26 1.37 1.112 0.066 0.119 0.003 0.068 0.004 0.293 744 32 726.0 15.0 720 130 98

4_57.d 342 119 28 0.34 0.640 0.020 0.081 0.001 0.058 0.002 0.187 500 12 499.8 6.1 464 68 100

4_58.d 342 309 49 0.90 0.432 0.019 0.051 0.001 0.061 0.003 0.189 361 13 323.4 5.3 555 95 90

4_59.d 155 121 18 0.78 0.388 0.022 0.052 0.001 0.055 0.003 0.285 328 16 325.1 7.0 290 120 99

4_60.d 210 142 31 0.67 0.578 0.024 0.075 0.001 0.056 0.002 0.161 458 16 466.0 7.5 371 89 102

4_61.d 160 75 14 0.47 0.463 0.022 0.061 0.001 0.055 0.003 0.192 382 15 379.9 7.0 340 100 99

4_62.d 109 71 13 0.65 0.467 0.032 0.053 0.001 0.065 0.005 0.208 386 23 332.0 7.7 630 150 86

4_63.d 108 73 12 0.68 0.407 0.027 0.051 0.001 0.058 0.004 0.224 340 20 321.7 7.1 390 140 95

4_64.d 326 140 33 0.43 0.677 0.022 0.083 0.001 0.059 0.002 0.142 521 14 514.5 7.8 509 68 99

4_65.d 166 118 27 0.71 0.655 0.026 0.080 0.002 0.060 0.003 0.317 507 16 493.6 9.4 532 88 97

4_66.d 189 122 18 0.65 0.415 0.021 0.053 0.001 0.057 0.003 0.309 348 15 332.2 6.5 390 110 95

4_67.d 186 230 40 1.23 0.526 0.027 0.054 0.001 0.071 0.004 0.154 423 17 337.8 6.2 870 110 80

4_68.d 116 93 14 0.79 0.375 0.025 0.051 0.001 0.055 0.004 0.178 319 19 317.2 7.3 270 140 99 4_69.d 107 84 12.55 0.76 0.382 0.026 0.051 0.001 0.055 0.004 0.004 324 19 320.7 7.3 270 140 99

4_70.d 140 75 15.96 0.54 0.636 0.051 0.074 0.002 0.063 0.005 0.005 480 21 457.1 9.0 520 110 95

4_71.d 201 149 24.1 0.74 0.422 0.018 0.053 0.001 0.059 0.003 0.003 354 13 330.2 6.7 475 95 93

4_72.d 65 38 14.91 0.59 1.210 0.066 0.135 0.003 0.066 0.004 0.004 794 32 814.0 18.0 680 120 103

4_73.d 77 42 6.49 0.54 0.373 0.030 0.051 0.001 0.054 0.004 0.004 313 22 322.2 8.6 200 160 103

4_74.d 154 72 11.51 0.47 0.388 0.022 0.051 0.001 0.056 0.003 0.003 328 16 320.0 6.9 320 120 98

4_75.d 271 230 37.2 0.85 0.428 0.017 0.057 0.001 0.055 0.002 0.002 359 12 355.3 6.5 340 83 99

4_76.d 698 471 69 0.47 0.372 0.018 0.051 0.001 0.053 0.002 0.002 320 13 322.3 7.0 273 97 101

4_77.d 387 171 39.7 0.42 0.638 0.021 0.081 0.001 0.057 0.002 0.002 498 13 500.8 7.6 452 63 101

4_78.d 322 214 49.8 0.66 0.638 0.020 0.080 0.002 0.058 0.002 0.002 498 12 496.5 8.7 470 65 100

4_79.d 84 27 6.61 0.31 0.634 0.040 0.080 0.002 0.058 0.004 0.004 487 26 496.0 10.0 380 130 102

4_80.d 211 258 38.7 1.23 0.380 0.018 0.052 0.001 0.053 0.003 0.003 323 13 324.4 6.1 280 100 100

4_81.d 119 69 16.95 0.58 0.667 0.030 0.081 0.002 0.059 0.003 0.003 512 19 504.0 10.0 500 100 98

