Assessment of Molecular Action of Direct Gating and Allosteric Modulatory Effects of Carisoprodol (Somartm) on GABA a Receptors

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Molecular Action of Direct Gating and Allosteric Modulatory Effects of Carisoprodol (Somartm) on GABA a Receptors Graduate Theses, Dissertations, and Problem Reports 2015 Assessment of molecular action of direct gating and allosteric modulatory effects of carisoprodol (SomaRTM) on GABA A receptors Manoj Kumar Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Kumar, Manoj, "Assessment of molecular action of direct gating and allosteric modulatory effects of carisoprodol (SomaRTM) on GABA A receptors" (2015). Graduate Theses, Dissertations, and Problem Reports. 6022. https://researchrepository.wvu.edu/etd/6022 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. ASSESSMENT OF MOLECULAR ACTION OF DIRECT GATING AND ALLOSTERIC MODULATORY EFFECTS OF MEPROBAMATE (MILTOWN®) ON GABAA RECEPTORS Manish Kumar, MD, MS Dissertation submitted to the School of Pharmacy at West Virginia University in partial fulfillment of Requirements for the degree of DOCTOR OF PHILOSOPHY IN PHARMACEUTICAL AND PHARMACOLOGICAL SCIENCES Glenn H. Dillon, PhD., Chair Rae Matsumoto, PhD Patrick S. Callery, PhD Hanting Zhang, MD, PhD Robert K Griffith, PhD Department of Pharmaceutical Sciences Morgantown, West Virginia May 2016 Keywords: GABAA receptors, GABAA receptor isoforms, Carisoprodol, Meprobamate, Muscle relaxant, Drug Abuse Copyright 2016 Manish Kumar ABSTRACT ASSESSMENT OF MOLECULAR ACTION OF DIRECT GATING AND ALLOSTERIC MODULATORY EFFECTS OF MEPROBAMATE (MILTOWN®) ON GABAA RECEPTORS Manish Kumar Meprobamate (tradenames Miltown, Equanil) is a schedule IV anxiolytic and the primary metabolite of the muscle relaxant carisoprodol. Meprobamate modulates GABAA (- aminobutyric acid type A) receptors, and has been described as having barbiturate-like activity. A thorough understanding of its mechanism remains ill-defined, however. To gain insight into its actions, we have conducted a series of studies using recombinant GABAA receptors. In xz GABAA receptors (where x = 1-6 and z = 1-3), the ability to enhance GABA-mediated current was evident for all subunit isoforms, with the largest effect observed in 5-expressing receptors. Direct gating was comparable with all subunits, although the effect was attenuated in α3-expressing receptors. Allosteric potentiating and direct gating effects were comparable in 112 and 122 receptors, whereas allosteric effects were enhanced in 12 compared to 122 receptors. In “extrasynaptic” GABAA receptors (α1β3δ and α4β3δ receptors), meprobamate allosterically enhanced both EC20 and saturating GABA currents, and directly activated these receptors with an efficacy comparable to that of GABA. Bemegride, which antagonizes effects of pentobarbital, attenuated direct gating effects of meprobamate. Whereas pentobarbital directly gated homomeric β3 receptors, meprobamate did not, and instead blocked the spontaneously open current present in these receptors. In wild type homomeric ρ1 receptors, both pentobarbital and meprobamate were ineffective in direct gating; a mutation (W328M) previously shown to confer sensitivity to pentobarbital, did not confer sensitivity to meprobamate. Our results provide additional insight into the actions of meprobamate and parent therapeutic agents such as Carisoprodol as well as possible domains involved in the direct gating actions of the ligands including transmembrane domains TM4. Further, using site- directed-mutagenesis and whole cell patch clamp electrophysiology in transiently transfected HEK293 cells, we examined the role of GABAA receptor α-subunit transmembrane domain 4 (TM4) and transmembrane domain 2 (TM2) amino acids in direct gating, and inhibitory actions of meprobamate. Mutation of α3 valine at position 440 to leucine (present in the equivalent position in the α1 subunit) increased the direct gating potency and efficacy of meprobamate. In R-α1β2 heteromeric GABAA receptor, both pentobarbital and carisoprodol had inhibitory effect for allosteric modulatory action at higher concentrations. Meprobamate did not have an inhibitory effect at the concentrations tested. T6’F mutation of the β2-subunit