Relative Terrestrial Exposure Ages Inferred from Meteoric 10Be and NO3 Concentrations in Soils Along the Shackleton Glacier
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript. -
Minutes of Meeting at British Antarctic Survey Held on Wednesday 15Th November 2006 at 11.00 Am
APC(06)2nd Meeting ANTARCTIC PLACE-NAMES COMMITTEE MINUTES OF MEETING AT BRITISH ANTARCTIC SURVEY HELD ON WEDNESDAY 15TH NOVEMBER 2006 AT 11.00 AM. Present Mr P.J. Woodman Chairman Mrs C. Burgess Permanent Committee on Geographical Names Dr K. Crosbie Ad hoc member Prof J.A. Dowdeswell Director, Scott Polar Research Institute, University of Cambridge Mr A.J. Fox British Antarctic Survey Mr P. Geelan Ad hoc member: former Chairman, APC Lt Cdr J.E.J. Marshall Hydrographic Office Mr S. Ross Polar Regions Unit, Overseas Territories Department, Foreign and Commonwealth Office Ms J. Rumble Polar Regions Unit, Overseas Territories Department, Foreign and Commonwealth Office Dr J.R. Shears British Antarctic Survey Dr M.R.A. Thomson Ad hoc member Ms A. Martin Secretary 1. Apologies for absence and new members Apologies for absence were received from Dr Hattersley-Smith, Royal Geographical Society. The Chairman welcomed Dr Crosbie who had joined the committee as a result of the recruitment initiative following the last meeting. The Chairman also welcomed Mr Ross, the new BAT Desk Officer at the Polar Regions Unit, Foreign and Commonwealth Office. 2. Minutes of the last meeting, held on 10th May 2006 The minutes were approved by all present. It was pointed out that the letters of reappointment for Mr Geelan, Dr Thomson and Mr Woodman had not been received. The Secretary was asked to look into this and to ensure that the letters were sent. 3. Matters arising from the minutes of the last meeting Secretary’s review of development work being carried out on the BAT Gazetteer and APC website. -
The Commonwealth Trans-Antarctic Expedition 1955-1958
THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword .................................................................................................................................. -
Lost Cold Antarctic Deserts Inferred from Unusual Sulfate Formation and Isotope Signatures
ARTICLE Received 15 Oct 2014 | Accepted 20 May 2015 | Published 29 Jun 2015 DOI: 10.1038/ncomms8579 Lost cold Antarctic deserts inferred from unusual sulfate formation and isotope signatures Tao Sun1,2,w, Richard A. Socki3,w, David L. Bish4, Ralph P. Harvey5, Huiming Bao1, Paul B. Niles2, Ricardo Cavicchioli6 & Eric Tonui7 The Antarctic ice cap significantly affects global ocean circulation and climate. Continental glaciogenic sedimentary deposits provide direct physical evidence of the glacial history of the Antarctic interior, but these data are sparse. Here we investigate a new indicator of ice sheet evolution: sulfates within the glaciogenic deposits from the Lewis Cliff Ice Tongue of the central Transantarctic Mountains. The sulfates exhibit unique isotope signatures, including d34Supto þ 50% for mirabilite evaporites, D17Oupto þ 2.3% for dissolved sulfate within contemporary melt-water ponds, and extremely negative d18Oaslowas À 22.2%. The isotopic data imply that the sulfates formed under environmental conditions similar to today’s McMurdo Dry Valleys, suggesting that ice-free cold deserts may have existed between the South Pole and the Transantarctic Mountains since the Miocene during periods when the ice sheet size was smaller than today, but with an overall similar to modern global hydrological cycle. 1 Louisiana State University, Baton Rouge, Louisiana 70803, USA. 2 NASA Johnson Space Center, Houston, Texas 77058, USA. 3 ESCG, NASA Johnson Space Center, Houston, Texas 77058, USA. 4 Indiana University, Bloomington, Indianapolis 47405, USA. 5 Case Western Reserve University, Cleveland, Ohio 44106, USA. 6 University of New South Wales, Sydney, New South Wales 2052, Australia. 7 Upstream Technology, BP America, Houston, Texas 77079, USA. -
SUN-DISSERTATION-2019.Pdf (5.590Mb)
