Cited Euplassa Exception

Total Page:16

File Type:pdf, Size:1020Kb

Cited Euplassa Exception Acta Botanica Neerlandica 15 (1966) 117-129 Wood anatomy of the genus Euplassa and its relation to other Proteaceae of the Guianas and Brazil Alberta+M.W. Mennega (Botanical Museum and Herbarium, Utrecht) (received December 7th, 1965) Abstract Three of the Proteaceae the in genera belonging to tribe Grevilleeae occur the Guianas and Brazil: Roupala, Panopsis, and Euplassa. The microscopical wood of ofthese has been described structure one genera, Euplassa, not before. Anatomically it identical with proves to be nearly Panopsis which it also resembles in general in the properties. Roupala differs several respects. Within genera differences are fundamental and matter of dimensions. not chiefly a numbers and A key to the is genera given. The relation of these three the other of genera with two members the tribe in South America, Orites and Gevuina, is discussed. Introduction who With the exception of Manieri (1958) included one un- identified of species Adenostephanas (a synonym of Euplassa) in his key of the handbooks to the principal timbers of Brazil, none or publi- cations dealing with the anatomy of South or Central American woods mention the wood of Euplassa (Acosta-Solis, 1960; Basgope, 1962; Kribs, 1928; Record and Mell, 1924; Record and Hess, 1943; Williams, 1936) 1 ). Miss Chattaway (1948a) in her detailed study of the wood anatomy of the Proteaceae did not treat Euplassa, this considered genus not being to comprise any species developing into sizable trees. Neither did Metcalfe and Chalk (1950) give any about the in their of the As particulars genus account family. our material contains several samples of Euplassa from large forest trees from as well as samples small trees, it seemed interesting to study the wood of this genus and to compare its structure with that of other of the Grevilleeae. genera Furthermore it may be worth-while to note whether the results of comparison of the wood anatomy are in agreement with the views of the Johnson and Briggs (1963) on taxonomic interrelationship of the genera. Benoist the of t) (1931) cited Euplassa among genera the Proteaceae known French but he did of the wood of this from Guiana, not give a description genus the other nor of genera. 117 118 A. M. W. MENNEGA Material and methods All wood specimens studied have been collected with herbarium vouchers. Most of the herbarium specimens, either originals or in of the Institute duplicates, are the herbarium Utrecht [U]. Nearly all specimens from Brazil belong to collections identified by Sleumer (1954) and are cited in his treatment of the American Proteaceae; other specimens, mainly from Suriname and French Guiana, were identified by myself. The wood samples are cited fully with particulars about sizes the end of the of each tree at descriptions genus. microtome As far as possible the wood sections were prepared by Treatment without previous treatment except boiling. with hydro- for fluoric acid was necessary only Roupala. Stained and unstained In order sections as well as macerations were prepared. to make the of silica inclusions noticeable sections treated presence more were with crystalline phenol followed by eugenol. For of the testing burning qualities a match-size splinter was taken from the; heartwood. The of the with the terminology descriptions agrees partly Glossary of the International Association of Wood Anatomists (1957), and is partly adapted to the special needs of this family. For classification of numbers and dimensions the recommandations of the Council of the International Association of Wood Anatomists (1937, 1939) have been followed. Besides average data for numbers and sizes the gener- ally occurring lowest and highest figures have been added in brackets. Instead of the usual counting of the rays per mm on a tangential surface the uniseriates have been counted per sq. mm on a tangential section. of macerated For the drawings of elements material a camera of The lucida with a magnification 148 x was used. photographs of from the the transverse surfaces at 10 x magnification were made blocks used for sectioning. Anatomy of the family The main features of Proteaceous woods which can be observed by hand lens are: wide and several millimeters on all Rays very high, conspicuous surfaces; vessels partly in tangential multiples or in tangential chains, always in contact with parenchyma bands which are contiguous with vessels their abaxial the bands and the on sides; narrow, numerous, less with the side parallel, usually more or convex, concave facing broad the vessels the bark, running as festoons between the rays; broad 2 hardly ever in contact with the rays ). in of the three treated here and However, two genera (Euplassa the Panopsis) the characteristic pattern is less pronounced, because 2) For microscopical details, see the paragraph: Remarks on the anatomy. WOOD ANATOMY OF THE GENUS EUPLASSA 119 vessels are