abolished the inhibition of carisoprodol but not of pentobarbital. Thus, our studies provide further insight into actions of meprobamate, its parent drug carisoprodol and their comparison to barbiturate pentobarbital. DEDICATION I dedicate my dissertation to my mother Mrs. Manju Kumari whose tireless patience and encouragement helped me in toughest of the times. My Grand Father, Late Mr. Awadh Kishore Das. My aunt Bindu Kumari, whose first words when I joined medical school was, “win a Nobel prize in medicine”. My father, Mr. Sachchidanand Roy, who stood behind me through thick and thin and last but not the least, my mentor Dr. Glenn H. Dillon. iv ACKNOWLEDGMENTS I would like to thank these important people who have helped and guided me in achieving my goals. Dr. Glenn H. Dillon: An excellent mentor, excellent scientist, excellent administrator, excellent family man and an amazing person. I am extremely lucky to have you as mentor for not only learning science but every moment spent with you was a learning experience. So, Thank you. Dawn Dillon: An amazing person, who did not let us miss our family away from home. Thank you. Dr. Rae Matsumoto, Dr. Patrick S. Callery, Dr. Hanting Zhang, Dr. Robert K Griffith: Thank you for being part of my committee and enriching my scientific experience with valuable suggestions. My Family members, Siblings, Ashish Kumar, Madhulika Roy, Uncles, Ashok Kumar, Abhay Kumar, Friends, Lokesh Gowda, Ashwini Saxena, Vishal Yadav, Manoj Kumar, Abhishek Kumar, Anuj Kumar. Thank you all for the valuable support. Lab members, Zheng-Ian, Ren-Qi-Huang, Cathy-Bell Horner, Manoj Kumar, John M. Freund for their valuable suggestions during day to day working in lab. v TABLE OF CONTENTS TITLE……………………………………………………………………………………………. i ABSTRACT………………………………………………………………………………………ii DEDICATION…………………………………………………………………………………...iv ACKNOWLEDGEMENTS……………………………………………………………………...v TABLE OF CONTENTS………………………………………………………………………..vii LIST OF FIGURES…………………………………………………………...............................ix LIST OF ABBREVIATIONS………………………………………………………………...... xi CHAPTER – I INTRODUCTION………………………………………….…………………..1 History of Meprobamate…………………………….……………………………….......1 Chemistry and Physiological Effects of Meprobamate…………………………….….....5 Pharmacology and Metabolism of Meprobamate………………………………….…......7 Side Effect, Abuse and Withdrawal of Meprobamate………………………….…...…....8 GABAA Receptors………………………………………………………….…..…….....11 Structure of GABAA receptors and Subunit Classes and Roles…………………….......15 Various Modes of GABAA receptor Subunit Classes and Roles…………...……….......17 Pharmacology of GABA receptors..……………………………………….……...…......23 Aims of the Study…………………………………………………………………..…...24 References………………………………………………….........................…………...25 CHAPTER – II ASSESSMENT OF DIRECT GATING AND ALLOSTERIC MODULATORY EFFECTS OF MEPROBAMATE IN GABAA RECEPTORS……………………………………………………………………...….49 ABSTRACT………………………………………………………………………………....50 INTRODUCTION…………………………………………….……………………..............51 vi MATERIALS AND METHODS………………………………………………….…..…….53 Cell Culture and Transfection ……………………………..…………………………...53 Electrophysiology…………….…………………………...………………………........53 Chemicals and solutions…………………………………………………...…………...54 Experimental protocol ……………………………………….……………...………....55 Data Analysis………………………………………….……………………………….56 RESULTS ……………………………………………………………………….……...…..57 Influence of α-subunit isoform of meprobamate-mediated activity of the GABAA receptor…………………………………………….………………………….57 Influence of β-subunit isoform of meprobamate-mediated activity of the GABAA receptor……………………………………………………………………..…57 Influence of γ-subunit isoform of meprobamate-mediated activity of the GABAA receptor ………………………………………………………….……………58 Effects of meprobamate in “extrasynaptic” receptors……………………….………….58 Further assessment of barbiturate like effects of meprobamate………………………...59 DISCUSSION…………………………………………………………………….………....62 ACKNOWLEDGEMENTS……………………………………………………..…..............68 TABLES…………………………………...………………………………………..…….....75 FIGURES…………………………………….……………………………………………...77 REFERENCES………………………………………………………….……………..….....69 CHAPTER – III A SINGLE AMINO ACID RESIDUE AT TRANSMEMBRANE 4 OF THE ALPHA 1 SUBUNIT INFLUENCES CARISOPRODOL DIRECT GATING EFFICACY AT GABAA RECEPTORS……………………………...…………....92 ABSTRACT………………………………………………………………………..………...94 INTRODUCTION……………………………………………...…………………….…..….95 vii MATERIAL AND METHODS……………………………………………………………97 Cell Culture and Transfection………………………………………..…………….….97 Whole-cell patch clamp electrophysiology……………..……………………….…….97 Chemicals and solutions……………………………………………………………….98 Experimental Protocol…………………………………………….…….………..........98 Data Analysis……………………………………………………………….……….....99 Plasmids and site-directed-mutagenesis……………………………………………….100 RESULTS…………………………………………………………………………..….......100 TM4 amino acid
