Determination of Colloidal Gold Nanoparticle Surface Areas, Concentrations, and Sizes Through Quantitative Ligand Adsorption

Total Page:16

File Type:pdf, Size:1020Kb

Determination of Colloidal Gold Nanoparticle Surface Areas, Concentrations, and Sizes Through Quantitative Ligand Adsorption Anal Bioanal Chem (2013) 405:413–422 DOI 10.1007/s00216-012-6489-2 ORIGINAL PAPER Determination of colloidal gold nanoparticle surface areas, concentrations, and sizes through quantitative ligand adsorption Manuel Gadogbe & Siyam M. Ansar & Guoliang He & Willard E. Collier & Jose Rodriguez & Dong Liu & I-Wei Chu & Dongmao Zhang Received: 1 August 2012 /Revised: 1 October 2012 /Accepted: 8 October 2012 /Published online: 24 October 2012 # Springer-Verlag Berlin Heidelberg 2012 Abstract Determination of the true surface areas, concen- aqua regia-digested AuNPs. The experimental results from trations, and particle sizes of gold nanoparticles (AuNPs) is a the MBI adsorption method for a series of commercial col- challenging issue due to the nanoparticle morphological loidal AuNPs with nominal diameters of 10, 30, 50, and irregularity, surface roughness, and size distributions. A 90 nm were compared with those determined using dynamic ligand adsorption-based technique for determining AuNP light scattering, transmission electron microscopy, and local- surface areas in solution is reported. Using a water- ized surface plasmonic resonance methods. The ligand soluble, stable, and highly UV–vis active organothiol, 2- adsorption-based technique is highly reproducible and sim- mercaptobenzimidazole (MBI), as the probe ligand, we dem- ple to implement. It only requires a UV–vis spectrophotom- onstrated that the amount of ligand adsorbed is proportional eter for characterization of in-house-prepared AuNPs. to the AuNP surface area. The equivalent spherical AuNP sizes and concentrations were determined by combining the Keywords Gold nanoparticle (AuNP) . Ligand adsorption . MBI adsorption measurement with Au3+ quantification of Surface area . Particle size Electronic supplementary material The online version of this article (doi:10.1007/s00216-012-6489-2) contains supplementary material, Introduction which is available to authorized users. : : * Colloidal gold nanoparticles (AuNPs) have found applica- M. Gadogbe S. M. Ansar D. Zhang ( ) – Department of Chemistry, Mississippi State University, tions in many areas including catalysis [1 4], drug delivery Mississippi State, [5, 6], imaging [7], and bio-sensing [8, 9] because they Starkville, MS 39762, USA exhibit unique chemical, catalytic, and electromagnetic e-mail: [email protected] properties. These properties depend on the size, shape, and W. E. Collier composition of the AuNPs. Knowledge about AuNP size, Tuskegee University, surface area, and concentration is vital to determine and Tuskegee, AL 36088, USA understand the correlation between AuNP structure and function. For instance, Wang et al. observed that endocyto- J. Rodriguez Mississippi State Chemical Laboratory, Mississippi State, sis of AuNPs, modified with single-stranded DNA for tar- Starkville, MS 39762, USA geting of cancer cells, depends on the size of the : nanoparticles. It was observed that endocytosis decreases G. He D. Liu with increasing size of AuNPs [10]. Alkilany and Murphy Department of Mechanical Engineering, University of Houston, N207 Engineering Building 1, showed that nanoparticle size plays an important role in the Houston, TX 77204-4006, USA rate and extent of cellular uptake [11]. Also, the catalytic activity of AuNPs is critically dependent on particle size I.-W. Chu [12–14]. Department of Chemical Engineering, Mississippi State University, Mississippi State, Current methods for determining AuNP size can be di- Starkville, MS 39762, USA vided into several subcategories. The first is light scattering 414 M. Gadogbe et al. methods that include dynamic light scattering (DLS), static the published TEM images [29–31]. They are polycrys- light scattering (SLS) [15–17], and small-angle X-ray scat- talline containing different crystal facets with junctions, tering [18]. The second category is the microscopy method vertices, and defects [32–36]. These low to subnanom- including atomic force microscopy (AFM), transmission eter surface features are difficult to account for with electron microscopy (TEM) [19], and scanning electron imaging methods such as TEM and SEM, or other microscopy (SEM). The third is the localized surface plas- existing particle sizing