4_82.d 74 27 6.71 0.33 0.745 0.056 0.091 0.002 0.058 0.004 0.004 555 33 559.0 14.0 450 150 101

4_83.d 93 74 26.5 0.79 1.183 0.050 0.128 0.003 0.068 0.003 0.003 788 24 773.0 15.0 782 95 98

4_84.d 122 92 33.4 0.76 1.226 0.046 0.130 0.002 0.068 0.003 0.003 804 21 786.0 13.0 810 82 98

sample 15-541-2

N U Th Pb Th/U 207Pb/235U ±2σ 206Pb/238U ±2σ 207Pb/206Pb ±2σ Er.cor.206Pb/238U 207Pb/235U ±2σ 206Pb/238U ±2σ 207Pb/206Pb ±2σ conc. (ppm) (ppm) (ppm) - 207Pb/206Pb (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) 5_01.d 100 83 32 0.83 1.226 0.046 0.135 0.002 0.066 0.002 0.177 809 22 816.0 12.0 743 83 101

5_02.d 92 39 8 0.43 0.435 0.025 0.060 0.001 0.054 0.003 0.259 364 18 372.9 6.8 260 120 102

5_03.d 97 68 14 0.70 0.517 0.034 0.061 0.001 0.061 0.004 0.208 414 22 381.1 7.9 500 130 92

5_04.d 101 51 11 0.50 0.630 0.033 0.079 0.002 0.059 0.003 0.305 491 21 489.3 9.3 430 120 100

5_05.d 169 83 16 0.49 0.577 0.033 0.068 0.001 0.061 0.004 0.217 457 21 425.8 7.9 560 130 93

5_06.d 84 55 13 0.66 0.708 0.052 0.083 0.002 0.061 0.005 0.298 533 31 512.0 14.0 540 160 96

5_07.d 817 1086 238 1.33 0.609 0.014 0.077 0.001 0.057 0.001 0.282 481.7 8.5 479.3 6.5 468 47 100

5_08.d 768 531 94 0.69 0.446 0.010 0.060 0.001 0.054 0.001 0.264 373.4 7.1 374.0 4.6 348 50 100

5_09.d 311 220 42 0.71 0.509 0.019 0.066 0.001 0.056 0.002 0.156 415 13 413.8 6.4 387 81 100

5_10.d 315 280 66 0.89 0.645 0.027 0.078 0.001 0.060 0.002 0.001 503 17 481.2 8.2 558 84 96

5_11.d 123 65 15 0.53 0.664 0.032 0.081 0.002 0.060 0.003 0.259 510 19 499.8 9.8 510 100 98

5_12.d 47 32 11 0.69 1.172 0.067 0.130 0.003 0.066 0.004 0.348 773 30 786.0 18.0 670 120 102

5_13.d 414 115 106 0.28 5.306 0.085 0.336 0.005 0.114 0.002 0.302 1867 14 1866.0 23.0 1855 24 100

5_14.d 162 82 15 0.50 0.508 0.029 0.061 0.002 0.059 0.003 0.213 412 19 381.2 9.0 530 120 93

5_15.d 224 142 25 0.63 0.487 0.027 0.063 0.001 0.055 0.003 0.168 399 18 394.8 7.6 360 110 99

5_16.d 137 34 9 0.25 0.661 0.033 0.082 0.002 0.059 0.003 0.164 510 21 510.2 9.1 450 110 100

5_17.d 103 35 31 0.34 5.140 0.14 0.331 0.006 0.112 0.003 0.322 1836 23 1840.0 27.0 1820 47 100

5_18.d 133 20 8 0.15 1.228 0.04 0.135 0.002 0.066 0.002 0.240 809 19 814.0 14.0 768 68 101

5_19.d 313 242 58 0.77 0.659 0.021 0.084 0.001 0.056 0.002 0.101 512 13 522.5 7.3 423 66 102

5_20.d 697 541 98 0.78 0.499 0.016 0.063 0.001 0.058 0.002 0.236 410 11 392.3 5.9 484 66 96 5_21.d 197 195 33 0.99 0.439 0.026 0.060 0.001 0.055 0.003 0.250 366 18 372.4 7.8 310 130 102

