Membership Benefits

Total Page:16

File Type:pdf, Size:1020Kb

Membership Benefits MEMBERSHIP BENEFITS MEMBERSHIP BENEFITS MEMBERSHIP OVERVIEW Commercial Spaceflight Federation (CSF) member organizations include commercial spaceflight developers, operators, and spaceports, as well as suppliers and service providers supporting commercial spaceflight. The mission of the Commercial Spaceflight Federation, headquartered in Washington, D.C., is to promote the development of commercial human spaceflight, pursue ever higher levels of safety, and share best practices and expertise throughout the industry. BENEFITS OF MEMBERSHIP ! Access to semiannual, closed-door Members Meetings and other summits ! Input on regulatory, safety, and strategic engagement with agencies and Congress ! Policy and legislative advocacy to increase funding for government initiatives that benefit the commercial space industry ! Regular briefings and email updates on emerging developments ! Business development opportunities with industry CEOs at closed meetings ! Coordinated outreach to the public, media, DoD, NASA, researchers, and other industry stakeholders on a consistent basis ! Your institution’s logo included on the website and at events ! Access to CSF’s significant staff expertise 1 www.commercialspaceflight.org TYPES OF MEMBERSHIP & AFFILIATIONS 1. Executive Members • Includes commercial spaceflight developers, operators, and spaceports • Confers all membership benefits listed above as well as a seat on the CSF Board of Directors and access to the Executive Sessions of our members meetings 2. Associate Members • Includes suppliers supporting commercial spaceflight, such as providers of mission support services, training services, or system components, as well as other companies and nonprofits active in commercial spaceflight • Confers all membership benefits listed above as well as eligibility to be nominated for one of two Board of Directors positions reserved for Associate Members 3. Research and Education Mission (REM) Affiliates • Universities and educational nonprofits are eligible to be Research and Education Mission (REM) Affiliates • While REM Affiliates do not have access to any portion of the CSF Members Meetings they receive other benefits, including a quarterly call and newsletter, access to CSF staff expertise, and regular industry updates 2 www.commercialspaceflight.org CURRENT MEMBERS AND AFFILIATES EXECUTIVE MEMBERS Alaska Aerospace Corporation Sierra Nevada Corporation Bigelow Aerospace Southwest Research Institute Blue Origin Space Adventures Jacksonville - Cecil Field Spaceport Space Florida Masten Space Systems Spaceport America Mojave Spaceport SpaceX Moon Express Virgin Galactic Orbital Outfitters Virginia Commercial Space Flight Authority Paragon Space Development Corporation XCOR Aerospace Planetary Resources ASSOCIATE MEMBERS ARES Corporation InterFlight Global Qwaltec ASRC Federal Jacobs Technology RS&H Arizona State University Logyx S3 USA Holdings Barrios Technology MDA Corporation Scaled Composites BRPH Midland Development Space Coast Spaceflight Colorado Space Coalition Corporation Alliance David Clark Company Near Space Corporation Spaceflight Services ETC – NASTAR Center ORBITEC Spaceport Sweden Golden Spike Company Penn State Applied Research Waypoint 2 Space Griffin Communications Laboratory World View Enterprises Heinlein Prize Trust QinetiQ North America X Prize Foundation Houston Airport System RESEARCH AND EDUCATION MISSION (REM) AFFILIATES Astronauts4Hire SVSC Embry-Riddle Aeronautical University The Museum of Flight Iowa State University University of Central Florida Metropolitan State University of Denver Wichita State University National Institute for Purdue University Aviation Research Rice Space Institute 3 www.commercialspaceflight.org MAJOR CSF ACTIVITIES • Principals meetings, CSF committee meetings, and other closed-door events • Events, meetings, and appearances to promote policies and programs necessary for the industry to flourish • Engagement with agencies that affect the industry • Coordination of communications with policy makers and the public on industry events and developments • Creation of consensus standards for the industry APPLY FOR MEMBERSHIP For all membership inquiries and applications, please contact: Sirisha Bandla Associate Director, Commercial Spaceflight Federation