scarce and scattered, and the parenchyma bands, moreover, often of the and are independent pores nearly straight. No generic descriptions are included. Though the differences between the of be species one genus are not very important (as may concluded from the descriptions of the species), the discrepancy between the number of species studied and the actually known numbers as given by Sleumer (1954) does not seem to permit a detailed generic account. Roupala has 51 species, Panopsis 11, and Euplassa 20 species; of these 4, 2 and 4 respectively, were studied. The structural differences between the most important genera may be taken from the key. Key 1. Every parenchyma band associated with solitary vessels or vessel fibres thick-walled groups; very with extremely narrow lumen; intervascular 2-4 of vessel members 500 pits ji; average length u Roupala b. Parenchyma bands partly not associated with vessels; fibres moderately thick-walled with a lumen equal to or mostly ex- ceeding the thickness of the walls; intervascular pits medium- sized vessel members the 900 2 ; on average [i long 2.a. Uniseriate rays often over 6 cells high; parenchyma strands often consisting of 6 or 8 or more cells Panopsis 4 b. Uniseriates rarely over cells high; parenchyma strands mostly of 4 cells Euplassa Euplassa Salisb. Euplassa pinnata (Lam.) Johnst. (Plate I, fig. 1; Plate II, fig. 3; Plate III, A) (syn. Adenostephanus guianensis Meisn.) Heartwood pinkish brown, clearly differentiated from the cream- 1.5 3.5 wide the wide coloured, to cm sapwood; rays very conspicuous all on surfaces, producing a silvery ribbon pattern on radial surfaces; rather texture coarse; grain straight; volume weight 0.60-0.70; a of the heartwood burns in 4 of 5 in splinter out samples to grey ash, Uw 4722 to charcoal. Wood structure Growth rings: Absent. Vessels'. A variable percentage solitary, others in tangential pairs or tangential rows of 3-4 (7) or in small clusters, rarely in radial scattered pairs, though often with a tendency to tangential arrangement, 5 in on average (0-10) per sq. mm, in Uw 4722 more variable and some 9-18 places crowded, per sq. mm; cross-section roundish or oval with dimension least for vessels greatest tangentially, at solitary ; 120 A. M. W. MENNEGA diameter on 150 but rather variable tangential average (75-250) fx for various in the clusters often vessel elements the samples, narrower; 880 “tails” often of on average (690-1070) [x long, included, irregular horizontal form ; perforations usually large, nearly or slightly oblique, sometimes in the small in the narrow vessels as openings lateral intervascular walls; wall 5-7 [x thick; pits alternate, nearly round, 6-7 included; with resinous con- [x, apertures occasionally yellowish tents. the di- Tracheids : Often present, associated with vessel clusters, ameter 30-60 800-1000 fi, length /x. Fibre tissue: Walls moderately thick (5-8.5, fx), lumen always wider than the thickness of the walls, generally much wider, diameter fibre in Uw 5754 20-45 /x, length on average 2430 (1500-3850) fx, the 3350 with small borders and extended average length /x ; pits very slitlike ca. 7 numerous on radial and apertures, fx long, equally tangential walls. of Rays: Of two sizes: uniseriates, composed 1 to 2, or up to 4 the cells 100-160 square or upright cells, upright mostly /x axially; multiseriates 10-15 cells wide 325-450 and mostly (6—22) (or // up 800 7-8 in Uw 5754 1.5 to fx); mostly cm high, up to cm; composed of procumbent cells of variable sizes, radially elongated low cells with much shorter and almost irregularly mingled higher, square cells, in the on tangential sections widest cells often more numerous middle formed of a ray; sheath cells locally present; margins usually by one, 1-4 of the latter not occasionally rows square or upright cells, over 150 to vessels rather scarce as the are in contact /z high; pits rays rarely and with vessels, similar to the intervascular pits or larger elongate; cells often with reddish brown contents, which may be concentrated several with around silica bodies; in one sample (Uw 1905) rays sclerified cells Uniseriates 2-5 wide (Plate II, 3). per sq. mm, rays 8—10 per cm. Parenchyma: Predominantly banded, the bands partly associated characteristic with the vessels and vessel multiples in a very way them adjoining laterally and on the abaxial sides; the bands mostly width 1-2 (4) cells wide, running, one pore apart, fairly straight or curved between the few bands slightly large rays, a interrupted or tracheal be beside ending blindly; para parenchyma may present, with the cells the where the bands are contiguous vessels as a few on of adaxial sides of the vessels or as a vasicentric ring one cell layer; number of bands 7 strands variable, on average (5-10) per mm; mostly of4 (2-8) cells; pits to vessels half bordered, generally similar in much to the intervascular pits, part larger and elongate; cells often with brown contents, sometimes with small silica bodies.
