Antarctic Surface Hydrology and Impacts on Ice-Sheet Mass Balance

Total Page:16

File Type:pdf, Size:1020Kb

Antarctic Surface Hydrology and Impacts on Ice-Sheet Mass Balance PERSPECTIVE https://doi.org/10.1038/s41558-018-0326-3 Antarctic surface hydrology and impacts on ice-sheet mass balance Robin E. Bell 1*, Alison F. Banwell 2,3, Luke D. Trusel 4 and Jonathan Kingslake 1,5 Melting is pervasive along the ice surrounding Antarctica. On the surface of the grounded ice sheet and floating ice shelves, extensive networks of lakes, streams and rivers both store and transport water. As melting increases with a warming climate, the surface hydrology of Antarctica in some regions could resemble Greenland’s present-day ablation and percolation zones. Drawing on observations of widespread surface water in Antarctica and decades of study in Greenland, we consider three modes by which meltwater could impact Antarctic mass balance: increased runoff, meltwater injection to the bed and meltwa- ter-induced ice-shelf fracture — all of which may contribute to future ice-sheet mass loss from Antarctica. urface meltwater in Antarctica is more extensive than previ- Through-ice fractures are interpreted as evidence of water having ously thought and its role in projections of future mass loss drained through ice shelves (Figs 1a and 2)15. Similar to terrestrial Sare becoming increasingly important. As accurately projecting hydrologic systems, these components of the Antarctic hydrologic future sea-level rise is essential for coastal communities around the system store, transport and export water. In contrast to terrestrial globe, understanding how surface melt may either trigger or buf- hydrology, on ice sheets and glaciers water can refreeze with conse- fer rapid changes in ice flow into the ocean is critical. We provide quences for the temperature of the surrounding ice16–18, firn or snow. an overview of the current understanding of the major components Storage occurs in lakes, crevasses, in buried lakes and possibly in of the Antarctic surface hydrology system and the distribution of firn aquifers. Transport and export are less persistent and more dif- melt. Using the framework of surface hydrology in Greenland, we ficult to observe than lakes14,19,20. Antarctic surface and subsurface consider the different ways in which surface hydrology can impact hydrological systems have been studied using satellite and airborne ice-sheet mass balance. Looking to the future, we discuss how the imagery1,8,11–14, although field-based observations are limited8,21–23. hydrologic systems will evolve in Antarctica as well as their impact on future changes in ice-sheet mass balance. Finally, we highlight Surface storage of meltwater. Meltwater is stored in surface lakes on knowledge gaps that limit our understanding of the impact of both grounded and floating ice. On grounded ice, lakes develop in increased surface meltwater on future sea level rise. areas with local-scale melt enhancement and relatively low accumu- lation rates; areas that are often close to rock outcrops and blue ice Current distribution of meltwater (for example, Shackleton Glacier; Fig. 1j)12,14. Similar to Greenland20, Meltwater on the surface of Antarctica was observed by early explor- on grounded Antarctic ice, lakes form in persistent surface depres- ers, who noted the noise of running water and water seeping into sions. The formation of surface lakes in the same location each their tents1. Today the surface melt distribution in Antarctica (Fig. 1) year over decades is evidence of control by the interplay between is determined using satellite observations2–5 and reanalysis-forced bedrock topography and ice flow24. On the floating ice shelves sur- regional climate modeling6. The surface meltwater production esti- rounding Antarctica8,14,19,20,25, water collects in surface depressions mates derived from these two methods correspond well with in situ that move