5_22.d 52 34 6 0.66 0.467 0.044 0.058 0.002 0.059 0.006 0.269 374 31 365.0 11.0 320 200 98

5_23.d 80 47 11 0.59 0.596 0.036 0.079 0.002 0.056 0.004 0.268 465 23 491.0 10.0 310 130 106

5_24.d 91 60 22 0.66 1.161 0.052 0.127 0.003 0.066 0.003 0.095 771 24 767.0 15.0 742 85 99

5_25.d 207 212 36 1.03 0.447 0.021 0.057 0.001 0.056 0.003 0.232 373 15 359.5 6.0 412 96 96

5_26.d 260 116 50 0.45 1.485 0.036 0.153 0.002 0.070 0.002 0.378 924 14 919.0 13.0 900 53 99

5_27.d 730 870 212 1.19 0.645 0.018 0.081 0.001 0.058 0.002 0.137 503 11 499.1 7.5 496 53 99

5_28.d 144 153 28 1.06 0.465 0.025 0.059 0.001 0.057 0.003 0.084 382 17 371.1 7.2 380 110 97

5_29.d 473 525 119 1.11 0.622 0.018 0.079 0.001 0.057 0.002 0.168 489 12 489.4 7.0 449 62 100

5_30.d 199 147 26 0.74 0.431 0.022 0.060 0.001 0.053 0.003 0.247 359 16 373.2 7.0 240 110 104

5_31.d 329 214 36 0.65 0.469 0.027 0.057 0.001 0.059 0.003 0.066 387 18 356.8 7.4 510 110 92

5_32.d 378 168 37 0.45 0.654 0.019 0.082 0.001 0.058 0.002 0.293 511 12 505.7 7.8 495 66 99

5_33.d 132 114 19 0.87 0.440 0.024 0.057 0.001 0.056 0.003 0.145 367 17 358.0 6.5 350 110 98

5_34.d 360 128 28 0.35 0.590 0.018 0.076 0.001 0.056 0.002 0.199 468 12 473.9 6.6 401 67 101

5_35.d 142 85 14 0.60 0.430 0.022 0.056 0.001 0.056 0.003 0.240 360 16 351.8 7.4 360 110 98

5_36.d 330 282 44 0.85 0.433 0.019 0.057 0.001 0.055 0.002 0.180 362 14 359.1 6.2 328 91 99

5_37.d 204 175 30 0.85 0.469 0.02 0.061 0.001 0.056 0.003 0.287 387 14 383.4 6.4 370 97 99

5_38.d 79 51 12 0.64 0.644 0.037 0.080 0.002 0.058 0.003 0.303 498 23 498.0 11.0 430 120 100

6_39.d 195 171 39 0.87 0.643 0.021 0.079 0.001 0.059 0.002 0.178 501 13 487.1 6.4 519 70 97

6_40.d 443 283 46 0.64 0.463 0.017 0.057 0.001 0.059 0.002 0.060 383 12 356.7 4.9 510 76 93

6_41.d 355 171 41 0.48 0.644 0.016 0.081 0.001 0.058 0.002 0.334 504 10 504.3 6.3 478 60 100

6_42.d 300 121 21 0.40 0.440 0.016 0.058 0.001 0.055 0.002 0.300 368 11 363.8 5.6 360 82 99

6_43.d 232 220 219 0.95 6.354 0.095 0.368 0.005 0.125 0.002 0.261 2023 13 2017.0 21.0 2020 23 100

6_44.d 111 74 18 0.67 0.644 0.037 0.084 0.002 0.056 0.003 0.238 495 23 516.0 11.0 350 120 104 6_45.d 535 303 55 0.57 0.482 0.014 0.060 0.001 0.058 0.002 0.326 397.5 9.9 377.1 5.9 486 66 95

6_46.d 69 64 13 0.94 0.782 0.059 0.059 0.002 0.099 0.007 0.212 570 33 368.0 9.9 1370 150 65

