FILTERS and MULTIPLEXERS By
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Catv Cabling System
NYULMC AMBULATORY CARE CENTER – FIT-OUT PHASE 1 Perkins & Will Architects PC 222 E 41st ST, NYC Project: 032698.000 Issued for GMP March 15, 2017 SECTION 27 41 33 CATV CABLING PART 1 - GENERAL 1.1 SYSTEM DESCRIPTION A. Furnish and install a complete and fully operational Television Signal Distribution System capable of delivering up to 158 video channels (6 MHz NTSC Channels containing NTSC, ATSC and QAM modulated programs) and IP Video over an installed Category 6A unshielded twisted pair cable system. The System shall utilize a cable plant comprised of a TIA/EIA 568 compliant horizontal distribution cable system and a coaxial and/or single mode fiber backbone system. The System shall employ Active Automatic Gain Control Electronics to adjust the video signal levels to each TV and shall be capable of supporting up to 14,000 connected devices. The System shall support bi-directional RF transmission for backbone interconnections. Include amplifiers, power supplies, cables, outlets, attenuators, hubs, baluns, adaptors, transceivers, and other parts necessary for the reception and distribution of the local CATV signals. Back-feed existing campus system. (CAT 5e is acceptable to 117 channels) B. Distribute cable channels to TV outlets to permit simple connection of EIA standard Analog/Digital television receivers. C. Deliver at outlets monochrome and NTSC color television signals without introducing noticeable effect on picture and color fidelity or sound. Signal levels and performance shall meet or exceed the minimums specified in Part 76 of the FCC Rules and Regulations D. Provide reception quality at each outlet equal to or better than that received in the area with individual antennas. -
Scattering Parameters
Scattering Parameters Motivation § Difficult to implement open and short circuit conditions in high frequencies measurements due to parasitic L’s and C’s § Potential stability problems for active devices when measured in non-operating conditions § Difficult to measure V and I at microwave frequencies § Direct measurement of amplitudes/ power and phases of incident and reflected traveling waves 1 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 Scattering Parameters Motivation § Difficult to implement open and short circuit conditions in high frequencies measurements due to parasitic L’s and C’s § Potential stability problems for active devices when measured in non-operating conditions § Difficult to measure V and I at microwave frequencies § Direct measurement of amplitudes/ power and phases of incident and reflected traveling waves 2 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 1 General Network Formulation V + I + 1 1 Z Port Voltages and Currents 0,1 I − − + − + − 1 V I V = V +V I = I + I 1 1 k k k k k k V1 port 1 + + V2 I2 I2 V2 Z + N-port 0,2 – port 2 Network − − V2 I2 + VN – I Characteristic (Port) Impedances port N N + − + + VN I N Vk Vk Z0,k = = − + − Z0,N Ik Ik − − VN I N Note: all current components are defined positive with direction into the positive terminal at each port 3 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 Impedance Matrix I1 ⎡V1 ⎤ ⎡ Z11 Z12 Z1N ⎤ ⎡ I1 ⎤ + V1 Port 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - V2 Z21 Z22 Z2N I2 ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ I2 + ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ V2 Port 2 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - V Z Z Z I N-port ⎣ N ⎦ ⎣ N1 N 2 NN ⎦ ⎣ N ⎦ Network I N [V]= [Z][I] V + Port N N + - V Port i i,oc- Open-Circuit Impedance Parameters Port j Ij N-port Vi,oc Zij = Network I j Port N Ik =0 for k≠ j 4 Prof. -
Compact UWB Slotted Monopole Antenna with Diplexer for Simultaneous Microwave Energy Harvesting and Data Communication Applications
Progress In Electromagnetics Research C, Vol. 109, 169–186, 2021 Compact UWB Slotted Monopole Antenna with Diplexer for Simultaneous Microwave Energy Harvesting and Data Communication Applications Geriki Polaiah*, Krishnamoorthy Kandasamy, and Muralidhar Kulkarni Abstract—This paper proposes a new integration of compact ultra-wideband (UWB) slotted monopole antenna with a diplexer and rectifier for simultaneous energy harvesting and data communication applications. The antenna is composed of four symmetrical circularly slotted patches, a feed line, and a ground plane. A slotline open loop resonator based diplexer is implemented to separate the required signal from the antenna without extra matching circuit. A microwave rectifier based on the voltage doubler topology is designed for RF energy harvesting. The prototypes of the proposed antenna, diplexer, and rectifier are fabricated, measured, and compared with the simulation results. The measurement results show that the fractional impedance bandwidth of proposed UWB antenna reaches 149.7% (2.1 GHz–14.6 GHz); the diplexer minimum insertion losses (|S21|, |S31|) are 1.37 dB and 1.42 dB at passband frequencies; the output isolation (|S23|) is better than 30 dB from 1 GHz to 5 GHz; and the peak RF-DC conversion efficiency of the rectifier is 32.8% at an input power of −5dBm. The overall performance of the antenna with a diplexer and rectifier is also studied, and it is found that the proposed new configuration is suitable for simultaneous microwave energy harvesting and data communication applications. 1. INTRODUCTION Simultaneous wireless power transmission and communication is a promising technology that is intended to transmit power in free-space without wires and also provides data communication. -