with ice flow. These surface depressions in the ice shelf observations7. At present, the most intense melt is observed across are controlled by basal crevassing26, grounding zone flow-stripe ice shelves (Fig. 1), particularly along the Antarctic Peninsula, development27, suture-zone depressions1 and basal channels pro- including the Larsen C, Wilkins and George VI ice shelves, as well duced by ocean melting28. Water will fill a depression if the ice sur- as the relatively low-latitude East Antarctic ice shelves, including the face or near surface is impermeable. Impermeable surfaces are often West and Shackleton ice shelves. More localized, but intense, melt associated with high melt and low snow accumulation rates29. Once occurs on other East Antarctic ice shelves, including the Amery and water collects in an ice shelf depression, the basin will deepen due to Roi Baudouin ice shelves7,8, where extensive surface hydrological both enhanced lake-bottom ablation (due to the lower albedo of the networks develop. The two largest ice shelves, Ross and Ronne- water compared to the surrounding ice/snow)30,31, and the flexural Filchner, experience only minor surface melting. The upper eleva- response of the floating ice to the water load32,33. The largest supra- tion limit of surface melting today is generally ~1,400 m during glacial lake (~80 km long) is on the Amery Ice Shelf (Fig. 2e)13,14,34. spatially extensive, but low-magnitude, West Antarctic melt epi- On both grounded and floating ice, surface fractures (crevasses) sodes7,9, compared to a 3,200 m elevation limit in Greenland during can accumulate water26, serving as another storage site for meltwa- the anomalous10 2012 melt events. ter and a mechanism by which water directly impacts ice dynam- Liquid water on the Antarctic Ice Sheet and the floating ice ics. Water-filled fractures may propagate vertically when sufficient shelves that buttress upstream grounded ice (Fig. 1) is found in water is available, creating through-ice fractures on Antarctica’s ice supraglacial lakes, subsurface lakes, surface streams and rivers1,8,11–14. shelves32,35,36 and Greenland’s floating tongues37. Fractures beneath 1Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA. 2Scott Polar Research Institute, University of Cambridge, Cambridge, UK. 3Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA. 4Department of Geology, Rowan University, Glassboro, NJ, USA. 5Department of Earth and Environmental Sciences, Columbia University, Palisades, NY, USA. *e-mail: [email protected] 1044 NatURE CLIMate CHANGE | VOL 8 | DECEMBER 2018 | 1044–1052 | www.nature.com/natureclimatechange NATURE CLIMATE CHANGE PERSPECTIVE a b c Meltponds and dolines Foehn-enhanced melt ponds Subsurface lake f 20 km 20 km George VI Ice Shelf Larsen C Ice Shelf Western Roi Baudouin Ice Shelf 10 January 2003 7 February 2016 January/February 2016 j d Southernmost large-scale drainage Ice shelf stream and moulin c d Antarctic Peninsula Dronning Maud Land b a e Shackleton Glacier Eastern Roi Baudouin Ice Shelf 10 January 2010 January/February 2016 e i West Antarctica East Antarctica High-elevation stream Largest supraglacial lake i f j h g Surface melt (mm w.e. yr–1) 80 km 0 100 200 300 400 500 Law Glacier (~1,830 m a.s.l.) Amery Ice Shelf 14 January 2017 21 February 1988 h g f Drainage across grounding line Terminal waterfall Ring and radial fractures, streams and ponds 10 km Darwin Glacier/Ross Ice Shelf Nansen Ice Shelf Shackleton Ice Shelf 31 December 2001 12 January 2014 10 February 1947 Fig. 1 | Examples of major components of surface hydrological systems located on a present-day Antarctic surface melt map. The central map shows 2000–2009 Antarctica surface melt from QuikSCAT satellite observation 7; the locations of the images in a–j are indicated. a, Meltwater lakes and dolines (arrows), b, Foehn wind-enhanced meltwater ponding. c, Buried lake. d, Moulin draining surface stream. e, Elongate