Email: [email protected] Office: (202) 715-2928 4 www.commercialspaceflight.org CSF RECENT ACCOMPLISHMENTS CSF submitted comments to the State Department regarding the proposed revision of Category XV of the United States Munitions List, which would keep spacecraft that are “man-rated sub-orbital, orbital, lunar, interplanetary or habitat” under the purview of ITAR. CSF recommended that this provision be stricken in its entirety, and is continuing to work with the agencies involved on the reform of commercial spacecraft captured under ITAR by USML rules. Supported the passage of legislation to provide regulatory stability to growing industry. The new law’s provisions extend the FAA “learning period” for spaceflight regulation through 2015. Helped guide NASA’s Space Technology Roadmap process by providing input from CSF companies on technologies they are developing, would like to develop, or would like to partner with NASA to develop. Provided support and feedback regarding FAA regulations and activities by working with members to provide feedback on implementation of FAA regulations and to provide advice to FAA/AST. Most recently, CSF submitted comments to the FCC on its NPRM for commercial launch spectrum. Responded to NASA’s Commercial Crew RFI on technical and regulatory issues. In conjunction with member companies, prepared and submitted a ten-page response to NASA’s Commercial Crew and Human-Rating Requirements RFI. CSF provided feedback on NASA's Office of Strategy Formulation's draft report on identifying areas for potential partnerships with industry for space technology. CSF has entered into a partnership with the Conrad Foundation's Spirit of Innovation Challenge. This is a program that challenges students from around the world to use STEM to develop innovative products and services that can benefit the world. CSF membership voted to approve its first voluntary standard on propellant handling. The Federation’s Technical Standards Committee continues to collaborate on the creation of several other standards. 5 www.commercialspaceflight.org CSF ONGOING ACTIVITIES Advocating for regulatory improvements and extensions for government risk-sharing for launch companies by working with Congress to create a long-term solution – CSF endorsed the House's passed version of the bill, which provides a three-year extension of the risk-sharing regime. Creating a consensus between Congress and NASA on the Commercial Crew Program — CSF is pursuing the highest funding for CCP in accordance with the President’s budget request of $848 million for in FY15, and also opposes bill language requiring NASA to downselect to one commercial partner for the next phase of CCP. Supporting innovative NASA programs such as the Commercial Crew Program and the Space Technology Program, that create new capabilities for NASA so it can reach farther on a limited budget. Promoting commercial spaceflight via growing range of media outlets – CSF staff are now quoted by the Associated Press, MSNBC, New York Times, LA Times, BBC, Orlando Sentinel, Florida Today, Space News, Aviation Week, and many other publications. Developing a process for creating, amending, enacting and using voluntary safety standards on several topics. Increasing awareness among scientists and educators of the potential of suborbital vehicles through the Suborbital Applications Researchers Group (SARG) – Members of SARG convene in Washington to meet with both congressional staff members and NASA officials to discuss suborbital science, research, and technology development on new platforms. Educating policymakers and program managers, under the auspices of the Suborbital Coalition, to draw attention to the Coalition website at www.suborbitalcoalition.org, which offers resources for people interested in the field. Engaging with senior White House and NASA officials to provide the industry a voice within the government. 