methods, but they can have monic resonance (LSPR) method, which takes advantage of significant impact on the nanoparticle surface areas. the fact that the LSPR features of AuNPs depend on the size, Our hypothesis is that more realistic values for the true shape, and concentration of the AuNPs [20–22]. A more AuNP surface areas can be estimated with molecular recent method is electrospray-differential mobility analysis probes that have small cross sections (<1 nm2/molecule, (ES-DMA) that involves the conversion of AuNP suspen- forexample)ontheAuNPs. sion into the gas phase using electrospray ionization. In ES- Reported herein is a ligand adsorption method for deter- DMA, the charged particles are sorted based on their elec- mining the surface areas, concentrations, and sizes of col- trical mobility and the number average diameter is measured loidal AuNPs, using 2-mercaptobenzimidazole (MBI) as the after counting [23–25]. While TEM, SEM, and AFM probe ligand. While ligand adsorption methods have been images allow direct AuNP visualization [19, 26, 27], these used for determining the exposed surface area of AuNPs measurements require tedious sample preparation, sophisti- (e.g., AuNP catalysts supported on solid substrates) cated equipment, and lengthy and often subjective data [37–39], these methods have, to our knowledge, not been analysis to determine particle size and size distribution. applied to AuNPs in solution. A recent report by Elzey et al. Since only a small population of the nanoparticles is probed, showed that the ligand packing density of the organothiol 3- the results are statistically less representative [27]. mercaptopropionic acid (MPA) on AuNPs is size indepen- One key advantage of light scattering (e.g., DLS) and dent for AuNPs of 5, 10, 30, 60, and 100 nm in diameter LSPR-based methods is their ability to probe the AuNP in [40]. This suggests that ligand adsorption can be a reliable situ, that is, the AuNP in solution, eliminating the tedious method for quantification of the AuNP surface areas and sample preparation required for imaging-based methods. determination of the AuNP sizes. Unfortunately, DLS and SLS suffer from poor robustness Several factors led to choosing MBI as the probe ligand. and accuracy. For example, large uncertainties in particle The first is the high binding affinity of MBI with AuNPs. size analysis can occur in both DLS and SLS induced by Previous research from our group revealed that MBI binds variations in the viscosity and refractive index of the sol- bidentately with AuNPs at neutral pH with a binding con- vent, particulate contaminants in the sample, and fluctua- stant of 4.44±(1.29)×106 M−1 [41]. The high binding affin- tions in the solution temperature. Although DLS proves to ity of MBI is important to ensure that saturation ligand be a useful tool for monitoring slow aggregation processes, binding on the AuNPs can be achieved without using a large Khlebtsov et al. reported that false peaks appear in the size excess of MBI, thereby reducing the cost of chemical range of 5–10 nm in DLS measurements of colloidal AuNPs reagents and minimizing the potential environmental impact [17]. This was attributed to rotational diffusion of nonspher- of this experimental scheme. Using this Langmuir binding ical particles with sizes greater than 30–40 nm [17]. A constant, it can be shown that a 95 % monolayer MBI critical limitation of the LSPR method is its insensitivity to packing can be achieved when the excess MBI is as low small changes in particle size, which is particularly prob- as 5 μM in solution [41]. Secondly, MBI has excellent lematic for AuNPs smaller than 35 nm in diameter [28]. solubility and stability in water. MBI solutions of up to Theoretical calculations have shown that the change in the ≈1 mM can be readily prepared in water, and there is no peak LSPR wavelength is less than 5 nm when the particle detectable change in UV–vis spectra after 8 months of size changes from 5 to 35 nm in diameter [28]. Because of sample storage (data not shown). Thirdly, the amount of their limited reliability, light scattering and LSPR methods MBI adsorbed can be readily quantified by UV–vis spec- are better suited to study gross changes in AuNP sizes troscopy, one of the most reliable and commonly available induced by AuNP aggregation and protein/AuNP binding analytical techniques. MBI has a relatively strong UV–vis than to determine the exact particle size. Although ES-DMA absorbance at 300 nm with a molar absorptivity of