supraglacial lake. f, Fractures around a drained lake. Scale unknown. g, Persistent waterfall draining water. h, Supraglacial streams transporting water across grounding line of the Darwin Glacier onto the Ross Ice Shelf. i, High-elevation (1,830 m) meltwater stream. j, Meltwater stream crossing the grounding line. Images reproduced from: US Geological Survey (a,b,e,h); ref. 8, Springer Nature Limited (c); Sanne Bosteels (d); USGS/EROS and the Polar Geospatial Center (f); Won Sang Lee (g); Mike Kaplan (i); John Stone (j). lakes on Greenland’s grounded ice drain meltwater to the ice-sheet line lakes refreeze, they form massive ice layers29,42. Over succes- bed by hydrofracturing38,39. There is no direct evidence of hydro- sive melt seasons, frozen surface lakes (now stacked ice lenses) may fracture beneath lakes on grounded Antarctic ice. accumulate in dense and thick ice horizons29. On the Larsen C Ice Shelf, a massive ice facies > 40 m thick, extending 16 km horizon- Englacial storage of meltwater. Antarctic surface meltwater tally, was interpreted as a stack of frozen lakes42. Temperature pro- is stored englacially when surface lakes freeze over and are bur- files through this refrozen ice are substantially warmer due to the ied by snowfall8,40. In Antarctica, buried lakes tend to form on ice release of latent heat as the lakes froze, similar to the cryohydro- shelves close to the grounding line8. Since at least 1947 on the Roi logic warming described across Greenland17. Baudouin Ice Shelf, meltwater produced in areas of blue ice above In Greenland, perennial firn aquifers store water in environ- and below the grounding line fills surface lakes. These lakes are ments similar to where buried supraglacial lakes form43. Water in buried as the ice moves towards the calving front14. Radar satel- these firn aquifers is stored in a porous matrix of ice crystals. No lites, such as C-Band Sentinel-1 A and B, are capable of penetrating Antarctic firn aquifer has been sampled yet, but beneath massive metres though dry snow, highlighting the promise of tracing buried ice facies on Larsen C, a second ~45-m-thick ice unit has been lakes and other subsurface liquid water41.
Recommended publications
  • Internal Geometry and Evolution of Moulins
    Journal of Glaciology, Vol. 34, No. 117 , 1988 INTERNAL GEOMETRY AND EVOLUTION OF MOULINS, STORGLACVlREN,~DEN By PER HOLMLUND (Department of Physical Geography, University of Stockholm, S-106 91 Stockholm, Sweden) ABSTRACT. The initial conditions needed for formation of moulins are crevasses and a supply of melt water. Water pouring into a crevasse may fill it until it overflows at the lowest point, which is normally near the margin. However, as the crevasse deepens, it intersects englacial channels through which the water can drain. These channels may be finger-tip tributaries in a dendritic system such as that described by Shreve (1972) and observed by Raymond and Harrison (1975). When the crevasse closes, heat in the melt water 'keeps the connection open and a moulin is formed. The englacial channel enlarges rapidly by melting, utilizing mechanical energy released by the descending water. Descents into moulins, and mapping of structures exposed at the surface after many years of melting, demonstrate that the drainage channels leading down from the bottoms of the moulins have inclinations of 0-45 0 from the vertical. These channels trend in the direction of the original crevasse but appear to be deeper than the expected depth of the crevasse. They have not, even at depths of 50--60 m, become normal to the equipotential planes described by Shreve. INTRODUCTION Fig . 1. Map showing the location of Storglaciiiren. Moulins, or "glacial mills" as they are sometimes called, are one of the more dramatic features of glacier surfaces. point (Schytt, 1968; Hooke and others, 1983), the ice Water plunging into a large moulin presents an awesome surface is presumably impermeable.