6 www.commercialspaceflight.org RECENT INDUSTRY ACCOMPLISHMENTS ORBITAL SPACEFLIGHT NASA awarded Commercial Crew Transportation Capability (CCtCap) contracts to SpaceX and Boeing towards the development of domestic space transportation capabilities for NASA astronauts. Both companies were awarded fixed-price contracts totaling $6.8 billion to complete development, certify, and launch their respective vehicles. Blue Origin introduced a scale model of its 550,000-pound-thrust BE-4 engine, which will be powered by liquefied natural gas and liquid oxygen. The BE-4 engine will be used to power the United Launch Alliance’s Atlas rockets. Sierra Nevada Corporation announced cooperative agreements with the European Space Agency and the German Aerospace Center on potential applications of European technologies to its current Dream Chaser design. SpaceX successfully launched the AsiaSat 6 satellite to geosynchronous transfer orbit on its Falcon 9 rocket; marking the second time in a month that SpaceX successfully delivered a payload for AsiaSat. 7 www.commercialspaceflight.org RECENT INDUSTRY ACCOMPLISHMENTS SUBORBITAL SPACEFLIGHT Virgin Galactic's SpaceShipTwo reached supersonic speeds of Mach 1.43 in the ship’s second supersonic flight test. In its third powered flight test, the vehicle attained a maximum altitude of 71,000 feet (21,641
Recommended publications
  • Commercial Space Transportation Advisory Committee (COMSTAC
    COMMERCIAL SPACE TRANSPORTATIONFAA/AST Staff ADVISORY COMMITTEE October 2020 Membership Major General James Armor, USAF (Ret) CEO, The Armor Group Ms. Sharon L. Pinkerton Senior Vice President, Legislative and Regulatory Policy Dr. Greg Autry Airlines for America Vice President of Space Development National Space Society Mr. Lee Rosen Vice President of Customer Operations and Integration Mr. Bill Beckman Space Exploration Technologies Director, NASA Programs The Boeing Company Ms. Robbie Sabathier Vice President, Government Operations & Strategic Communications Major General Edward L. Bolton, USAF (Ret) United Launch Alliance Former FAA Assistant Administrator Mr. Eric Stallmer Hon. Shana Dale President Board Member Commercial Spaceflight Federation Firefly Black, LLC Ms. Charity Weeden Mr. Paul E. Damphousse Vice President of Global Space Policy Vice President of Business Development Astroscale U.S., Inc. Calspan Holdings, LLC Ms. Ann Zulkosky Dr. Mary Lynne Dittmar Director President & CEO Lockheed Martin Corporation The Coalition for Deep Space Exploration Ms. Karina Drees CEO and General Manager Mojave Air and Space Port Mr. Mike French Vice President, Space Systems Aerospace Industries Association Mr. Christopher C. Hassler President & CEO Syndetics Inc. Mr. Dale Ketcham Vice President, Government & External Relations Space Florida Ms. Kate Kronmiller Vice President of Government Relations Jacobs Mr. Steven Lindsey Senior Vice President of Strategy and Programs Sierra Nevada Corporation Space Systems Mr. Mike Moses President Virgin Galactic Mr. Clay Mowry Vice President, Sales, Marketing & Customer Experience Blue Origin Mr. Dale K. Nash CEO and Executive Director Virginia Commercial Space Flight Authority .
    [Show full text]
  • 2017 State of the System Report
    2017 STATE OF THE SYSTEM 2017 State of the System Report Space Coast Transportation Planning Organization Brevard County, Florida Prepared By: Kittelson & Associates, Inc. 225 E. Robinson Street, Suite 355 Orlando, FL 32801 (407) 540-0555 Project No. 20741.02 October 2018 i The preparation of this report has been financed in part through grant(s) from the Federal Highway Administration and Federal Transit Administration, U.S. Department of Transportation, under the State Planning and Research Program, Section 505 [or Metropolitan Planning Program, Section 104(f)] of Title 23, U.S. Code. The contents of this report do not necessarily reflect the official views or policy of the U.S. Department of Transportation. ii TABLE OF CONTENTS Executive Summary ...................................................................................................................................... ix Countywide Performance Measures ........................................................................................................................................... ix Countywide Trends ..................................................................................................................................................................... ix Countywide Safety ....................................................................................................................................................................... x Introduction…………….. ..................................................................................................................................