6_47.d 234 65 17 0.28 0.678 0.026 0.081 0.001 0.061 0.002 0.343 522 15 500.1 8.5 579 88 96

6_48.d 51 34 6 0.66 0.521 0.044 0.062 0.002 0.062 0.005 0.173 410 29 386.0 11.0 430 180 94

6_49.d 134 43 11 0.32 0.676 0.031 0.085 0.001 0.058 0.003 0.261 520 19 523.0 8.6 450 100 101

6_50.d 456 287 68 0.63 0.631 0.014 0.082 0.001 0.056 0.001 0.234 495 8.9 507.0 7.1 421 51 102

6_51.d 474 103 25 0.22 0.653 0.019 0.081 0.001 0.058 0.002 0.161 509 12 501.1 6.9 504 60 98

6_52.d 304 108 25 0.35 0.648 0.021 0.081 0.001 0.058 0.002 0.311 505 13 501.1 7.0 480 74 99

6_53.d 216 186 33 0.86 0.471 0.024 0.063 0.001 0.053 0.003 0.173 388 17 395.6 7.5 290 110 102

6_54.d 265 233 50 0.88 0.577 0.023 0.074 0.001 0.056 0.002 0.173 458 15 461.3 7.6 396 83 101

6_55.d 477 303 71 0.64 0.676 0.019 0.083 0.001 0.059 0.002 0.188 522 12 511.5 7.4 532 59 98

6_56.d 316 205 41 0.65 0.500 0.017 0.065 0.001 0.056 0.002 0.340 409 11 406.4 6.6 394 78 99

6_57.d 282 360 61 1.27 0.430 0.018 0.059 0.001 0.053 0.002 0.318 360 13 366.6 5.6 279 92 102

6_58.d 131 141 25 1.07 0.425 0.024 0.060 0.001 0.051 0.003 0.358 356 18 375.5 7.3 170 120 105

6_59.d 130 78 15 0.60 0.428 0.024 0.061 0.001 0.052 0.003 0.290 360 18 381.1 8.4 200 120 106

6_60.d 180 162 38 0.90 0.648 0.028 0.081 0.001 0.058 0.003 0.203 501 17 502.5 8.3 434 93 100

6_61.d 69 29 24 0.42 4.780 0.12 0.308 0.004 0.112 0.003 0.230 1772 22 1729.0 21.0 1800 48 98

6_62.d 84 86 32 1.03 1.257 0.057 0.132 0.002 0.069 0.003 0.164 817 26 800.0 13.0 799 98 98

6_63.d 277 195 38 0.71 0.493 0.019 0.066 0.001 0.054 0.002 0.011 405 14 409.7 6.1 324 80 101

6_64.d 205 92 21 0.45 0.589 0.026 0.077 0.001 0.055 0.002 0.221 467 16 479.3 8.0 365 90 103

6_65.d 209 105 21 0.50 0.514 0.024 0.066 0.001 0.056 0.003 0.351 416 16 409.2 7.5 390 100 98

6_66.d 107 115 43 1.07 1.216 0.045 0.129 0.002 0.068 0.003 0.358 800 21 780.0 13.0 810 83 98

6_67.d 214 141 30 0.66 0.574 0.021 0.073 0.001 0.057 0.002 0.202 459 14 455.4 7.3 419 79 99

6_68.d 920 656 122 0.71 0.484 0.013 0.063 0.001 0.056 0.001 0.168 399.5 9.3 391.6 5.3 410 59 98 6_69.d 546 483 87 0.88 0.456 0.014 0.061 0.001 0.054 0.002 0.292 380 9.3 381.8 5.2 340 66 100

6_70.d 339 250 57 0.74 0.615 0.021 0.078 0.001 0.057 0.002 0.217 485 13 485.2 6.3 444 72 100

6_71.d 130 111 18 0.86 0.458 0.031 0.057 0.002 0.059 0.004 0.315 377 22 357.3 9.0 430 150 95

6_72.d 61 14 3 0.22 0.693 0.047 0.085 0.002 0.060 0.004 0.276 519 29 525.0 12.0 420 150 101