    [Show full text]
  • Basal Control of Supraglacial Meltwater Catchments on the Greenland Ice Sheet
    The Cryosphere, 12, 3383–3407, 2018 https://doi.org/10.5194/tc-12-3383-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Basal control of supraglacial meltwater catchments on the Greenland Ice Sheet Josh Crozier1, Leif Karlstrom1, and Kang Yang2,3 1University of Oregon Department of Earth Sciences, Eugene, Oregon, USA 2School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China 3Joint Center for Global Change Studies, Beijing 100875, China Correspondence: Josh Crozier ([email protected]) Received: 5 April 2018 – Discussion started: 17 May 2018 Revised: 13 October 2018 – Accepted: 15 October 2018 – Published: 29 October 2018 Abstract. Ice surface topography controls the routing of sur- sliding regimes. Predicted changes to subglacial hydraulic face meltwater generated in the ablation zones of glaciers and flow pathways directly caused by changing ice surface to- ice sheets. Meltwater routing is a direct source of ice mass pography are subtle, but temporal changes in basal sliding or loss as well as a primary influence on subglacial hydrology ice thickness have potentially significant influences on IDC and basal sliding of the ice sheet. Although the processes spatial distribution. We suggest that changes to IDC size and that determine ice sheet topography at the largest scales are number density could affect subglacial hydrology primarily known, controls on the topographic features that influence by dispersing the englacial–subglacial input of surface melt- meltwater routing at supraglacial internally drained catch- water. ment (IDC) scales ( < 10s of km) are less well constrained. Here we examine the effects of two processes on ice sheet surface topography: transfer of bed topography to the surface of flowing ice and thermal–fluvial erosion by supraglacial 1 Introduction meltwater streams.
    [Show full text]
  • Lost Cold Antarctic Deserts Inferred from Unusual Sulfate Formation and Isotope Signatures
    ARTICLE Received 15 Oct 2014 | Accepted 20 May 2015 | Published 29 Jun 2015 DOI: 10.1038/ncomms8579 Lost cold Antarctic deserts inferred from unusual sulfate formation and isotope signatures Tao Sun1,2,w, Richard A. Socki3,w, David L. Bish4, Ralph P. Harvey5, Huiming Bao1, Paul B. Niles2, Ricardo Cavicchioli6 & Eric Tonui7 The Antarctic ice cap significantly affects global ocean circulation and climate. Continental glaciogenic sedimentary deposits provide direct physical evidence of the glacial history of the Antarctic interior, but these data are sparse. Here we investigate a new indicator of ice sheet evolution: sulfates within the glaciogenic deposits from the Lewis Cliff Ice Tongue of the central Transantarctic Mountains. The sulfates exhibit unique isotope signatures, including d34Supto þ 50% for mirabilite evaporites, D17Oupto þ 2.3% for dissolved sulfate within contemporary melt-water ponds, and extremely negative d18Oaslowas À 22.2%. The isotopic data imply that the sulfates formed under environmental conditions similar to today’s McMurdo Dry Valleys, suggesting that ice-free cold deserts may have existed between the South Pole and the Transantarctic Mountains since the Miocene during periods when the ice sheet size was smaller than today, but with an overall similar to modern global hydrological cycle. 1 Louisiana State University, Baton Rouge, Louisiana 70803, USA. 2 NASA Johnson Space Center, Houston, Texas 77058, USA. 3 ESCG, NASA Johnson Space Center, Houston, Texas 77058, USA. 4 Indiana University, Bloomington, Indianapolis 47405, USA. 5 Case Western Reserve University, Cleveland, Ohio 44106, USA. 6 University of New South Wales, Sydney, New South Wales 2052, Australia. 7 Upstream Technology, BP America, Houston, Texas 77079, USA.