can measure very small particle sizes (d<5 nm), the method 27,400 M−1 cm−1. Finally, MBI has a small footprint on requires expensive instrumentation [23]. the AuNP. On the basis of the saturation packing density of Accurate surface area values are crucial when studying 0.574±0.006 nmol/cm2, we recently reported for MBI on the molecular-level ligand interaction with AuNPs. Howev- AuNPs of nominal size of 13 nm by assuming a spherical er, compared to determining particle size, quantifying AuNP shape of the AuNPs [41]; the footprint of MBI on AuNP is surface area is much more challenging. Colloidal AuNPs are 0.29 nm2 per molecule. This small footprint is critical for rarely perfectly spherical or monodispersed, as evident from detecting subnanometer AuNP surface roughness. Determination of colloidal gold nanoparticle
Recommended publications
  • First-Principles and Molecular Dynamics Simulation Studies of Functionalization of Au32 Golden Fullerene with Amino Acids
    www.nature.com/scientificreports OPEN First-principles and Molecular Dynamics simulation studies of functionalization of Au32 golden Received: 4 August 2017 Accepted: 18 July 2018 fullerene with amino acids Published: xx xx xxxx M. Darvish Ganji1, H. Tavassoli Larijani2, R. Alamol-hoda1 & M. Mehdizadeh1 With the growing potential applications of nanoparticles in biomedicine especially the increasing concerns of nanotoxicity of gold nanoparticles, the interaction between protein and nanoparticles is proving to be of fundamental interest for bio-functionalization of materials. The interaction of glycine (Gly) amino acid with Au32 fullerene was frst investigated with B3LYP-D3/TZVP model. Several forms of glycine were selected to better understand the trends in binding nature of glycine interacting with the nanocage. We have evaluated various stable confgurations of the Gly/Au32 complexes and the calculated adsorption energies and AIM analysis indicate that non-Gly, z-Gly and also tripeptide glycine can form stable bindings with Au32 at aqueous solution via their amino nitrogen (N) and/or carbonyl/carboxyl oxygen (O) active sites. Furthermore, cysteine, tyrosine, histidine and phenylalanine amino acids bound also strongly to the Au32 nanocage. Electronic structures and quantum molecular descriptors calculations also demonstrate the signifcant changes in the electronic properties of the nanocage due to the attachment of selected amino acids. DFT based MD simulation for the most stable complex demonstrate that Gly/Au32 complex is quite stable at ambient condition. Our frst-principles fndings ofer fundamental insights into the functionalization of Au32 nanocage and envisage its applicability as novel carrier of the drugs. Drug delivery has gained a lot of attention as it can minimize the side efects of various drugs.
    [Show full text]
  • Internal Structure of Polyelectrolyte Multilayers on Nanometer Scale
    INTERNAL STRUCTURE OF POLYELECTROLYTE MULTILAYERS ON NANOMETER SCALE Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften der Mathematisch-Naturwissenschaftlichen Fakult¨at der Ernst-Moritz-Arndt-Universit¨atGreifswald vorgelegt von Oxana Ivanova geboren am 06. April 1980 in Sankt-Petersburg (Russland) - Greifswald, 2010 - Dekan: Prof. Dr. Dr. Klaus Fesser 1. Gutachter: Prof. Dr. Christiane A. Helm 2. Gutachter: Prof. Dr. Monika Sch¨onhoff Tag der Promotion: 15. Oktober 2010 Ich m¨ochte mich ganz herzlich bei allen Mitarbeitern des Instituts f¨urPhysik f¨urzahllose fachverwandte sowie fachfremde Unterst¨utzungbedanken. Contents I Introduction to the Field of Research 7 1 Introduction 9 1.1 Polyelectrolytes and their Properties . 9 1.2 Layer-by-Layer Assembly of Polyelectrolytes . 10 1.3 Polyelectrolyte Multilayers . 13 1.4 Objectives . 15 2 Physical Background 17 2.1 Electrostatic and Secondary Interactions . 17 2.1.1 Electrostatic Interactions: Electric Double Layer . 18 2.1.2 Effect of Salt on Formation of PEMs . 21 2.1.3 Classification and Range of Intermolecular Forces . 22 2.1.4 Temperature Effect: Hydrophobic Interactions . 23 II Materials and Methods 25 3 Materials and Sample Preparation 27 3.1 Chemicals . 27 3.2 Fabrication of Multilayered Nanofilms . 29 4 Characterization Methods 33 4.1 X-ray and Neutron Reflectivity . 33 4.1.1 Basic Principles of X{ray and Neutron Reflection . 35 4.1.2 Reflection from Ideally Smooth & Rough Interfaces . 37 4.1.3 Refractivity Set{up . 41 4.2 UV-Vis Absorption Spectroscopy . 43 4.2.1 Interaction of Light with Matter . 43 4.2.2 Beer-Lambert Law .
