microorganisms Review Mutational Landscape and Interaction of SARS-CoV-2 with Host Cellular Components Mansi Srivastava 1,†, Dwight Hall 1,†, Okiemute Beatrice Omoru 1, Hunter Mathias Gill 1, Sarah Smith 1 and Sarath Chandra Janga 1,2,3,* 1 Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Informatics and Communications Technology Complex, 535 West Michigan Street, Indianapolis, IN 46202, USA;
[email protected] (M.S.);
[email protected] (D.H.);
[email protected] (O.B.O.);
[email protected] (H.M.G.);
[email protected] (S.S.) 2 Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 410 West 10th Street, Indianapolis, IN 46202, USA 3 Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, 975 West Walnut Street, Indianapolis, IN 46202, USA * Correspondence:
[email protected]; Tel.: +1-317-278-4147; Fax: +1-317-278-9201 † Contributed equally. Abstract: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid evolution has led to a global health crisis. Increasing mutations across the SARS-CoV-2 genome have severely impacted the development of effective therapeutics and vaccines to combat the virus. However, the new SARS-CoV-2 variants and their evolutionary characteristics are not fully understood. Host cellular components such as the ACE2 receptor, RNA-binding proteins (RBPs), microRNAs, small nuclear RNA (snRNA), 18s rRNA, and the 7SL RNA component of the signal recognition particle (SRP) interact with various structural and non-structural proteins of the Citation: Srivastava, M.; Hall, D.; SARS-CoV-2.