    [Show full text]
  • The Space Race Continues
    The Space Race Continues The Evolution of Space Tourism from Novelty to Opportunity Matthew D. Melville, Vice President Shira Amrany, Consulting and Valuation Analyst HVS GLOBAL HOSPITALITY SERVICES 369 Willis Avenue Mineola, NY 11501 USA Tel: +1 516 248-8828 Fax: +1 516 742-3059 June 2009 NORTH AMERICA - Atlanta | Boston | Boulder | Chicago | Dallas | Denver | Mexico City | Miami | New York | Newport, RI | San Francisco | Toronto | Vancouver | Washington, D.C. | EUROPE - Athens | London | Madrid | Moscow | ASIA - 1 Beijing | Hong Kong | Mumbai | New Delhi | Shanghai | Singapore | SOUTH AMERICA - Buenos Aires | São Paulo | MIDDLE EAST - Dubai HVS Global Hospitality Services The Space Race Continues At a space business forum in June 2008, Dr. George C. Nield, Associate Administrator for Commercial Space Transportation at the Federal Aviation Administration (FAA), addressed the future of commercial space travel: “There is tangible work underway by a number of companies aiming for space, partly because of their dreams, but primarily because they are confident it can be done by the private sector and it can be done at a profit.” Indeed, private companies and entrepreneurs are currently aiming to make this dream a reality. While the current economic downturn will likely slow industry progress, space tourism, currently in its infancy, is poised to become a significant part of the hospitality industry. Unlike the space race of the 1950s and 1960s between the United States and the former Soviet Union, the current rivalry is not defined on a national level, but by a collection of first-mover entrepreneurs that are working to define the industry and position it for long- term profitability.
    [Show full text]
  • Computational Fluid Dynamic Analysis of Scaled Hypersonic Re-Entry Vehicles
    Computational Fluid Dynamic Analysis of Scaled Hypersonic Re-Entry Vehicles A project presented to The Faculty of the Department of Aerospace Engineering San Jose State University In partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering by Simon H.B. Sorensen March 2019 approved by Dr. Periklis Papadopoulous Faculty Advisor 1 i ABSTRACT With the advancement of technology in space, reusable re-entry space planes have become a focus point with their ability to save materials and utilize existing flight data. Their ability to not only supply materials to space stations or deploy satellites, but also in atmosphere flight makes them versatile in their deployment and recovery. The existing design of vehicles such as the Space Shuttle Orbiter and X-37 Orbital Test Vehicle can be used to observe the effects of scaling existing vehicle geometry and how it would operate in identical conditions to the full-size vehicle. These scaled vehicles, if viable, would provide additional options depending on mission parameters without losing the advantages of reusable re-entry space planes. 2 Table of Contents Abstract . i Nomenclature . .1 1. Introduction. .1 2. Literature Review. 2 2.1 Space Shuttle Orbiter. 2 2.2 X-37 Orbital Test Vehicle. 3 3. Assumptions & Equations. 3 3.1 Assumptions. 3 3.2 Equations to Solve. 4 4. Methodology. 5 5. Base Sized Vehicles. 5 5.1 Space Shuttle Orbiter. 5 5.2 X-37. 9 6. Scaled Vehicles. 11 7. Simulations. 12 7.1 Initial Conditions. 12 7.2 Initial Test Utilizing X-37. .13 7.3 X-37 OTV.
    [Show full text]
  • University of Central Florida Is First to Conduct Microgravity Research Via Nanoracks on ISS, and in Suborbital Space, Via Blue Origin
    University of Central Florida is First to Conduct Microgravity Research via NanoRacks on ISS, and in suborbital space, via Blue Origin April 13, 2016-Webster, TX—Researchers at the University of Central Florida (UCF) have become the first- ever team to experiment on both NanoRacks’ commercial research lab onboard the International Space Station (ISS) and in suborbital space on Blue Origin’s New Shepard space vehicle. The UCF team, lead by physics professor and Assistant Director of the Florida Space Institute, Dr. Josh Colwell, is conducting this in-space research as part of a broad research program to understand the early stages of planet formation, the surfaces of asteroids, and the evolution of planetary rings. NanoRocks, an experiment launched via NanoRacks on SpaceX-4 in 2014, has been studying particle collisions to better understand how developing planets get from just centimeters across to much larger objects, known as planetesimals, which are able to gravitationally attract to each other and form full size planets. NanoRocks was a winner of the Space Florida ISS Research Competition, and is now scheduled to return to Earth on SpaceX-8 Dragon. COLLIDE, launched on Blue Origin’s fourth mission, explores phenomena that are masked or suppressed by Earth’s gravity. In free-fall, UCF is able to explore collisions such as those in the early stages of planet formation, and the behavior of space dust on small asteroids and moons that have a much weaker gravitational pull than Earth. NanoRacks is thrilled to be involved with Dr. Colwell’s team as a flagship program exploring long term- microgravity exposure on ISS, and hopes to be involved with the team as they continue to explore in suborbital and orbital space.