    [Show full text]
  • Size and Zeta Potential of Colloidal Gold Particles
    Size and Zeta Potential of Colloidal Gold Particles Mark Bumiller [email protected] © 2012 HORIBA, Ltd. All rights reserved. Colloid Definition Two phases: •Dispersed phase (particles) •Continuous phase (dispersion medium, solvent) May be solid, liquid, or gaseous Size range 1 nm – 1 micron High surface area creates unique properties (suspension) © 2012 HORIBA, Ltd. All rights reserved. Nanoparticle Definition Nanoparticle: size below 100 nm SSA = 6/D ultrasound 50 nm D from SEM ~50 nm Used ultrasound to disperse D from SSA ~60-70 nm to primary particles or use D from DLS ~250 nm weak acid to break bonds So: is this a nanoparticle? D from DLS ~50 nm © 2012 HORIBA, Ltd. All rights reserved. SZ-100: Nanoparticle Analyzer Size: .3 nm - 8 µm 90° and 173° Zeta potential: -200 - +200 mV Patented carbon coated electrodes Molecular weight: 1x103 - 2x107 g/mol Optional titrator •Nanoparticles •Colloids •Proteins •Emulsions •Disperison stability © 2012 HORIBA, Ltd. All rights reserved. Dynamic Light Scattering Particles in suspension undergo Brownian motion due to solvent molecule bombardment in random thermal motion. ~ 1 nm to 1 µm Particle moves due to interaction with liquid molecules Small – faster Large - slower © 2012 HORIBA, Ltd. All rights reserved. SZ-100 Optics 90° for size and MW, A2 Backscatter (173°) (High conc.) Particles Laser PD Attenuator 532nm, 10mW For T% Particles moving due to Brownian motion Zeta potential Attenuator Modulator © 2012 HORIBA, Ltd. All rights reserved. SZ100 Measurement Principle 1 lngq,r lim 0 ts R n(i) Relaxation time n(1)=2 n(3)=1 n(5)=2 2 n(2)=1 n(4)=3 t t 6D Particle’s moving distance <n(i)n(i+j)> Diffusion constant j 0 4 5 1 k T 1 2 3 D B <n2(i)> 2 Autocorrelation Function q R 6a g(q、r) Relaxation time <n(i)>2 Particle radius j 0 1 2 3 4 5 q: Scattering vector η: Viscosity 0 t 2t 3t 4t 5t k : Boltzmann constant s s s s s τ B © 2012 HORIBA, Ltd.
    [Show full text]
  • Characterization and Functionalization of Iron-Oxide Nanoparticles for Use As Potential Agents for Cancer Thermotherapy at the U
    Characterization and Functionalization of Iron-Oxide Nanoparticles for Use as Potential Agents for Cancer Thermotherapy By Nora O’Reilly A dissertation submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy (Animal Science) At the University of Wisconsin-Madison 2013 Date of final oral examination: April 18th, 2013 The dissertation is approved by the following members of the Final Oral Committee: Professor Ralph Albrecht, Animal Science, Pediatrics, Pharmaceutical Sciences Professor Mark Cook, Animal Science Professor Amin Fadl, Animal Science Professor Manish Patankar, Obstetrics and Gynecology Professor Chris Brace, Radiology, Biomedical Engineering i Abstract This thesis presents experimental studies of iron oxide nanoparticle synthesis, functionalization, and intracellular hyperthermal effects on murine macrophages as a model in vitro system. Colloidal suspensions of magnetic nanoparticles (MNPs) are of particular interest in Magnetic Fluid Hyperthermia (MFH). Iron oxide nanoparticles (IONPs) have garnered great interest as economical, biocompatible hyperthermia agents due to their superparamagnetic activity. Here we seek to optimize the synthetic reproducibility and in vitro utilization of IONPs for application in MFH. We compared aqueous synthetic protocols and various protective coating techniques using various analytical techniques and in vitro assays to assess the biocompatibility and feasibility of the various preparations of nanoparticles. Using a co-precipitation of iron salts methodology,
    [Show full text]
  • Gold Nanoparticles and Quantum Dots: Their Optical Interaction and Application in a Hydrogel Modified Lateral Flow Sensing Device Julie A