© Copyright by Zhiyue Sun, 2019 All Rights Reserved ESTIMATING GLACIER ICE THICKNESS AND MASS BALANCE USING MULTIPLE SPACEBORNE GEODETIC TECHNIQUES A Dissertation Presented to the Faculty of the Department of Civil and Environmental Engineering University of Houston In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Geosensing Systems Engineering and Sciences by Zhiyue Sun May 2019 ESTIMATING GLACIER ICE THICKNESS AND MASS BALANCE USING MULTIPLE SPACEBORNE GEODETIC TECHNIQUES __________________________ Zhiyue Sun Approved: ________________________________ Chair of the Committee Hyongki Lee, Ph.D. Associate Professor Civil & Environmental Engineering Committee Members: ________________________________ Ramesh L. Shrestha, Ph.D. Hugh Roy & Lillie Cranz Cullen Distinguished Professor Civil & Environmental Engineering ________________________________ Craig L. Glennie, Ph.D. Associate Professor Civil & Environmental Engineering ________________________________ Yushin. Ahn, Ph.D. Assistant Professor Geomatics Engineering California State University, Fresno, CA ________________________________ Alexander. Braun, Ph.D. Professor Geological Sciences and Geological Engineering Queen’s University, Kingston, Canada ________________________________ ________________________________ Suresh K. Khator, Ph.D. Craig L. Glennie, Ph.D. Associate Dean Geosensing Systems Engineering & Cullen College of Engineering Science Program Director ESTIMATING GLACIER ICE THICKNESS AND MASS BALANCE USING MULTIPLE SPACEBORNE GEODETIC TECHNIQUES -
The Antarctic Sun, December 28, 2003
Published during the austral summer at McMurdo Station, Antarctica, for the United States Antarctic Program December 28, 2003 Photo by Kristan Hutchison / The Antarctic Sun A helicopter lands behind the kitchen and communications tents at Beardmore Camp in mid-December. Back to Beardmore: By Kristan Hutchison Researchers explore the past from temporary camp Sun staff ike the mythical town of Brigadoon, a village of tents appears on a glacial arm 50 miles L from Beardmore Glacier about once a decade, then disappears. It, too, is a place lost in time. For most people, a visit to Beardmore Camp is a trip back in history, whether to the original camp structure from 19 years ago, now buried under snow, or to the sites of ancient forests and bones, now buried under rock. Ever since Robert Scott collected fos- sils on his way back down the Beardmore Glacier in February 1912, geologists and paleontologists have had an interest in the rocky outcrops lining the broad river of ice. This year’s Beardmore Camp was the third at the location on the Lennox-King Glacier and the researchers left, saying there Photo by Andy Sajor / Special to The Antarctic Sun Researchers cut dinosaur bones out of the exposed stone on Mt. Kirkpatrick in December. See Camp on page 7 Some of the bones are expected to be from a previously unknown type. INSIDE Quote of the Week Dinosaur hunters Fishing for fossils “The penguins are happier than Page 9 Page 11 Trackers clams.” Plant gatherers - Adelie penguin researcher summing Page 10 Page 12 up the attitude of a colony www.polar.org/antsun 2 • The Antarctic Sun December 28, 2003 Ross Island Chronicles By Chico That’s the way it is with time son. -
Late Quaternary Surface Fluctuations of Beardmore Glacier, Antarctica
Late Quaternary surface fluctuations Journal, this issue). These four drifts are from 10 centimeters to several meters thick. They are composed largely of unconsoli- of Beardmore Glacier, Antarctica dated gravel. Numerous included striated clasts were probably reworked from Sirius drift. Thin boulder-belt moraines com- monly mark drift surfaces and define outer edges of drift sheets. The thin drift sheets overlie well-preserved morphological fea- tures, particularly in Sirius deposits. Figure 3 shows former surfaces of Beardmore Glacier repre- G. H. DENTON sented by the four drift sheets. The upper limit of Plunket drift parallels the present surface of Beardmore Glacier along its Institute for Quaternary Studies entire length. It also fringes the snout of Rutkowski Glacier, and which drains the local ice cap on the Dominion Range. This drift Department of Geological Sciences configuration shows similar behavior of these two glaciers dur- University of Maine Orono, Maine 04469 ing deposition of Plunket drift. The upper limit of Beardmore and Meyer drifts are close to the present surface of Beardmore Glacier near the polar plateau but systematically rise above the B.C. ANDERSEN present surface in the downglacier direction. Further, the areal patterns of Beardmore and Meyer drifts show recession of Department of Geology Rutkowski Glacier concurrent with expansion of Beardmore University of Oslo Glacier. Dominion drift occurs on the northern flank of the Oslo, Noruay Dominion Range, where it reaches high above Beardmore Glacier (Prentice et al., Antarctic Journal, this issue). We draw several inferences from the configuration, physical H.W. CONWAY characteristics, and weathering of these four drift sheets. -