    [Show full text]
  • Program Information & Resources
    Space Transportation Infrastructure Matching Fund Program Information & Resources For Projects Starting Florida Fiscal Year 2023 – 2027 (July 1, 2022 to June 30, 2027) 1 Introduction 2 Tentative Schedule 3 Goals & Objectives 4 Statutory Requirements and Policy Mandates 5 Definitions 6 Project Eligibility Memo 1 Introduction The Space Transportation Infrastructure Matching Fund Application is used to solicit proposals to continue the development of space transportation infrastructure that supports Space Florida’s legislative intent and Florida spaceport territory master plans. Space Florida is designated in section 331.3011(3), Florida Statutes, to be the “single point of contact for state aerospace-related activities with federal agencies, the military, state agencies, businesses, and the private sector.” Space Florida will use the qualifying applications to develop a proposed list of spaceport discretionary capacity improvement projects for submission to the Florida Department of Transportation (FDOT). Priorities are based on the 2018 Florida Spaceport System Plan, which reflects a sustainability framework to guide public and private investment into Florida’s emerging and growing aerospace sector. Like other transportation modes, FDOT encourages spaceports to use Spaceport Improvement Program funds for projects that ensure financial sustainability and place a priority on projects that are common use and used by multiple partners. Prioritized spaceport projects may be included in the FDOT five-year work program of transportation improvement projects. The application is mandatory before Space Florida can prioritize candidate projects for available funding. Projects are evaluated primarily on the following characteristics and applicants should address these items in their narrative: 1. Long term commitment to the State of Florida 2.
    [Show full text]
  • Official MISSION KIT We Will Turn Our Faces to the Sun, and Our Dreams to the Stars
    official MISSION KIT We will turn our faces to the sun, and our dreams to the stars. We will take selfies with America’s icons, and shake hands with its heroes. We will marvel at humanity’s past, and glimpse AT what its future holds. We will explore everything from the Atlantic to Atlantis, stopping only to watch the sun go down and the rockets go up. Most of all, we will collect experiences just as surely as we collect shells. Because we are Vacationauts. And in Florida, more than anywhere else in the world, wE ARE GO. MEDIA CONTACTS Florida: Tara Tufo, 646.468.8834, [email protected] NYC: Terry Preston, 917.494.5313, [email protected] BE A VACATIONAUT! 4 MULTI-MEDIA CAMPAIGN 7 The VACATIONAUT COMMUNITY 8 BADGES, RANKS and MORE 13 DESTINATION SPACE: COLLECTIBLE POSTERS 25 The FUTURE of SPACE TOURISM is NEAR 28 KNOW Your LAUNCH VEHICLES 30 SPACE TIMELINE 32 The WORLD’S GATEWAY to SPACE 35 ATLANTIC to ATLANTIS 36 ABOUT WE ARE GO 39 ABOUT SPACE FLORIDA 40 ABOUT PARADISE ADVERTISING 43 All DIGITAL ASSETS ARE LOCATED ON ENCLOSED USB CARD 3 BE A VACATIONAUT! The quest to explore space has inspired countless generations, and this pursuit is still alive and thriving in Florida — America’s iconic launch pad to the stars. The desire to break one’s earthly bonds is the foundation of We Are Go’s new Vacationauts campaign. 4 We Are Go, Space Florida’s consumer facing brand, is looking for the next generation of recreational space explorers — the Vacationauts! Their mission is to make space a part of their epic Florida vacation.