Recommended publications
  • Finschia-"A Genus of "Nut" Trees of the Southwest Pacific
    Finschia-" A Genus of "Nut" Trees of the Southwest Pacific c. T. WHITE1 INTRODUCTION A PLANT FAMILY with a most interesting and F. Muell., Carnarvonia F. Muell., D arlin"gia F; intriguing distribution is Proteaceae, which finds Muell., Hollandaea F. Muell. (two spp.) , Mus­ its greatest development in Australia (650 " gravea F. Muell., and Placospermum White & species) on the one hand and South Africa (300 Francis. A surprising feature is the absence, species) on the other, though the two countries with the exception of one species in New Zea­ have no genera in common. Practically all the land, of the family "from Polynesia. South African species and the vast majority of There is in the islands of the southwest Paci­ "Australian ones are markedly xerophytic. The fic-Caroline Islands, New Guinea, Solomon largest genus, Greoillea R. Br., consists mainly Islands, and the New Hebrides-a group of trees of xerophytic shrubs or small trees but a few with the floral characters of Greuillea R. Br. are large trees found in the rain forests of and the fruit of Helicia Lour. These, I consider, tropical and subtropical eastern Australia, New all belong 'to Finschia Warb. This genus was Guinea, and New Caledonia. In the southwest founded by Warburg (1891: 297 ) on"a tree Pacific area the family finds its greatest develop­ from northeastern New Guinea. His original ment in northeastern Australia, where trees be­ description would cover Grevillea R. Br. exactly longing to it provide the great bulk of cabinet though he does not mention this genus and on timbers known in the trade as "Silky Oaks." the following page the distinctions he gives for There is close affinity between the Proteaceae of separating his proposed new genus from H elicia eastern Australia and of western South America are exactly those which distinguish Greuillea as illustrated by the genera Embothrium Forst.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Seed Dynamics and Seedling Establishment of Woody Species in the Tropical Savannas of Central Brazil (Cerrado) Ana A
    University of Miami Scholarly Repository Open Access Dissertations Electronic Theses and Dissertations 2010-04-08 Seed Dynamics and Seedling Establishment of Woody Species in the Tropical Savannas of Central Brazil (Cerrado) Ana A. Salazar Parra University of Miami, [email protected] Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_dissertations Recommended Citation Salazar Parra, Ana A., "Seed Dynamics and Seedling Establishment of Woody Species in the Tropical Savannas of Central Brazil (Cerrado)" (2010). Open Access Dissertations. 371. https://scholarlyrepository.miami.edu/oa_dissertations/371 This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact [email protected]. UNIVERSITY OF MIAMI SEED DYNAMICS AND SEEDLING ESTABLISHMENT OF WOODY SPECIES IN THE TROPICAL SAVANNAS OF CENTRAL BRAZIL (CERRADO) By Ana A. Salazar Parra A DISSERTATION Submitted to the Faculty of the University of Miami in partial fulfillment of the requirements for the degree of Doctor of Philosophy Coral Gables, Florida May 2010 ©2010 Ana A. Salazar Parra All Rights Reserved UNIVERSITY OF MIAMI A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy SEED DYNAMICS AND SEEDLING ESTABLISHMENT OF WOODY SPECIES IN THE TROPICAL SAVANNAS OF CENTRAL BRAZIL (CERRADO) Ana A. Salazar Parra Approved: ________________ _________________ Guillermo Goldstein, Ph.D. Terri A. Scandura, Ph.D. Professor of Biology Dean of the Graduate School ________________ _________________ David Janos, Ph.D. Leonel Sternberg, Ph.D.