Bulletin Vol. 13 No. 1 ANTARCTIC PENINSULA O 1 0 0 K M Q I Q O M L S
ANttlcnc Bulletin Vol. 13 No. 1 ANTARCTIC PENINSULA O 1 0 0 k m Q I Q O m l s 1 Comandante fettai brazil 2 Henry Arctowski poono 3 Teniente Jubany Argentina 4 Artigas Uruguay 5 Teniente Rodolfo Marsh chile Bellingshausen ussr Great Wall china 6 Capitan Arturo Prat chile 7 General Bernardo O'Higgins chile 8 Esperania argentine 9 Vice Comodoro Marambio Argentina 10 Palmer us* 11 Faraday uk SOUTH 12 Rotheraux 13 Teniente Carvajal chile SHETLAND 14 General San Martin Argentina ISLANDS jOOkm NEW ZEALAND ANTARCTIC SOCIETY MAP COPYRIGHT Vol.l3.No.l March 1993 Antarctic Antarctic (successor to the "Antarctic News Bulletin") Vol. 13 No. 1 Issue No. 145 ^H2£^v March.. 1993. .ooo Contents Polar New Zealand 2 Australia 9 ANTARCTIC is published Chile 15 quarterly by the New Zealand Antarctic Italy 16 Society Inc., 1979 United Kingdom 20 United States 20 ISSN 0003-5327 Sub-antarctic Editor: Robin Ormerod Please address all editorial inquiries, Heard and McDonald 11 contributions etc to the Macquarie and Campbell 22 Editor, P.O. Box 2110, Wellington, New Zealand General Telephone: (04) 4791.226 CCAMLR 23 International: +64 + 4+ 4791.226 Fax: (04) 4791.185 Whale sanctuary 26 International: +64 + 4 + 4791.185 Greenpeace 28 First footings at Pole 30 All administrative inquiries should go to Feinnes and Stroud, Kagge the Secretary, P.O. Box 2110, Wellington and the Women's team New Zealand. Ice biking 35 Inquiries regarding back issues should go Vaughan expedition 36 to P.O. Box 404, Christchurch, New Zealand. Cover: Ice biking: Trevor Chinn contem plates biking the glacier slope to the Polar (S) No part of this publication may be Plateau, Mt. -
Formation and Evolution of an Extensive Blue Ice Moraine in Central Transantarctic Mountains, Antarctica
Journal of Glaciology Formation and evolution of an extensive blue ice moraine in central Transantarctic Mountains, Antarctica Paper Christine M. Kassab1 , Kathy J. Licht1, Rickard Petersson2, Katrin Lindbäck3, 1,4 5 Cite this article: Kassab CM, Licht KJ, Joseph A. Graly and Michael R. Kaplan Petersson R, Lindbäck K, Graly JA, Kaplan MR (2020). Formation and evolution of an 1Department of Earth Sciences, Indiana University-Purdue University Indianapolis, 723 W Michigan St, SL118, extensive blue ice moraine in central Indianapolis, IN 46202, USA; 2Department of Earth Sciences, Uppsala University, Geocentrum, Villav. 16, 752 36, Transantarctic Mountains, Antarctica. Journal Uppsala, Sweden; 3Norwegian Polar Institute, Fram Centre, P.O. Box 6606 Langnes, NO-9296, Tromsø, Norway; of Glaciology 66(255), 49–60. https://doi.org/ 4Department of Geography and Environmental Sciences, Northumbria University, Ellison Place, Newcastle upon 10.1017/jog.2019.83 Tyne, NE1 8ST, UK and 5Division of Geochemistry, Lamont-Doherty Earth Observatory, Palisades, New York 10964, Received: 22 April 2019 USA Revised: 14 October 2019 Accepted: 15 October 2019 Abstract First published online: 11 November 2019 Mount Achernar moraine is a terrestrial sediment archive that preserves a record of ice-sheet Key words: dynamics and climate over multiple glacial cycles. Similar records exist in other blue ice moraines Blue ice; ground-penetrating radar; moraine elsewhere on the continent, but an understanding of how these moraines form is limited. We pro- formation pose a model to explain the formation of extensive, coherent blue ice moraine sequences based on Author for correspondence: the integration of ground-penetrating radar (GPR) data with ice velocity and surface exposure Christine M. -
The Neogene Biota of the Transantarctic Mountains