    [Show full text]
  • Moulin Work Under Glaciers*
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 17, PP. 317-320, PLS. 40-42 JULY 27, 1906 MOULIN WORK UNDER GLACIERS* BY G. K. GILBERT (Read before the Cordilkran Section of the Society December SO, 1905) CONTENTS Page Statement of the problem studied.................... 317 Origin of the rock sculpture.............................. 317 The moulin, or glacial m ill................................ 318 Explanation of plates........................................... 320 S tatem en t o r t h e P roblem studied In glaciated regions I have several times encountered an aberrant and puzzling type of sculpture. Inclined surfaces, so situated that they can not have been subjected to postglacial stream scour, are sometimes carved in a succession of shallow, spoon-shaped hollows, and at the same time are highly polished. They resemble to a certain extent the surfaces some­ times wrought by glaciers on well-jointed rocks, where the hackly charac­ ter produced by the removal of angular blocks is modified by abrasion; but they are essentially different. Instead of having the salient elements well rounded and the reentrant angular, they have reentrants well rounded and salients more or less angular; and they are further distinguished by the absence of glacial striae. An example appears in the foreground of plate 40, representing the canyon of the South fork of the San Joaquin river, in the heart of the glaciated zone of the Sierra Nevada. The peculiarly sculptured spot is high above the river. Or ig in of t h e R ock Sculpture The key to the puzzle was found on a dome of granite standing at the southwest edge of Tuolumne meadow, Sierra Nevada, just north of the Tioga road.
    [Show full text]
  • SUN-DISSERTATION-2019.Pdf (5.590Mb)
    © Copyright by Zhiyue Sun, 2019 All Rights Reserved ESTIMATING GLACIER ICE THICKNESS AND MASS BALANCE USING MULTIPLE SPACEBORNE GEODETIC TECHNIQUES A Dissertation Presented to the Faculty of the Department of Civil and Environmental Engineering University of Houston In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Geosensing Systems Engineering and Sciences by Zhiyue Sun May 2019 ESTIMATING GLACIER ICE THICKNESS AND MASS BALANCE USING MULTIPLE SPACEBORNE GEODETIC TECHNIQUES __________________________ Zhiyue Sun Approved: ________________________________ Chair of the Committee Hyongki Lee, Ph.D. Associate Professor Civil & Environmental Engineering Committee Members: ________________________________ Ramesh L. Shrestha, Ph.D. Hugh Roy & Lillie Cranz Cullen Distinguished Professor Civil & Environmental Engineering ________________________________ Craig L. Glennie, Ph.D. Associate Professor Civil & Environmental Engineering ________________________________ Yushin. Ahn, Ph.D. Assistant Professor Geomatics Engineering California State University, Fresno, CA ________________________________ Alexander. Braun, Ph.D. Professor Geological Sciences and Geological Engineering Queen’s University, Kingston, Canada ________________________________ ________________________________ Suresh K. Khator, Ph.D. Craig L. Glennie, Ph.D. Associate Dean Geosensing Systems Engineering & Cullen College of Engineering Science Program Director ESTIMATING GLACIER ICE THICKNESS AND MASS BALANCE USING MULTIPLE SPACEBORNE GEODETIC TECHNIQUES
    [Show full text]
  • The Dynamics and Mass Budget of Aretic Glaciers
    DA NM ARKS OG GRØN L ANDS GEO L OG I SKE UNDERSØGELSE RAP P ORT 2013/3 The Dynamics and Mass Budget of Aretic Glaciers Abstracts, IASC Network of Aretic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) • GEOLOGICAL SURVEY OF D EN MARK AND GREENLAND DANISH MINISTAV OF CLIMATE, ENEAGY AND BUILDING ~ G E U S DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 201 3 / 3 The Dynamics and Mass Budget of Arctic Glaciers Abstracts, IASC Network of Arctic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF CLIMATE, ENERGY AND BUILDING Indhold Preface 5 Programme 6 List of participants 11 Minutes from a special session on tidewater glaciers research in the Arctic 14 Abstracts 17 Seasonal and multi-year fluctuations of tidewater glaciers cliffson Southern Spitsbergen 18 Recent changes in elevation across the Devon Ice Cap, Canada 19 Estimation of iceberg to the Hansbukta (Southern Spitsbergen) based on time-lapse photos 20 Seasonal and interannual velocity variations of two outlet glaciers of Austfonna, Svalbard, inferred by continuous GPS measurements 21 Discharge from the Werenskiold Glacier catchment based upon measurements and surface ablation in summer 2011 22 The mass balance of Austfonna Ice Cap, 2004-2010 23 Overview on radon measurements in glacier meltwater 24 Permafrost distribution in coastal zone in Hornsund (Southern Spitsbergen) 25 Glacial environment of De Long Archipelago