Recommended publications
  • Guidelines for the Forensic Analysis of Drugs Facilitating Sexual Assault and Other Criminal Acts
    Vienna International Centre, PO Box 500, 1400 Vienna, Austria Tel.: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org Guidelines for the Forensic analysis of drugs facilitating sexual assault and other criminal acts United Nations publication Printed in Austria ST/NAR/45 *1186331*V.11-86331—December 2011 —300 Photo credits: UNODC Photo Library, iStock.com/Abel Mitja Varela Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Guidelines for the forensic analysis of drugs facilitating sexual assault and other criminal acts UNITED NATIONS New York, 2011 ST/NAR/45 © United Nations, December 2011. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. List of abbreviations . v Acknowledgements .......................................... vii 1. Introduction............................................. 1 1.1. Background ........................................ 1 1.2. Purpose and scope of the manual ...................... 2 2. Investigative and analytical challenges ....................... 5 3 Evidence collection ...................................... 9 3.1. Evidence collection kits .............................. 9 3.2. Sample transfer and storage........................... 10 3.3. Biological samples and sampling ...................... 11 3.4. Other samples ...................................... 12 4. Analytical considerations .................................. 13 4.1. Substances encountered in DFSA and other DFC cases .... 13 4.2. Procedures and analytical strategy...................... 14 4.3. Analytical methodology .............................. 15 4.4.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0224012 A1 Suvanprakorn Et Al
    US 2004O224012A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0224012 A1 Suvanprakorn et al. (43) Pub. Date: Nov. 11, 2004 (54) TOPICAL APPLICATION AND METHODS Related U.S. Application Data FOR ADMINISTRATION OF ACTIVE AGENTS USING LIPOSOME MACRO-BEADS (63) Continuation-in-part of application No. 10/264,205, filed on Oct. 3, 2002. (76) Inventors: Pichit Suvanprakorn, Bangkok (TH); (60) Provisional application No. 60/327,643, filed on Oct. Tanusin Ploysangam, Bangkok (TH); 5, 2001. Lerson Tanasugarn, Bangkok (TH); Suwalee Chandrkrachang, Bangkok Publication Classification (TH); Nardo Zaias, Miami Beach, FL (US) (51) Int. CI.7. A61K 9/127; A61K 9/14 (52) U.S. Cl. ............................................ 424/450; 424/489 Correspondence Address: (57) ABSTRACT Eric G. Masamori 6520 Ridgewood Drive A topical application and methods for administration of Castro Valley, CA 94.552 (US) active agents encapsulated within non-permeable macro beads to enable a wider range of delivery vehicles, to provide longer product shelf-life, to allow multiple active (21) Appl. No.: 10/864,149 agents within the composition, to allow the controlled use of the active agents, to provide protected and designable release features and to provide visual inspection for damage (22) Filed: Jun. 9, 2004 and inconsistency. US 2004/0224012 A1 Nov. 11, 2004 TOPCAL APPLICATION AND METHODS FOR 0006 Various limitations on the shelf-life and use of ADMINISTRATION OF ACTIVE AGENTS USING liposome compounds exist due to the relatively fragile LPOSOME MACRO-BEADS nature of liposomes. Major problems encountered during liposome drug Storage in vesicular Suspension are the chemi CROSS REFERENCE TO OTHER cal alterations of the lipoSome compounds, Such as phos APPLICATIONS pholipids, cholesterols, ceramides, leading to potentially toxic degradation of the products, leakage of the drug from 0001) This application claims the benefit of U.S.