    [Show full text]
  • Overview of Dream Chaser Space Vehicle
    Overview of Dream Chaser Space Vehicle 2018 Exploration Masters Contest © 2018 Sierra Nevada Corporation 1 Sierra Nevada Corporation’s Space Systems A Legacy of Flight Heritage and Innovation Proven Experience • 30 year of spaceflight heritage • 450 space missions supported • 4,000 products delivered on-orbit • Launching products ~every 3 weeks • 70+ successful NASA missions • Supplier to nearly all flagship and interplanetary NASA missions • Providing cargo services to the International Space Station under NASA resupply contract © 2018 Sierra Nevada Corporation 2 Dream Chaser Space Vehicle • Only runway-landing Space Vehicle actively in development • Capable of landing at spaceports and airports that can accommodate large commercial planes Credit: NASA • Crewed or uncrewed transportation to and from Low Crewed Dream Chaser Earth Orbit (LEO) • Non-toxic propulsion for launch abort, orbital translations, attitude control, deorbit • < 1.5g re-entry profile and >1,500 km cross-range capability • Designed to launch on a variety of launch vehicles Uncrewed Dream Chaser © 2018 Sierra Nevada Corporation 3 © 2018 Sierra Nevada Corporation 4 4 History: Dream Chaser Program • 1982-84: ½ scale Russian BOR-4 orbital flights • Recovery photographed by Australian Royal Air Force P-3 Orion aircraft • 1983-95: NASA Langley development of HL-20 (based on BOR-4 images) • 2005-10: SpaceDev (later acquired by SNC) modified the HL-20 into the Dream Chaser spacecraft • 2010-14: SNC awarded NASA’s CCDev 1, CCDev2, CCiCap and CPC contracts to continue development
    [Show full text]
  • Effects of Space Exploration ​ Objective: Students Will Be Able To: 1
    Lesson Topic: Effects of Space Exploration ​ Objective: Students will be able to: 1. Identify and describe how space exploration affects the state of Florida. 2. Describe the nature of the Kennedy Space Center. 3. Identify the components of a space shuttle 4. Apply the importance of space exploration to the Florida culture through design. Time Required: 75 minutes ​ Materials Needed: ● Teacher computer with internet access ● Projector/Smartboard ● 1 computer/laptop/iPad per student with internet access ● Effects of Space Exploration handout (attached) ● Space Exploration Video: Escape Velocity - A Quick History of Space Exploration ​ ● Space Shuttle Website: Human Space Flight (HSF) - Space Shuttle ​ ● Kennedy Space Center Website: Visit Kennedy Space Center Visitor Complex at ​ Cape Canaveral ● Coloring pencils/Markers Teacher Preparation: ● Assign a Legends of Learning Content Review Quick Play playlist for the day(s) you ​ ​ will be teaching the lesson. ○ Content Review - Middle School - Effects of Space Exploration ● Make copies of Effects of Space Exploration Worksheet (1 per student) Engage (10 minutes): 1. Pass out the Effects of Space Exploration Handout. 2. Ask students “What do you know about space exploration? a. Draw the words “Space Exploration” on the board with a circle around it. i. As students share their answers write their answers on the board and link them to the Space Exploration circle with a line. 3. Tell students “We are going to watch a short video about the history of space exploration and how it has evolved over time. In the space provided on the handout, jot down any notes that you find interesting or important. 4.