    [Show full text]
  • Fossil Fruit of the Macadamieae (Proteaceae) in the Tertiary of Eastern Australia: Eureka Gen
    Memoirs of the Queensland Museum | Nature 55(1) © The State of Queensland (Queensland Museum) 2010 PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Editor in Chief. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site http://www.qm.qld.gov.au/About+Us/Publications/Memoirs+of+the+Queensland+Museum A Queensland Government Project Typeset at the Queensland Museum Fossil fruit of the Macadamieae (Proteaceae) in the Tertiary of eastern Australia: Eureka gen. nov. Mary E. DETTMANN H. Trevor CLIFFORD Queensland Museum, Geosciences, Hendra Facility, 122 Gerler Rd, Hendra, Qld 4011, Australia. Email: [email protected] Citation: Dettmann, M.E. & Clifford, H.T. 2010 03 15. Fossil fruit of the Macadamieae (Proteaceae) in the Tertiary of eastern Australia: Eureka gen. nov.. Memoirs of the Queensland Museum — Nature 55(1): 147-166. Brisbane. ISSN 0079-8835. Accepted: 13 October 2009. ABSTRACT Eureka gen. nov. is proposed to accommodate fossil fruits recovered from several mid- Tertiary (early Oligocene-Miocene) sites in eastern Australia. The type (E.
    [Show full text]
  • PROTEACEAE 山龙眼科 Shan Long Yan Ke Qiu Huaxing (邱华兴 Chiu Hua-Hsing, Kiu Hua-Xing)1; Peter H
    Flora of China 5: 192-199. 2003. PROTEACEAE 山龙眼科 shan long yan ke Qiu Huaxing (邱华兴 Chiu Hua-hsing, Kiu Hua-xing)1; Peter H. Weston2 Trees or shrubs. Stipules absent. Leaves alternate, rarely opposite or whorled, simple or variously divided. Inflorescences axillary, ramiflorous, cauliflorous, or terminal, simple or rarely compound, with flowers borne laterally either in pairs or sometimes singly, racemose, sometimes spicate, paniculate, or condensed into a head; bracts subtending flower pairs usually small, sometimes accrescent and woody; floral bracts usually minute or absent. Flowers bisexual or rarely unisexual and dioecious, actinomorphic or zygomorphic. Perianth segments (3 or)4(or 5), valvate, usually tubular in bud; limb short, variously split at anthesis. Stamens 4, opposite perianth segments; filaments usually adnate to perianth and not distinct; anthers basifixed, usually 2-loculed, longitudinally dehiscent, connective often prolonged. Hypogynous glands 4 (or 1–3 or absent), free or variously connate. Ovary superior, 1-loculed, sessile or stipitate; ovules 1 or 2(or more), pendulous, laterally or basally, rarely subapically attached. Style terminal, simple, often apically clavate; stigma terminal or lateral, mostly small. Fruit a follicle, achene, or drupe or drupaceous. Seeds 1 or 2(or few to many), sometimes winged; endosperm absent (or vestigial); embryo usually straight; cotyledons thin or thick and fleshy; radicle short, inferior. About 80 genera and ca. 1700 species: mostly in tropics and subtropics, especially in S Africa and Australia: three genera (one introduced) and 25 species (12 endemic, two introduced) in China. The family is subdivided into Bellendenoideae, Caranarvonioideae, Eidotheoideae, Grevilleoideae, Persoonioideae, Proteoideae, and Sphalmi- oideae; all Chinese genera belong to Grevilleoideae.