6_73.d 167 59 14 0.36 0.660 0.035 0.080 0.001 0.060 0.003 -0.057 509 22 495.1 8.7 540 100 97

6_74.d 226 174 29 0.77 0.421 0.022 0.057 0.001 0.054 0.003 0.255 354 16 354.2 5.7 300 120 100

6_75.d 390 275 63 0.71 0.622 0.018 0.078 0.001 0.057 0.002 0.290 488 11 486.5 6.8 458 65 100

6_76.d 253 124 32 0.49 0.692 0.032 0.085 0.002 0.059 0.003 0.163 530 19 523.8 9.2 500 100 99

6_77.d 497 529 100 1.06 1.004 0.039 0.080 0.001 0.090 0.004 0.138 700 20 498.3 8.1 1391 77 71

6_78.d 172 101 18 0.59 0.431 0.022 0.059 0.001 0.053 0.003 0.227 359 16 371.2 6.2 240 110 103

6_79.d 142 81 17 0.57 0.570 0.027 0.060 0.001 0.069 0.004 0.287 452 18 372.5 6.5 790 110 82

6_80.d 223 112 21 0.50 0.462 0.02 0.060 0.001 0.056 0.003 0.334 382 14 375.7 5.5 358 94 98

6_81.d 260 136 33 0.52 0.640 0.023 0.077 0.001 0.060 0.002 0.107 500 15 479.7 5.4 543 79 96

6_82.d 344 247 57 0.72 0.604 0.019 0.077 0.001 0.057 0.002 0.283 477 12 478.4 6.0 423 71 100

6_83.d 157 111 26 0.71 0.652 0.025 0.081 0.001 0.058 0.002 0.214 509 15 501.6 7.5 491 82 99

Sample 15-485

N U Th Pb Th/U 207Pb/235U ±2σ 206Pb/238U ±2σ Er.cor.206Pb/238U 207Pb/206Pb ±2σ Er.cor.206Pb/238U 207Pb/235U ±2σ 206Pb/238U ±2σ 207Pb/206Pb Conc. (ppm) (ppm) (ppm) - 207Pb/206Pb - 207Pb/206Pb (Ma) (Ma) (Ma) 485_1.d 345 145 28 0.42 0.505 0.019 0.061 0.001 0.03 0.061 0.003 0.32153 413.0 13.0 381.1 6.3 577.0 92

485_2.d 334.6 157.4 30 0.47 0.508 0.016 0.062 0.001 0.15 0.060 0.002 0.26008 415.0 11.0 387.4 5.4 553.0 93

485_3.d 155 42.5 16 0.27 0.807 0.088 0.065 0.002 0.32 0.090 0.009 -0.088902 585.0 48.0 406.0 10.0 1240.0 69

485_4.d 278 84.1 15 0.30 0.451 0.016 0.061 0.001 0.18 0.054 0.002 0.17917 376.0 11.0 382.8 5.1 307.0 102

485_5.d 1176 599 109 0.51 0.477 0.015 0.060 0.001 0.38 0.058 0.002 0.008962 394.0 10.0 373.6 4.4 489.0 95

485_6.d 453 233 39 0.51 0.461 0.013 0.060 0.001 0.00 0.056 0.002 0.45568 383.2 9.1 374.1 3.8 426.0 98

485_7.d 297.4 71.7 14 0.24 0.461 0.015 0.061 0.001 0.19 0.055 0.002 0.19205 383.0 10.0 383.9 4.3 358.0 100

485_8.d 807 373 71 0.46 0.528 0.015 0.064 0.001 0.46 0.060 0.002 0.095764 429.0 10.0 401.2 6.3 560.0 94

485_9.d 256 65.4 15 0.26 0.533 0.022 0.063 0.001 0.06 0.061 0.003 0.34772 431.0 14.0 395.1 6.2 577.0 92

485_10.d 499.3 149.9 28 0.30 0.461 0.012 0.061 0.001 0.37 0.054 0.001 0.15512 384.0 8.5 383.1 4.8 365.0 100