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 6-8-2017 Gold Nanoparticles and Quantum Dots: Their Optical Interaction and Application in A Hydrogel Modified Lateral Flow Sensing Device Julie A. Jenkins University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Jenkins, Julie A., "Gold Nanoparticles and Quantum Dots: Their Optical Interaction and Application in A Hydrogel Modified Lateral Flow Sensing Device" (2017). Doctoral Dissertations. 1521. https://opencommons.uconn.edu/dissertations/1521 Gold Nanoparticles and Quantum Dots: Their Optical Interaction and Application in A Hydrogel Modified Lateral Flow Sensing Device Julie Ann Jenkins, Ph.D. University of Connecticut, 2017 The goal of this dissertation was to study the optical properties of gold nanoparticles (Au NP) and quantum dots (QD) and to use their unique properties in sensing applications. The first part of this dissertation focuses on studying the dipole coupling in a gold nanoparticle random array. A blue shift and narrowing of the extinction peak, when compared to the single particle and solution spectra, was observed when 120 nm Au NPs were randomly immobilized on a glass substrate. This was determined to be due to the long-range dipole coupling of the Au NPs in the array. The motivation behind the second project was to study the temperature dependent change in decay kinetics of aqueous phase quantum dots when in close proximity to 120 nm Au NP, using α-carboxy-ω-Thiol terminated Poly(N-isopropyl acrylamide) (PNIPAM) as a spacer. The structure of PNIPAM will expand or collapse based with a change in temperature, thus varying the interparticle distance between the QD and the Au NP.
    [Show full text]
  • THE OPTIMIZATION of GOLD COATED IRON NANOPARTICLE SYNTHESIS METHODS by Mark Riggs, B.S., B.S. a Thesis Submitted to the Gradua
    THE OPTIMIZATION OF GOLD COATED IRON NANOPARTICLE SYNTHESIS METHODS by Mark Riggs, B.S., B.S. A thesis submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of Master of Science with a Major in Chemistry August 2014 Committee Members: Gary Beall Shannon Weigum Clois Powell COPYRIGHT by Mark Riggs 2014 FAIR USE AND AUTHOR’S PERMISSION STATEMENT Fair Use This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgment. Use of this material for financial gain without the author’s express written permission is not allowed. Duplication Permission As the copyright holder of this work I, Mark Riggs, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only. DEDICATION I dedicate this to my wife, Melissa. Her constant support and encouragement were nothing short of heroic. Careful and delicate allocation of my focus became ever- increasing in importance throughout the progression of this research, primarily due to the birth of my beautiful daughter, Olivia Marie, on February 4th of 2014. My daughter’s arrival impacted my perception in ways I couldn’t have fully understood prior to that wonderful moment. I will be forever indebted to Melissa for showing me how blessed I am, enabling me to live a better life than I could have conceived, and providing never- ending assistance with caring for our daughter.
    [Show full text]
  • Functionalization of Gold Nanoparticles by Inorganic Entities
    nanomaterials Review Functionalization of Gold Nanoparticles by Inorganic Entities Frédéric Dumur 1,* , Eddy Dumas 2 and Cédric R. Mayer 3,4,* 1 Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France 2 Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, F-78035 Versailles, France; [email protected] 3 Laboratoire LuMin, FRE CNRS 2036, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, F-91405 Orsay CEDEX, France 4 Département de Chimie, UFR des Sciences, Université de Versailles Saint-Quentin-en-Yvelines, F-78035 Versailles, France * Correspondence: [email protected] (F.D.); [email protected] (C.R.M.); Tel.: +33-0491289059 (F.D.) Received: 25 February 2020; Accepted: 13 March 2020; Published: 18 March 2020 Abstract: The great affinity of gold surface for numerous electron-donating groups has largely contributed to the rapid development of functionalized gold nanoparticles (Au-NPs). In the last years, a new subclass of nanocomposite has emerged, based on the association of inorganic molecular entities (IME) with Au-NPs. This highly extended and diversified subclass was promoted by the synergy between the intrinsic properties of the shell and the gold core. This review—divided into four main parts—focuses on an introductory section of the basic notions related to the stabilization of gold nanoparticles and defines in a second part the key role played by the functionalizing agent. Then, we present a wide range of inorganic molecular entities used to prepare these nanocomposites (NCs). In particular, we focus on four different types of inorganic systems, their topologies, and their current applications.