    [Show full text]
  • Pollen Morphology of Proteaceae Native to Argentina: a New Dichotomus Key for Their Identification
    Rev. Mus. Argentino Cienc. Nat., n.s. 19(1): 25-37, 2017 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Pollen morphology of Proteaceae native to Argentina: a new dichotomus key for their identification Damián Andrés FERNÁNDEZ Sección Paleopalinología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Av. A. Gallardo 470, C1405DJR Buenos Aires, Argentina. E-mail: [email protected]. Abstract: A dichotomous key for the identification of eight proteaceous species, native to Argentina, based on pollen morphology is presented. These species are: Embothrium coccineum, Gevuina avellana, Lomatia den- tata, L. ferruginea, L. hirsuta, Orites myrtoidea, Roupala meisneri and R. montana. The pollen morphology was analyzed with both, light and electron scanning microscopes. The morphological characters selected for species/ genera recognition are: ornamentation, pore number, equatorial diameter, the ratio of sexine/nexine thickness, and equatorial diameter/pore diameter ratio. Key words: Proteaceae, Argentina, palynology, dichotomous key. Resumen: Morfología polínica de las Proteaceae nativas de Argentina: una nueva clave dicotómi- ca para su identificación. Se presenta una clave dicotómica para la identificación de las ocho especies de Proteacea nativas de la Argentina. Las especies son: Embothrium coccineum, Gevuina avellana, Lomatia dentata, L. ferruginea, L. hirsuta, Orites myrtoidea, Roupala meisneri and R. montana. La morfología polínica fue analiza- da utilizando microscopio óptico y microscopio electrónico de barrido. Los caracteres morfológicos elegidos para reconocer las especies/géneros son: tipo de ornamentación, número de poros, diámetro ecuatorial, relación de espesor sexina/nexina y relación diámetro ecuatorial/diámetro de poro. Palabras clave: Proteaceae, Argentina, palinología, clave dicotómica. _____________ INTRODUCTION three tribes within Grevilleoideae (Embothrieae, Macadamieae, and Oriteae) are currently found The Proteaceae family comprises 83 gen- in Argentina.
    [Show full text]
  • Rates of Molecular Evolution and Diversification in Plants: Chloroplast
    Duchene and Bromham BMC Evolutionary Biology 2013, 13:65 http://www.biomedcentral.com/1471-2148/13/65 RESEARCH ARTICLE Open Access Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species-richness in the Proteaceae David Duchene* and Lindell Bromham Abstract Background: Many factors have been identified as correlates of the rate of molecular evolution, such as body size and generation length. Analysis of many molecular phylogenies has also revealed correlations between substitution rates and clade size, suggesting a link between rates of molecular evolution and the process of diversification. However, it is not known whether this relationship applies to all lineages and all sequences. Here, in order to investigate how widespread this phenomenon is, we investigate patterns of substitution in chloroplast genomes of the diverse angiosperm family Proteaceae. We used DNA sequences from six chloroplast genes (6278bp alignment with 62 taxa) to test for a correlation between diversification and the rate of substitutions. Results: Using phylogenetically-independent sister pairs, we show that species-rich lineages of Proteaceae tend to have significantly higher chloroplast substitution rates, for both synonymous and non-synonymous substitutions. Conclusions: We show that the rate of molecular evolution in chloroplast genomes is correlated with net diversification rates in this large plant family. We discuss the possible causes of this relationship, including molecular evolution driving diversification, speciation increasing the rate of substitutions, or a third factor causing an indirect link between molecular and diversification rates. The link between the synonymous substitution rate and clade size is consistent with a role for the mutation rate of chloroplasts driving the speed of reproductive isolation.
    [Show full text]
  • Plant Miniatures Scholarship Report Banksia Exploration
    Spring 2020 Plant miniatures Scholarship Report Banksia exploration 15th Biennial Exhibition 19 September - 31 December 2020 Virtual exhibition To see this fabulous exhibition visit www.rbgfriendsmelbourne.org All art available for purchase Agapanthus Seed Head By Vicki Philipson IN THIS ISSUE The Friends of the Royal Botanic Gardens, 5 Volunteer Profile Melbourne Inc.was formed to stimulate further interest in the Gardens and the 6 From the Gardens National Herbarium and to support and assist them whenever possible. 8 Growing Friends 10 Events Friends’ Office Patron Jill Scown The Honourable 16 Plant Crafts Karlene Taylor Linda Dessau AC Georgina Ponce de Governor of Victoria Banksia Exploration 18 Leon Huerta President Mary Ward 22 Illustrators Botanic News ISSN 08170-650 Vice-Presidents 23 Scholarship Report Editor Lynsey Poore Meg Miller Catherine Trinca 26 Photo Group E: editor.botnews@ Secretary frbgmelb.org.au Adnan Mansour Friends’ Calendar 28 Graphic Designer Treasurer Andrea Gualteros Mark Anderson eNEWS Council Editor Prof. Tim Entwisle Victoria English Sue Broadbent Jill Scown Sue Foran E: [email protected] David Forbes Printer Will Jones Design to Print Solutions Meg Miller Printed on Nicola Rollerson 100 per cent Australian Lisa Steven recycled paper Conveners Print Post Approved PP 345842/10025 Botanical Illustrators PAGE 6 A12827T Sue Foran Events Advertising Lisa Steven Full and half page inside front and back covers Growing Friends are avalaible. Single Michael Hare DL inserts will also be Helping Hands accepted. Sue Hoare Membership/Marketing Gate Lodge, Nicola Rollerson 100 Birdwood Avenue, Melbourne Vic 3004 Photo Group T: (03) 9650 6398 David Forbes ABN 43 438 335 331 Plant Craft Cottage Christina Gebhardt E: [email protected] Volunteers PAGE 18 W: rbgfriendsmelbourne.org Diana Barrie : @friendsrbgmelb Friends’ Trust Fund : @friendsroyalbotanicgardensmelb William Jones Mark Calder Janet Thomson OAM Catherine Trinca The Friends of the Royal Botanic Gardens, Melbourne Inc.