485_11.d 485 162.2 30 0.33 0.459 0.014 0.061 0.001 0.08 0.055 0.002 0.31493 383.0 9.8 378.6 4.7 373.0 99

485_12.d 1214 720 126 0.59 0.443 0.011 0.057 0.001 0.35 0.056 0.001 0.05871 371.3 7.8 356.8 3.6 453.0 96

485_13.d 154.3 34.7 6 0.22 0.457 0.024 0.060 0.001 0.09 0.055 0.003 0.28639 377.0 17.0 374.8 5.7 340.0 99

485_14.d 374 131 23 0.35 0.447 0.014 0.058 0.001 0.06 0.056 0.002 0.31621 373.7 9.8 364.6 4.9 409.0 98

485_15.d 319 93.8 22 0.29 0.517 0.018 0.061 0.001 0.05 0.062 0.002 0.30502 422.0 12.0 378.9 4.7 625.0 90

485_16.d 264 67.5 12 0.26 0.474 0.020 0.061 0.001 0.07 0.056 0.002 0.31133 391.0 14.0 380.3 6.1 424.0 97

485_17.d 300.7 87.1 17 0.29 0.487 0.014 0.063 0.001 0.08 0.056 0.002 0.27635 402.0 10.0 396.0 4.8 418.0 99

485_18.d 297.4 89.8 16 0.30 0.470 0.016 0.060 0.001 0.21 0.057 0.002 0.2109 390.0 11.0 377.2 5.3 444.0 97

485_19.d 396.2 123.2 23 0.31 0.471 0.015 0.062 0.001 0.18 0.055 0.002 0.20486 390.0 10.0 389.2 4.6 367.0 100

485_20.d 246.6 105.9 20 0.43 0.502 0.019 0.061 0.001 0.09 0.060 0.002 0.27787 410.0 13.0 383.1 5.2 518.0 93

485_21.d 143.5 43 8 0.30 0.471 0.026 0.062 0.001 0.15 0.055 0.003 0.1889 386.0 18.0 389.9 6.5 310.0 101

485_22.d 735 480 89 0.65 0.461 0.012 0.059 0.001 0.16 0.057 0.002 0.20377 385.0 8.0 369.3 3.9 464.0 96 485_23.d 1247 1108 210 0.89 0.465 0.009 0.062 0.001 0.30 0.054 0.001 0.3069 387.2 6.2 388.8 4.3 363.0 100

485_24.d 165.2 47.5 9 0.29 0.441 0.019 0.061 0.001 0.07 0.052 0.002 0.27965 368.0 13.0 381.7 5.8 249.0 104

485_25.d 321 119.1 26 0.37 0.532 0.019 0.061 0.001 0.29 0.063 0.002 0.10683 432.0 13.0 378.7 4.8 692.0 88

485_26.d 171.3 53.1 15 0.31 0.658 0.038 0.061 0.001 0.24 0.079 0.004 0.04573 507.0 23.0 379.3 6.9 1080.0 75

485_27.d 199.9 58.1 11 0.29 0.465 0.018 0.061 0.001 0.02 0.055 0.002 0.34297 385.0 12.0 381.0 5.5 371.0 99

485_28.d 191.8 53.3 9 0.28 0.434 0.017 0.059 0.001 0.13 0.054 0.002 -0.11294 363.0 12.0 369.3 5.7 293.0 102

485_29.d 237 74.5 12 0.31 0.463 0.022 0.060 0.001 0.17 0.056 0.003 0.37283 384.0 16.0 377.3 8.0 400.0 98

485_30.d 1020 557 103 0.55 0.530 0.023 0.062 0.001 0.30 0.062 0.002 0.17439 430.0 15.0 389.2 5.1 650.0 91

485_31.d 224.6 74.1 14 0.33 0.478 0.019 0.061 0.001 0.23 0.056 0.002 0.19197 394.0 13.0 383.3 6.2 409.0 97

485_32.d 381.1 125 23 0.33 0.470 0.016 0.061 0.001 0.02 0.056 0.002 0.015272 390.0 11.0 381.0 4.2 411.0 98