    [Show full text]
  • University Microfilms
    INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You w ill find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]
  • Calcium Channel Blocker As a Drug Candidate for the Treatment of Generalised Epilepsies
    UNIVERSITAT DE BARCELONA Faculty of Pharmacy and Food Sciences Calcium channel blocker as a drug candidate for the treatment of generalised epilepsies Final degree project Author: Janire Sanz Sevilla Bachelor's degree in Pharmacy Primary field: Organic Chemistry, Pharmacology and Therapeutics Secondary field: Physiology, Pathophysiology and Molecular Biology March 2019 This work is licensed under a Creative Commons license ABBREVIATIONS AED antiepileptic drug AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ANNA-1 antineuronal nuclear antibody 1 BBB blood-brain barrier Bn benzyl BnBr benzyl bromide BnNCO benzyl isocyanate Boc tert-butoxycarbonyl Bu4NBr tetrabutylammonium bromide Ca+2 calcium ion CACNA1 calcium channel voltage-dependent gene cAMP cyclic adenosine monophosphate CCB calcium channel blocker cGMP cyclic guanosine monophosphate CH3CN acetonitrile Cl- chlorine ion Cmax maximum concentration CMV cytomegalovirus CTScan computed axial tomography DCM dichloromethane DIPEA N,N-diisopropylethylamine DMF dimethylformamide DMPK drug metabolism and pharmacokinetics DNET dysembryoplastic neuroepithelial tumours EEG electroencephalogram EPSP excitatory post-synaptic potential FDA food and drug administration Fe iron FLIPR fluorescence imaging plate reader fMRI functional magnetic resonance imaging GABA γ-amino-α-hydroxybutyric acid GAD65 glutamic acid decarboxylase 65 GAERS generalised absence epilepsy rat of Strasbourg GluR5 kainate receptor GTC generalised tonic-clonic H+ hydrogen ion H2 hydrogen H2O dihydrogen dioxide (water)
    [Show full text]
  • Thesis Rests with Its Author
    University of Bath PHD A modelling study of the ligand-gated ion-channel superfamily of receptors Cockcroft, Victor Barrie Award date: 1992 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 08. Oct. 2021 A MODELLING STUDY OF THE LIGAND-GATED ION-CHANNEL SUPERFAMILY OF RECEPTORS. submitted by Victor Barrie Cockcroft for the degree of Ph.D. at the University of Bath 1992 Copyright Attention is drawn to the fact that the copyright of this thesis rests with its author. This copy of the thesis has been supplied on the condition that anyone who con­ sults it is understood to recognize that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published with­ out the prior written consent of the author.
    [Show full text]
  • Characterization of Zebrafish GABAA Receptor Subunits
    www.nature.com/scientificreports OPEN Characterization of zebrafsh GABAA receptor subunits Kenichiro Sadamitsu, Leona Shigemitsu, Marina Suzuki, Daishi Ito, Makoto Kashima & Hiromi Hirata* γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, exerts its efect through the activation of GABA receptors. GABAA receptors are ligand-gated chloride channels composed of fve subunit proteins. Mammals have 19 diferent GABAA receptor subunits (α1–6, β1–3, γ1–3, δ, ε, π, θ, and ρ1–3), the physiological properties of which have been assayed by electrophysiology. However, the evolutionary conservation of the physiological characteristics of diverged GABAA receptor subunits remains unclear. Zebrafsh have 23 subunits (α1, α2a, α2b, α3–5, α6a, α6b, β1–4, γ1–3, δ, π, ζ, ρ1, ρ2a, ρ2b, ρ3a, and ρ3b), but the electrophysiological properties of these subunits have not been explored. In this study, we cloned the coding sequences for zebrafsh GABAA receptor subunits and investigated their expression patterns in larval zebrafsh by whole- mount in situ hybridization. We also performed electrophysiological recordings of GABA-evoked currents from Xenopus oocytes injected with one or multiple zebrafsh GABAA receptor subunit cRNAs and calculated the half-maximal efective concentrations (EC50s) for each. Our results revealed the spatial expressions and electrophysiological GABA sensitivities of zebrafsh GABAA receptors, suggesting that the properties of GABAA receptor subunits are conserved among vertebrates. γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system of vertebrates, 1 controls the excitability of neural networks mainly through GABA A receptors . Te GABAA receptor mediates two types of inhibition, known as phasic and tonic inhibition2.