    [Show full text]
  • Formation and Evolution of an Extensive Blue Ice Moraine in Central Transantarctic Mountains, Antarctica
    Journal of Glaciology Formation and evolution of an extensive blue ice moraine in central Transantarctic Mountains, Antarctica Paper Christine M. Kassab1 , Kathy J. Licht1, Rickard Petersson2, Katrin Lindbäck3, 1,4 5 Cite this article: Kassab CM, Licht KJ, Joseph A. Graly and Michael R. Kaplan Petersson R, Lindbäck K, Graly JA, Kaplan MR (2020). Formation and evolution of an 1Department of Earth Sciences, Indiana University-Purdue University Indianapolis, 723 W Michigan St, SL118, extensive blue ice moraine in central Indianapolis, IN 46202, USA; 2Department of Earth Sciences, Uppsala University, Geocentrum, Villav. 16, 752 36, Transantarctic Mountains, Antarctica. Journal Uppsala, Sweden; 3Norwegian Polar Institute, Fram Centre, P.O. Box 6606 Langnes, NO-9296, Tromsø, Norway; of Glaciology 66(255), 49–60. https://doi.org/ 4Department of Geography and Environmental Sciences, Northumbria University, Ellison Place, Newcastle upon 10.1017/jog.2019.83 Tyne, NE1 8ST, UK and 5Division of Geochemistry, Lamont-Doherty Earth Observatory, Palisades, New York 10964, Received: 22 April 2019 USA Revised: 14 October 2019 Accepted: 15 October 2019 Abstract First published online: 11 November 2019 Mount Achernar moraine is a terrestrial sediment archive that preserves a record of ice-sheet Key words: dynamics and climate over multiple glacial cycles. Similar records exist in other blue ice moraines Blue ice; ground-penetrating radar; moraine elsewhere on the continent, but an understanding of how these moraines form is limited. We pro- formation pose a model to explain the formation of extensive, coherent blue ice moraine sequences based on Author for correspondence: the integration of ground-penetrating radar (GPR) data with ice velocity and surface exposure Christine M.
    [Show full text]
  • GEOLOGY and GROUND WATER RESOURCE S of Stutsman County, North Dakota
    North Dakota Geological Survey WILSON M. LAIRD, State Geologis t BULLETIN 41 North Dakota State Water Conservation Commission MILO W . HOISVEEN, State Engineer COUNTY GROUND WATER STUDIES 2 GEOLOGY AND GROUND WATER RESOURCE S of Stutsman County, North Dakota Part I - GEOLOG Y By HAROLD A. WINTERS GRAND FORKS, NORTH DAKOTA 1963 This is one of a series of county reports which wil l be published cooperatively by the North Dakota Geological Survey and the North Dakota State Water Conservation Commission in three parts . Part I is concerned with geology, Part II, basic data which includes information on existing well s and test drilling, and Part III which will be a study of hydrology in the county . Parts II and III will be published later and will be distributed a s soon as possible . CONTENTS PAGE ABSTRACT 1 INTRODUCTION 3 Acknowledgments 3 Previous work 5 GEOGRAPHY 5 Topography and drainage 5 Climate 7 Soils and vegetation 9 SUMMARY OF THE PRE-PLEISTOCENE STRATIGRAPHY 9 Precambrian 1 1 Paleozoic 1 1 Mesozoic 1 1 PREGLACIAL SURFICIAL GEOLOGY 12 Niobrara Shale 1 2 Pierre Shale 1 2 Fox Hills Sandstone 1 4 Fox Hills problem 1 4 BEDROCK TOPOGRAPHY 1 4 Bedrock highs 1 5 Intermediate bedrock surface 1 5 Bedrock valleys 1 5 GLACIATION OF' NORTH DAKOTA — A GENERAL STATEMENT 1 7 PLEISTOCENE SEDIMENTS AND THEIR ASSOCIATED LANDFORMS 1 8 Till 1 8 Landforms associated with till 1 8 Glaciofluvial :materials 22 Ice-contact glaciofluvial sediments 2 2 Landforms associated with ice-contact glaciofluvial sediments 2 2 Proglacial fluvial sediments 2 3 Landforms associated with proglacial fluvial sediments 2 3 Lacustrine sediments 2 3 Landforms associated with lacustrine sediments 2 3 Other postglacial sediments 2 4 ANALYSIS OF THE SURFICIAL TILL IN STUTSMAN COUNTY 2 4 Leaching and caliche 24 Oxidation 2 4 Stone counts 2 5 Lignite within till 2 7 Grain-size analyses of till _ 2 8 Till samples from hummocky stagnation moraine 2 8 Till samples from the Millarton, Eldridge, Buchanan and Grace Cit y moraines and their associated landforms _ .