    [Show full text]
  • 2002 12 the Cerrados of Brazil.Pdf
    00 oliveira fm 7/31/02 8:11 AM Page i The Cerrados of Brazil 00 oliveira fm 7/31/02 8:11 AM Page ii 00 oliveira fm 7/31/02 8:11 AM Page iii The Cerrados of Brazil Ecology and Natural History of a Neotropical Savanna Editors Paulo S. Oliveira Robert J. Marquis Columbia University Press New York 00 oliveira fm 7/31/02 8:11 AM Page iv Columbia University Press Publishers Since 1893 New York Chichester, West Sussex © 2002 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data The cerrados of Brazil : ecology and natural history of a neotropical savanna / Paulo S. Oliveira and Robert J. Marquis. p. cm. Includes bibliographical references. ISBN 0-231-12042-7 (cloth : alk. paper)—ISBN 0-231-12043-5 (pbk. : alk. paper) 1. Cerrado ecology—Brazil. I. Oliveira, Paulo S., 1957– II. Marquis, Robert J., 1953– QH117 .C52 2002 577.4'8'0981—dc21 2002022739 Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 9 8 7 6 5 4 3 2 1 p 10 9 8 7 6 5 4 3 2 1 00 oliveira fm 7/31/02 8:11 AM Page v Contents Preface vii 1 Introduction: Development of Research in the Cerrados 1 Paulo S. Oliveira and Robert J. Marquis I Historical Framework and the Abiotic Environment 2 Relation of Soils and Geomorphic Surfaces in the Brazilian Cerrado 13 Paulo E. F. Motta, Nilton Curi, and Donald P.
    [Show full text]
  • Ecology of Proteaceae with Special Reference to the Sydney Region
    951 Ecology of Proteaceae with special reference to the Sydney region P.J. Myerscough, R.J. Whelan and R.A. Bradstock Myerscough, P.J.1, Whelan, R.J.2, and Bradstock, R.A.3 (1Institute of Wildlife Research, School of Biological Sciences (A08), University of Sydney, NSW 2006; 2Department of Biological Sciences, University of Wollongong, NSW 2522; 3Biodiversity Research and Management Division, NSW National Parks & Wildlife Service, PO Box 1967, Hurstville, NSW 1481) Ecology of Proteaceae with special reference to the Sydney region. Cunninghamia 6(4): 951–1015. In Australia, the Proteaceae are a diverse group of plants. They inhabit a wide range of environments, many of which are low in plant resources. They support a wide range of animals and other organisms, and show distinctive patterns of distribution in relation to soils, climate and geological history. These patterns of distribution, relationships with nutrients and other resources, interactions with animals and other organisms and dynamics of populations in Proteaceae are addressed in this review, particularly for the Sydney region. The Sydney region, with its wide range of environments, offers great opportunities for testing general questions in the ecology of the Proteaceae. For instance, its climate is not mediterranean, unlike the Cape region of South Africa, south- western and southern Australia, where much of the research on plants of Proteaceae growing in infertile habitats has been done. The diversity and abundance of Proteaceae vary in the Sydney region inversely with fertility of habitats. In the region’s rainforest there are few Proteaceae and their populations are sparse, whereas in heaths in the region, Proteaceae are often diverse and may dominate the canopy.