    [Show full text]
  • Misperceptions About Contraceptives Persist
    30 Women’s Health FAMILY P RACTICE N EWS • September 1, 2008 Misperceptions About Contraceptives Persist BY DOUG BRUNK trauterine device use; 50% thought IUD (SOGC). There may be inadequate in- Oral contraceptives are also safe in women San Diego Bureau failure was a major risk; and fewer than struction with regard to contraception in older than age 35 if they are healthy non- one-third would recommend an IUD as an physician-training programs, she said. smokers, and in women with systemic lu- C ALGARY, ALTA. — Physicians may option for nulliparous women, for post- “Not everybody does IUD insertions, sub- pus erythematosus provided they have no have a surprising number of misconcep- coital contraception, for women with fi- dermal progestin implant, or vasectomy.” antiphospholipid antibodies, vascular dis- tions about birth control, according to re- broids, or for women who had pelvic in- Other barriers to effective contraceptive ease, or nephritis. cent responses to a survey by 96 family flammatory disease within the last year use include exaggerated concerns about Another common exaggerated concern physicians in Kingston, Ont. (Can. Fam. Physician 2008;54:560-6). potential side effects. For example, women is that the use of oral and transdermal Contrary to evidence in the medical lit- “Only 41% of these physicians inserted with diabetes may use oral contraceptives patch contraceptives cause weight gain. erature, more than 60% of respondents IUDs,” Dr. Amanda Black said at the an- if they have no end-organ damage, said Dr. However, a recent Cochrane systematic re- thought pelvic inflammatory disease and nual meeting of the Society of Obstetri- Black of the division of general obstetrics view of randomized, controlled data con- ectopic pregnancy were major risks of in- cians and Gynaecologists of Canada and gynecology at the Ottawa Hospital.
    [Show full text]
  • Forensic Toxicology Laboratory Office of Chief Medical Examiner City of New York
    FORENSIC TOXICOLOGY LABORATORY OFFICE OF CHIEF MEDICAL EXAMINER CITY OF NEW YORK CARISOPRODOL , MEPROBAMATE and TOPIRAMATE by SOLID PHASE EXTRACTION and GAS CHROMATOGRAPHY/MASS SPECTROMETRY (Selected Ion Monitoring) PRINCIPLE Carisoprodol is a carbamate derivative first synthesized in 1959. It is primarily used as a muscle relaxant. UncontrolledMeprobamate is also a carbamate derivative used as a muscle relaxant and the primary metabolite of carisoprodol. Topiramate is a sulfamate-substituted monosaccharide used as an anticonvulsant Carisoprodol, meprobamate and topiramate are quantitated by a selected ion monitoring (SIM) method using methapyrilene as the internal standard. Carisoprodol, meprobamate and topiramate are extracted from biological specimens by solid phase extraction. Drugs are temporarily bound to a sorbent in the solid phase cartridge as the prepared sample is poured through the column. The column is washed to remove interfering compounds, followed by elution of drugs from the column. The eluate is evaporated, reconstituted and injected in the GCMS. Quantitative analysis is performed by SIM GCMS using a six point calibration curve. SAFETY The handling of all biological specimens and reagents is performed within the guidelines which are detailed in the Safety and Health manual. Copy SPECIMEN PREPARATION The procedure is routinely applied to the following biological specimens and their aliquots unless otherwise specified: Blood 0.5 mL of the undiluted specimen Urine 0.5 mL for qualitative identification Brain 0.5 mL of a 1:3 homogenate Gastric Contents 0.5 mL of a 1:10 dilution Liver 0.5 mL of a 1:5 homogenate Vitreous Humor 0.5 mL of the undiluted specimen Bile 0.5 mL of the undiluted specimen Reviewed by: Date: Page 1 of 14 T:\FINALSOP\FINAL SOP PDF\G.