    [Show full text]
  • A Geomorphic Classification System
    A Geomorphic Classification System U.S.D.A. Forest Service Geomorphology Working Group Haskins, Donald M.1, Correll, Cynthia S.2, Foster, Richard A.3, Chatoian, John M.4, Fincher, James M.5, Strenger, Steven 6, Keys, James E. Jr.7, Maxwell, James R.8 and King, Thomas 9 February 1998 Version 1.4 1 Forest Geologist, Shasta-Trinity National Forests, Pacific Southwest Region, Redding, CA; 2 Soil Scientist, Range Staff, Washington Office, Prineville, OR; 3 Area Soil Scientist, Chatham Area, Tongass National Forest, Alaska Region, Sitka, AK; 4 Regional Geologist, Pacific Southwest Region, San Francisco, CA; 5 Integrated Resource Inventory Program Manager, Alaska Region, Juneau, AK; 6 Supervisory Soil Scientist, Southwest Region, Albuquerque, NM; 7 Interagency Liaison for Washington Office ECOMAP Group, Southern Region, Atlanta, GA; 8 Water Program Leader, Rocky Mountain Region, Golden, CO; and 9 Geology Program Manager, Washington Office, Washington, DC. A Geomorphic Classification System 1 Table of Contents Abstract .......................................................................................................................................... 5 I. INTRODUCTION................................................................................................................. 6 History of Classification Efforts in the Forest Service ............................................................... 6 History of Development .............................................................................................................. 7 Goals
    [Show full text]
  • The Hydrologic Evolution of Glacial Meltwater: Insights and Implications from Alpine and Arctic Glaciers
    The Hydrologic Evolution of Glacial Meltwater: Insights and Implications from Alpine and Arctic Glaciers by Carli Anne Arendt A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Earth and Environmental Sciences) in the University of Michigan 2015 Doctoral Committee: Assistant Professor Sarah M. Aciego, Chair Assistant Professor Jeremy N. Bassis Professor M. Clara Castro Associate Professor Eric A. Hetland Professor Kyger C. Lohmann ACKNOWLEDGMENTS I would like to thank the University of Michigan and the Department of Earth and Environmental Sciences (Geology) for assisting me in my journey to obtain the skills necessary to build my career as a scientist. The majority of my graduate school accomplishments have stemmed from my acquaintance with and mentorship from my thesis adviser, Dr. Sarah Aciego who graciously welcomed me into her lab, convinced me to invest in obtaining a doctorate, and provided me with an abundance of opportunities for which I am incredibly grateful. More importantly, Sarah has been an exemplary role model of what it means to be a successful, young, strong female scientist and has shown me how to gracefully approach countless scenarios that beginning female scientists typically encounter. I would also like to thank the other members of my dissertation committee: Dr. Jeremy Bassis, Dr. Clara Castro, Dr. Eric Hetland, and Dr. Kacey Lohmann for helping me become a better scientist through their continued support and advice, for challenging me to look at my own research critically. I would also like to thank the numerous others who supported me on this academic journey and encouraged me when I encountered challenges along the way.