    [Show full text]
  • Functionalization of Gold Nanoparticles by Inorganic Entities Frédéric Dumur, Eddy Dumas, Cédric Mayer
    Functionalization of Gold Nanoparticles by Inorganic Entities Frédéric Dumur, Eddy Dumas, Cédric Mayer To cite this version: Frédéric Dumur, Eddy Dumas, Cédric Mayer. Functionalization of Gold Nanoparticles by Inorganic Entities. Nanomaterials, MDPI, 2020, 10 (3), pp.548. 10.3390/nano10030548. hal-02542642 HAL Id: hal-02542642 https://hal.archives-ouvertes.fr/hal-02542642 Submitted on 1 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Review Functionalization of Gold Nanoparticles by Inorganic Entities Frédéric Dumur 1,*, Eddy Dumas 2 and Cédric R. Mayer 3,4 1 Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France 2 Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, F-78035 Versailles, France 3 Laboratoire LuMin, FRE CNRS 2036, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris- Saclay, F-91405 Orsay CEDEX, France 4 Département de Chimie, UFR des Sciences, Université de Versailles Saint-Quentin-en-Yvelines, F-78035 Versailles, France * Correspondence: [email protected]; Tel.: +33-0491289059 Received: 25 February 2020; Accepted: 13 March 2020; Published: 18 March 2020 Abstract: The great affinity of gold surface for numerous electron-donating groups has largely contributed to the rapid development of functionalized gold nanoparticles (Au-NPs).
    [Show full text]
  • Gold, Silver and Platinum Nanoparticles: from New Synthetic
    Adrián Fernández Lodeiro Gold, Silver and Platinum Nanoparticles: From New Synthetic Routes to Sensing, Catalysis and Bio-Applications Dissertação para a obtenção do Grau de Doutor em Química Sustentável Orientador Doutor José Luís Capelo Martínez Professor Associado com Agregação Faculdade de Ciências e Tecnologia (FCT) Universidade Nova de Lisboa (UNL), Portugal Co-Orientadores Doutora Julia Lorenzo Rivera Visiting Professor, Universitat Autònoma de Barcelona, UAB, Spain Doutor Hugo Miguel Baptista Carreira dos Santos Investigador Auxiliar, FCT Investigator Programme, FCT, UNL, Portugal Júri Presidente Prof. Doutor Manuel Luís De Magalhães Nunes Da Ponte Vogais Prof. Doutor Gilberto Paulo Peixoto Igrejas Prof. Doutor José Luís Capelo Martínez Prof. Doutor Jorge Pérez Juste Doutora Elisabete De Jesus Oliveira Marques March - 2019 Adrián Fernández Lodeiro Gold, Silver and Platinum Nanoparticles: From New Synthetic Routes to Sensing, Catalysis and Bio-Applications Dissertação para a obtenção do Grau de Doutor em Química Sustentável (Sustainable Chemistry) Orientador Doutor José Luís Capelo Martínez Professor Associado com Agregação Faculdade de Ciências e Tecnologia (FCT) Universidade Nova de Lisboa (UNL), Portugal Co-Orientadores Doutora Julia Lorenzo Rivera Visiting Professor, Universitat Autònoma de Barcelona, UAB, Spain Doutor Hugo Miguel Baptista Carreira dos Santos Investigador Auxiliar, FCT Investigator Programme, FCT, UNL, Portugal Júri Presidente Prof. Doutor Manuel Luís De Magalhães Nunes Da Ponte Vogais Prof. Doutor Gilberto
    [Show full text]
  • Down Strategy Towards Monodisperse Colloidal Lead Sulphide Quantum Dots
    ARTICLE Received 16 Oct 2012 | Accepted 21 Feb 2013 | Published 16 Apr 2013 DOI: 10.1038/ncomms2637 A top–down strategy towards monodisperse colloidal lead sulphide quantum dots Jing Yang1, Tao Ling1, Wen-Tian Wu1, Hui Liu1, Min-Rui Gao1, Chen Ling1, Lan Li2 & Xi-Wen Du1 Monodisperse colloidal quantum dots with size dispersions o10% are of great importance in realizing functionality manipulation, as well as building advanced devices, and have been normally synthesized via ‘bottom–up’ colloidal chemistry. Here we report a facile and environmentally friendly ‘top–down’ strategy towards highly crystalline monodisperse colloidal PbS quantum dots with controllable sizes and narrow dispersions 5.5%oso9.1%, based on laser irradiation of a suspension of polydisperse PbS nanocrystals with larger sizes. The colloidal quantum dots demonstrate size-tunable near-infrared photoluminescence, and self-assemble into well-ordered two-dimensional or three-dimensional superlattices due to the small degree of polydispersity and surface capping of 1-dodecanethiol, not only serving as a surfactant but also a sulphur source. The acquisition of monodisperse colloidal PbS quantum dots is ascribed to both the quantum-confinement effect of quantum dots and the size-selective-vaporization effect of the millisecond pulse laser with monochromaticity and low intensity. 1 Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China. 2 Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Institute of Material Physics, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, People’s Republic of China.