    [Show full text]
  • Abundance of Chlamydastis Platyspora (Elachistidae) on Its Host Plant Roupala Montana (Proteaceae) in Relation to Leaf Phenology
    Jou rn al of th e Lepidopterists' Soci ety 57(4), 200.3,291 - 294 ABUNDANCE OF CHLAMYDASTIS PLATYSPORA (ELACHISTIDAE) ON ITS HOST PLANT ROUPALA MONTANA (PROTEACEAE) IN RELATION TO LEAF PHENOLOGY A URORA BENDlCHO-LoPEZ,l IVONE REZENDE DINIZ2 AN D JOHN D u VALL HAY} Instituto de Cii'ncias Biologicas, Universidade de Brasilia, ICC Sui, Terreo, Sala AT! 49, Campus Universitario Darcy Ribeiro, Asa 1\ort8, 70910-900, Brasilia, Distrito Federal, Brazil ABSTRACT. Chlamydastis p/atljsporl! (Elachistidae) is a bivoltine species wbose l a rv '~ is a specialist on Roupala montana Allb/, (Pro­ teaceae) a common tree in tbe cerrado, We studied tbe presence of la rvae in relation to leal phenology of Its host plant III the cerrado sensu stricto (s'avannab-like vegetation) of tbe Field Station Agua Limpa, belonging to the Unive rsity of Brasilia, Federal District, BraziL We exam ­ ined 3BOO plants in an area of IB,2 ha between November 1999 and October 2000. The host plant produces leaves asynchronously dunng the year, and individuals present one of three leaf phenological phases at a give n tim e: (1 ) new leaves only, (2) mature leaves only and (3) both ma­ ture and old leaves. Larvae were found on 273 of the examined plants. Larvae were encountered between January and March (filst generatron) and were fuund only OIl plants of the third phenological group. Larvae were also encountered between June and October (second generatHJn) and occurred predominantly on the third group. Although the host plant has a hi gh abundance III the cerrado area the presence of larvae 01 C.
    [Show full text]
  • Malagasy/Indo-Australo-Malesian Phytogeographic Connections
    Biogéographie deMadagascar, 1996 : 73-83 MALAGASYLENDO-AUSTRALO-MALESIANPHYTOGEOGRAPH" CONNECTIONS George E. SCHATZ Missouri Botanical Garden, PO. Box 299, St. Louis, Missouri, 63166-0299, U.S.A. USTRACT.- Despite the continuous close proximityof Madagascar to Africa sinceits separation from the continent ca. 165 MXA, the Malagasy flora exhibits a remarkably high affinity with the Indo- autralo-malesian florasfar to the east. Such phytogeographic connectionsare especially prevalent among easternhumid forest taxa, and representboth ancient vicariance that hasresulted in relictual (Cretaceous) Gondwanan disjunctions, as well as continuous dispersal events across the Indian Ocean. Three major patterns of dispersaVvicariance modality can be identified: 1) Cretaceous dispersal to Madagascar with ensuing distributions from India (andor South Africa) across Antarctica to South America and Australo-E. Malesia during the timeof the initial radiation of the angiosperms; 2) Eocene- Oligocene (and continuing to the present) dispersal to Madagascar (and Africa) from Laurasia and W. Malesia viaIndia @re- and post-collision with Asia) alongt( Lemurian Stepping-stones)) in the western IndianOcean; and 3) continuous(and recent) long distance dispersal (LDD) to Madagascar as a function of the prevailing easterlywinds and Indian Ocean currents. KEY-W0RDS.- Madagascar, Indo-Australo-Malesian, Phytogeography, Vicariance, Dispersal RESUME.- Malgré la proximité de Madagascar et de l'Afrique depuis leur séparation,il y a quelques 165 millions d'années, la flore malgache montre unefinité remarquable avec celles dela région Indo- australo-malésienne très éloignée vers l'est. Ces relationsphytogéographiques sont particulièrement fréquentes dans les taxons des forêts humides de l'est de Madagascar; elles représentent d'unepart une vicariance ancienne qui a entraîné des disjonctions reliques gondwaniennes (Crétacé) et d'autre part une série continue de dispersionà travers l'Océan Indien.
    [Show full text]