    [Show full text]
  • A Pictorial History of Rockets
    he mighty space rockets of today are the result A Pictorial Tof more than 2,000 years of invention, experi- mentation, and discovery. First by observation and inspiration and then by methodical research, the History of foundations for modern rocketry were laid. Rockets Building upon the experience of two millennia, new rockets will expand human presence in space back to the Moon and Mars. These new rockets will be versatile. They will support Earth orbital missions, such as the International Space Station, and off- world missions millions of kilometers from home. Already, travel to the stars is possible. Robotic spacecraft are on their way into interstellar space as you read this. Someday, they will be followed by human explorers. Often lost in the shadows of time, early rocket pioneers “pushed the envelope” by creating rocket- propelled devices for land, sea, air, and space. When the scientific principles governing motion were discovered, rockets graduated from toys and novelties to serious devices for commerce, war, travel, and research. This work led to many of the most amazing discoveries of our time. The vignettes that follow provide a small sampling of stories from the history of rockets. They form a rocket time line that includes critical developments and interesting sidelines. In some cases, one story leads to another, and in others, the stories are inter- esting diversions from the path. They portray the inspirations that ultimately led to us taking our first steps into outer space. NASA’s new Space Launch System (SLS), commercial launch systems, and the rockets that follow owe much of their success to the accomplishments presented here.
    [Show full text]
  • The New American Space Age: a Progress Report on Human Spaceflight the New American Space Age: a Progress Report on Human Spaceflight the International Space
    The New American Space Age: A PROGRESS REPORT ON HUMAN SpaCEFLIGHT The New American Space Age: A Progress Report on Human Spaceflight The International Space Station: the largest international scientific and engineering achievement in human history. The New American Space Age: A Progress Report on Human Spaceflight Lately, it seems the public cannot get enough of space! The recent hit movie “Gravity” not only won 7 Academy Awards – it was a runaway box office success, no doubt inspiring young future scientists, engineers and mathematicians just as “2001: A Space Odyssey” did more than 40 years ago. “Cosmos,” a PBS series on the origins of the universe from the 1980s, has been updated to include the latest discoveries – and funded by a major television network in primetime. And let’s not forget the terrific online videos of science experiments from former International Space Station Commander Chris Hadfield that were viewed by millions of people online. Clearly, the American public is eager to carry the torch of space exploration again. Thankfully, NASA and the space industry are building a host of new vehicles that will do just that. American industry is hard at work developing new commercial transportation services to suborbital altitudes and even low Earth orbit. NASA and the space industry are also building vehicles to take astronauts beyond low Earth orbit for the first time since the Apollo program. Meanwhile, in the U.S. National Lab on the space station, unprecedented research in zero-g is paving the way for Earth breakthroughs in genetics, gerontology, new vaccines and much more.
    [Show full text]
  • ミルスペース 140730------[What’S New in Virtual Library?]
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -ミルスペース 140730- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - [What’s New in Virtual Library?] AW&ST Aviation Week & Space Technology Inside GNSS 140714AWST_Contents.pdf, Cover.jpg 1405&06InsideGNSS_Contents.pdf, Cover.jpg [What’s New in Real Library?] InsideGNSS May/June2014 収蔵。 [謝辞] JAXA 宇宙科学研より ISAS News 2014.7 No.400 寄贈、感謝。 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Jul. 30, 2014 (Wed.) mainichi.jp 米国は中国が衛星攻撃ミサイルをテストしたと述べる U.S. says China tested anti-satellite missile WASHINGTON (AP) -- The U.S. says China has tested a missile sustainability of the outer-space environment that all nations designed to destroy satellites and is urging Beijing to refrain from depend upon. China's state-run Xinhua (shihn-wah) news agency, destabilizing actions. State Department spokeswoman Marie Harf citing a Defense Ministry statement, reported a successful said the "non-destructive" test occurred Wednesday. She said a missile interception test conducted from land within Chinese previous destructive test of the system in 2007 created territory late Wednesday. Xinhua did not refer to it as an thousands of pieces of dangerous debris in space. Harf said anti-satellite system. It said such tests could strengthen Friday that the continued development and testing of destructive Chinese air defense against ballistic missiles. July 26, 2014(Mainichi anti-satellite systems threaten the long-term security and Japan) http://mainichi.jp/english/english/newsselect/news/20140726p2g00m0in022000c.html
    [Show full text]