    [Show full text]
  • Fluorescent Fullerene Nanoparticle-Based Lateral Flow Immunochromatographic Assay for Rapid Quantitative Detection of C-Reactive
    Park et al. Nano Convergence (2019) 6:35 https://doi.org/10.1186/s40580-019-0207-0 RESEARCH Open Access Fluorescent fullerene nanoparticle-based lateral fow immunochromatographic assay for rapid quantitative detection of C-reactive protein Kyung Mi Park1, Da Jung Chung1, Mijin Choi1, Taejoon Kang2,3* and Jinyoung Jeong3,4* Abstract A fuorescent fullerene nanoparticle (NP)-based lateral fow immunochromatographic assay (LFIA) was developed for the rapid and quantitative detection of C-reactive protein (CRP) in serum. The polyclonal CRP-antibody-conjugated fullerene NPs were simply prepared by 1-ethyl-3-(3-dimethyllaminopropyl)-carbodiimide hydrochloride coupling after carboxylation of fuorescent fullerene NPs. By applying the CRP-antibody-conjugated fullerene NPs to a lateral fow test strip, quantitative analysis of CRP in serum was possible at a concentration range of 0.1–10 ng/ml within 15 min. We anticipate that this novel fuorescent fullerene NP-based LFIA can be useful for the rapid and accurate sensing of biological and chemical species, contributing to the disease diagnosis and prognosis, environmental monitoring, and food safety. Keywords: Fullerene, Nanoparticle, C-reactive protein, Lateral fow immunochromatographic assay, Fluorescence 1 Introduction sensitive and quantitative analyses of molecules even at Te lateral fow immunochromatographic assay (LFIA) low analyte concentrations, challenges remain in terms is a common technique for the detection of such diverse of material preparation, functionalization of the materi- analytes as hormones, disease-related biomarkers, and als for efcient conjugation of the target molecules, and toxins in the clinical, environmental, and food industry optimization of sensing conditions on a lateral fow assay. felds, because of its simplicity and rapidity [1–8].
    [Show full text]
  • Fabrication of Nanostructures by Hydroxylamine Seeding of Gold Nanoparticle Templates
    Langmuir 2001, 17, 1713-1718 1713 Fabrication of Nanostructures by Hydroxylamine Seeding of Gold Nanoparticle Templates Sheffer Meltzer, Roland Resch, Bruce E. Koel,* Mark E. Thompson, Anupam Madhukar, Aristides A. G. Requicha, and Peter Will Laboratory for Molecular Robotics, University of Southern California, 37th Street, University Park, Los Angeles, California 90089-0482 Received August 14, 2000. In Final Form: December 18, 2000 Hydroxylamine-seeding of colloidal gold particles has been used to fabricate gold nanostructures on a SiO2 substrate. Gold nanoparticles (15 nm diameter) were randomly deposited on a SiO2 surface that had been modified with aminopropyltrimethoxysilane (APTS). The nanoparticles were then manipulated using a scanning force microscope (SFM) tip to produce 1-D templates for gold deposition. We demonstrate the utility of this approach by fabricating a gold nanowire by using 13 nanoparticles as a template. The junction between joined (coated) particles was examined by mechanical manipulation, and homogeneous deposition was shown to form stable structures. This approach was also used to fabricate nanostructures in a small gap between two gold electrodes. Particles were pushed into the gap, and then gold deposition was used to “connect” the particles and electrodes. Although the particular structure tested was not electrically connected to the electrode, we suggest that this approach will be useful in tackling the difficult problems associated with electrically connecting nano- to microscale structures. Introduction Another approach for nanostructuring is the use of well- defined structures as templates. It is possible to use The fabrication of nanostructures is being pursued with inherent surface structures, e.g., atomic steps, recon- increasing interest and activity in chemistry, physics, 1 2 struction sites, and grain boundaries, as templates.
    [Show full text]