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Related Publications from ANDRILL Affiliates Antarctic Drilling Program 2007 The Neogene biota of the Transantarctic Mountains A. C. Ashworth North Dakota State University, [email protected] A. R. Lewis North Dakota State University, [email protected] D. R. Marchant Boston University, [email protected] R. A. Askin [email protected] D. J. Cantrill Royal Botanic Gardens, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/andrillaffiliates Part of the Environmental Indicators and Impact Assessment Commons Ashworth, A. C.; Lewis, A. R.; Marchant, D. R.; Askin, R. A.; Cantrill, D. J.; Francis, J. E.; Leng, M. J.; Newton, A. E.; Raine, J. I.; Williams, M.; and Wolfe, A. P., "The Neogene biota of the Transantarctic Mountains" (2007). Related Publications from ANDRILL Affiliates. 5. https://digitalcommons.unl.edu/andrillaffiliates/5 This Article is brought to you for free and open access by the Antarctic Drilling Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Related Publications from ANDRILL Affiliates by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors A. C. Ashworth, A. R. Lewis, D. R. Marchant, R. A. Askin, D. J. Cantrill, J. E. Francis, M. J. Leng, A. E. Newton, J. I. Raine, M. Williams, and A. P. Wolfe This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ andrillaffiliates/5 U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Extended Abstract.071 The Neogene biota of the Transantarctic Mountains A. -
Nature Trails Outdoor Study Program
DD121 North Dakota 4-H Nature Trails Unit 1 Member’s Manual Revised April, 2004 Joe Courneya 4-H Youth Development Specialist Welcome to the Nature Trails Outdoor Study Program. This program is designed for boys and girls who live in towns or on farms. This is the first in a series of programs which will help you experience your environment. Mankind is learning that in order to survive we have to live in harmony with nature. We are a part of the environment and whatever affects the environment will also affect us. In order to understand and appreciate the environment we must study it. This program will be your opportunity. There are a wide range of activities from which to choose. Select those that fit your interests and resources. Original Manual Credits Terry Messmer Extension Wildlife Specialist Kathy Gardner Special Project Assistant North Dakota State University, Fargo ND 58105 Wayne Hankel Program Leader 4-H Youth Development Contents AUTUMN CHANGE NEW GROWTH Change in Plant Color Introduction Change in Animal Color Types of Buds Changes in Diet and Other Changes What Kinds of Plants Have Buds Plant Flowers WATERFOWL IDENTIFICATION Introduction BIRDS AND BIRD NESTS Swans and Geese Introduction Ducks Where Do Birds Live? Some Common Species Bird Nest Characteristics Bird Nest Identification FIREARM SAFETY Introduction FISH AND FISHING Ten Commandments of Firearm Safety Fish Safety at Home Fish Identification Safety in the Field Spin Fishing Transporting Firearms Fishing Equipment Gun Cleaning and Storage Spin-casting Methods WINTER -
Download Factsheet
Antarctic Factsheet Geographical Statistics May 2005 AREA % of total Antarctica - including ice shelves and islands 13,829,430km2 100.00% (Around 58 times the size of the UK, or 1.4 times the size of the USA) Antarctica - excluding ice shelves and islands 12,272,800km2 88.74% Area ice free 44,890km2 0.32% Ross Ice Shelf 510,680km2 3.69% Ronne-Filchner Ice Shelf 439,920km2 3.18% LENGTH Antarctic Peninsula 1,339km Transantarctic Mountains 3,300km Coastline* TOTAL 45,317km 100.00% * Note: coastlines are fractal in nature, so any Ice shelves 18,877km 42.00% measurement of them is dependant upon the scale at which the data is collected. Coastline Rock 5,468km 12.00% lengths here are calculated from the most Ice coastline 20,972km 46.00% detailed information available. HEIGHT Mean height of Antarctica - including ice shelves 1,958m Mean height of Antarctica - excluding ice shelves 2,194m Modal height excluding ice shelves 3,090m Highest Mountains 1. Mt Vinson (Ellsworth Mts.) 4,892m 2. Mt Tyree (Ellsworth Mts.) 4,852m 3. Mt Shinn (Ellsworth Mts.) 4,661m 4. Mt Craddock (Ellsworth Mts.) 4,650m 5. Mt Gardner (Ellsworth Mts.) 4,587m 6. Mt Kirkpatrick (Queen Alexandra Range) 4,528m 7. Mt Elizabeth (Queen Alexandra Range) 4,480m 8. Mt Epperly (Ellsworth Mts) 4,359m 9. Mt Markham (Queen Elizabeth Range) 4,350m 10. Mt Bell (Queen Alexandra Range) 4,303m (In many case these heights are based on survey of variable accuracy) Nunatak on the Antarctic Peninsula 1/4 www.antarctica.ac.uk Antarctic Factsheet Geographical Statistics May 2005 Other Notable Mountains 1.