    [Show full text]
  • Metabolism of Drugs in Old Rats (Ii) Metabolism in Vivo and Effect of Drugs in Old Rats
    METABOLISM OF DRUGS IN OLD RATS (II) METABOLISM IN VIVO AND EFFECT OF DRUGS IN OLD RATS RYUICHI KATO AND AKIRA TAKANAKA Department of Pharmacology, National Institute of Hygienic Sciences, Setagaya-ku, Tokyo Received for publication March 16, 1968 It is well known that the effects of some drugs in old animals quite differ from those in young animals. For example, Farner and Verzar (1) observed that the action of am phetamine to increase moter activity was more marked in young rats than in old rats and the action of hexobarbital to antagonized against the amphetamine action was more ef fective in old rats than in young rats. Moreover, the duration of hexobarbital anesthesia was longer in old rats than in young rats (2). Similarly, Petty and Karler (3) observed that anticonvulsive activity of acetazolamide and phenobarbital was more marked in old rats than in young rats. However, there is no study on the mechanism of such altered drug response in rela tion to the rate of drug metabolism. In a previous paper it was reported from our labo ratory that the activities in the oxidation and reduction of drugs and NADPH-linked elec tron transport system in liver microsomes of male and female rats were progressively decreased with aging (4). It is, therefore, of interest to investigate whether or not the metabolism in vivoof vari ous drugs is decreased in old rats in accordance with the decrease in the metabolic activi ties of liver microsomes observed in the in vitro experiments. Moreover, the relationship between the effects of drugs and the rate of in vivo metabolism of drugs in the old rats was studied.
    [Show full text]
  • Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
    TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object.
    [Show full text]
  • 85 Mv Respectively. When the Membranewas Depolarized, Th
    J. Physiol. (1985), 360, pp. 161-185 161 With 14 text-figurem Printed in Great Britain COMPARISON OF THE ACTION OF BACLOFEN WITH y-AMINOBUTYRIC ACID ON RAT HIPPOCAMPAL PYRAMIDAL CELLS IN VITRO BY N. R. NEWBERRY* AND R. A. NICOLLt From the Departments of Pharmacology and Physiology, University of California, San Francisco, CA 94143, U.S.A. (Received 13 June 1984) SUMMARY 1. Intracellular recordings from CAI pyramidal cells in the hippocampal slice preparation were used to compare the action of baclofen, a y-aminobutyric acid (GABA) analogue, with GABA. 2. Ionophoretic application of GABA or baclofen into stratum (s.) pyramidale evoked hyperpolarizations associated with reductions in the input resistance of the cell. Baclofen responses were easier to elicit in the dendrites than in the cell body layer. 3. Blockade of synaptic transmission, with tetrodotoxin or cadmium, did not reduce baclofen responses, indicating a direct post-synaptic action. 4. (+ )-Bicuculline (10 ,UM) and bicuculline methiodide (100 /SM) had little effect on baclofen responses but strongly antagonized somatic GABA responses of equal amplitude. The bicuculline resistance of the baclofen response was not absolute, as higher concentrations of these compounds did reduce it. Pentobarbitone (100 /M) enhanced somatic GABA responses without affecting baclofen responses. (-)-Baclofen was approximately 200 times more potent than (+ )-baclofen. 5. The reversal potentials for the somatic GABA and baclofen responses were -70 mV and -85 mV respectively. When the membrane was depolarized, the baclofen response was reduced. This apparent voltage sensitivity was not seen with somatic GABA responses. 6. Altering the chloride gradient across the cell membrane altered the reversal potential of the somatic GABA response but not that ofthe baclofen response.
    [Show full text]
  • Research Article Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed Hipscs To
    Hindawi Publishing Corporation Stem Cells International Volume 2013, Article ID 784629, 25 pages http://dx.doi.org/10.1155/2013/784629 Research Article Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed hiPSCs to Differentiated Neuronal and Cardiac Progeny Leonhard Linta,1 Marianne Stockmann,1 Qiong Lin,2 André Lechel,3 Christian Proepper,1 Tobias M. Boeckers,1 Alexander Kleger,3 and Stefan Liebau1 1 InstituteforAnatomyCellBiology,UlmUniversity,Albert-EinsteinAllee11,89081Ulm,Germany 2 Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, Pauwelstrasse 30, 52074 Aachen, Germany 3 Department of Internal Medicine I, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany Correspondence should be addressed to Alexander Kleger; [email protected] and Stefan Liebau; [email protected] Received 31 January 2013; Accepted 6 March 2013 Academic Editor: Michael Levin Copyright © 2013 Leonhard Linta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ion channels are involved in a large variety of cellular processes including stem cell differentiation. Numerous families of ion channels are present in the organism which can be distinguished by means of, for example, ion selectivity, gating mechanism, composition, or cell biological function. To characterize the distinct expression of this group of ion channels we have compared the mRNA expression levels of ion channel genes between human keratinocyte-derived induced pluripotent stem cells (hiPSCs) and their somatic cell source, keratinocytes from plucked human hair. This comparison revealed that 26% of the analyzed probes showed an upregulation of ion channels in hiPSCs while just 6% were downregulated.
    [Show full text]