    [Show full text]
  • 1 Compiled by Mike Wing New Zealand Antarctic Society (Inc
    ANTARCTIC 1 Compiled by Mike Wing US bulldozer, 1: 202, 340, 12: 54, New Zealand Antarctic Society (Inc) ACECRC, see Antarctic Climate & Ecosystems Cooperation Research Centre Volume 1-26: June 2009 Acevedo, Capitan. A.O. 4: 36, Ackerman, Piers, 21: 16, Vessel names are shown viz: “Aconcagua” Ackroyd, Lieut. F: 1: 307, All book reviews are shown under ‘Book Reviews’ Ackroyd-Kelly, J. W., 10: 279, All Universities are shown under ‘Universities’ “Aconcagua”, 1: 261 Aircraft types appear under Aircraft. Acta Palaeontolegica Polonica, 25: 64, Obituaries & Tributes are shown under 'Obituaries', ACZP, see Antarctic Convergence Zone Project see also individual names. Adam, Dieter, 13: 6, 287, Adam, Dr James, 1: 227, 241, 280, Vol 20 page numbers 27-36 are shared by both Adams, Chris, 11: 198, 274, 12: 331, 396, double issues 1&2 and 3&4. Those in double issue Adams, Dieter, 12: 294, 3&4 are marked accordingly. Adams, Ian, 1: 71, 99, 167, 229, 263, 330, 2: 23, Adams, J.B., 26: 22, Adams, Lt. R.D., 2: 127, 159, 208, Adams, Sir Jameson Obituary, 3: 76, A Adams Cape, 1: 248, Adams Glacier, 2: 425, Adams Island, 4: 201, 302, “101 In Sung”, f/v, 21: 36, Adamson, R.G. 3: 474-45, 4: 6, 62, 116, 166, 224, ‘A’ Hut restorations, 12: 175, 220, 25: 16, 277, Aaron, Edwin, 11: 55, Adare, Cape - see Hallett Station Abbiss, Jane, 20: 8, Addison, Vicki, 24: 33, Aboa Station, (Finland) 12: 227, 13: 114, Adelaide Island (Base T), see Bases F.I.D.S. Abbott, Dr N.D.
    [Show full text]
  • The Use of Simple Physical Models in Seismology and Glaciology
    The Use of Simple Physical Models in Seismology and Glaciology A dissertation presented by Victor Chen Tsai to The Department of Earth and Planetary Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Earth and Planetary Sciences Harvard University Cambridge, Massachusetts May 2009 c 2009 - Victor Chen Tsai All rights reserved. Dissertation Advisor: Author: Professor James R. Rice Victor Chen Tsai The Use of Simple Physical Models in Seismology and Glaciology Abstract In this thesis, I present results that span a number of largely independent topics within the broader disciplines of seismology and glaciology. The problems addressed in each section are quite different, but the approach taken throughout is to use simplified models to attempt to understand more complex physical systems. In these models, use of solid and fluid mechanics are important elements, though in some cases the mechanics are greatly simplified so that progress can be more easily made. The five primary results of this thesis can be summarized as follows: (1) Glacial earthquakes, which were known as enigmatic M 5 seismic sources prior to the work presented S ∼ here, are now characterized and understood as being due to coupling of gravitational energy from large calving icebergs into the solid Earth. (2) Rapid drainage events from meltwater lakes on Greenland can be understood in terms of models of turbulent hydraulic fracture at the base of the Greenland Ice Sheet. (3) The form of ‘lake star’ melt patterns on lake ice can be quantitatively modeled as arising from flow of warm water through slushy ice.
    [Show full text]