Brief Study of Two Port Network and Its Parameters
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002 Brief study of two port network and its parameters Rishabh Verma, Satya Prakash, Sneha Nivedita Abstract- this paper proposes the study of the various ports (of a two port network. in this case) types of parameters of two port network and different respectively. type of interconnections of two port networks. This The Z-parameter matrix for the two-port network is paper explains the parameters that are Z-, Y-, T-, T’-, probably the most common. In this case the h- and g-parameters and different types of relationship between the port currents, port voltages interconnections of two port networks. We will also discuss about their applications. and the Z-parameter matrix is given by: Index Terms- two port network, parameters, interconnections. where I. INTRODUCTION A two-port network (a kind of four-terminal network or quadripole) is an electrical network (circuit) or device with two pairs of terminals to connect to external circuits. Two For the general case of an N-port network, terminals constitute a port if the currents applied to them satisfy the essential requirement known as the port condition: the electric current entering one terminal must equal the current emerging from the The input impedance of a two-port network is given other terminal on the same port. The ports constitute by: interfaces where the network connects to other networks, the points where signals are applied or outputs are taken. In a two-port network, often port 1 where ZL is the impedance of the load connected to is considered the input port and port 2 is considered port two. -
Multi-Coupled Resonator Microwave Diplexer with High Isolation
Proceedings of the 46th European Microwave Conference Multi-Coupled Resonator Microwave Diplexer with High Isolation Augustine O. Nwajana, Kenneth S. K. Yeo Department of Electrical and Electronic Engineering University of East London London, UK [email protected] Abstract—A microwave diplexer achieved by coupling a dual- and dual-band filter (DBF) design [7], engineers can achieve band bandpass filter onto two single-bands (transmit, Tx and diplexers purely based on existing formulations rather than receive, Rx) bandpass filters is presented. This design eliminates developing complex optimisation algorithm to achieve the the need for employing external junctions in diplexer design, as same function. Also, since the resultant diplexer in this paper is opposed to the conventional design approach which requires formed by coupling a section of the BPF resonators, onto a th separate junctions for energy distribution. A 10-pole (10 order) section of the DBF resonators, a reduced sized diplexer is diplexer has been successfully designed, simulated, fabricated achieved. This is because the energy distributing resonators and measured. The diplexer is composed of 2 poles from the dual- (that is, the two DBF resonators), contribute one resonant pole band filter, 4 poles from the Tx bandpass filter, and the to the diplexer Tx channel and one resonant pole to the diplexer remaining 4 poles from the Rx bandpass filter. The design was implemented using asynchronously tuned microstrip square Rx channel. Therefore, the large size issue with the open-loop resonators. The simulation and measurement results conventional diplexer design can be avoided, as external show that an isolation of 50 dB is achieved between the diplexer junctions (or external/common resonator) are not required. -
Model-Based Vector-Fitting Method for Circuit Model Extraction of Coupled-Resonator Diplexers Ping Zhao, Student Member, IEEE, and Ke-Li Wu, Fellow, IEEE
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 64, NO. 6, JUNE 2016 1787 Model-Based Vector-Fitting Method for Circuit Model Extraction of Coupled-Resonator Diplexers Ping Zhao, Student Member, IEEE, and Ke-Li Wu, Fellow, IEEE Abstract— In this paper, a novel rational function approxi- In mass production of such microwave devices, the physical mation method, namely, model-based vector fitting (MVF), is realization is highly sensitive to the dimensional tolerance of proposed for accurate extraction of the characteristic functions the resonators as well as the coupling elements. Therefore, of a coupled-resonator diplexer with a resonant type of junction from noise-contaminated measurement data. MVF inherits all the manual tuning is necessary in the production process to meet merits of the vector-fitting (VF) method and can also stipulate the stringent system specifications. Traditionally, the tuning the order of the numerator of the model. Thus, MVF is suitable is accomplished by skilled technologists through consecutive for the high-order diplexer system identification problem against manual adjustments based on their years of accumulated measurement noise. With the extracted characteristic functions, experience. Tuning a coupled-resonator device with a complex a three-port transversal coupling matrix of a diplexer can be synthesized. A matrix orthogonal transformation strategy is also coupling topology is a demanding, time-consuming, and costly proposed to transform the obtained transversal matrix to a target process. A computer-aided tuning (CAT) tool that can identify coupling matrix configuration, whose entries have one-to-one those unsatisfying coupling values and deterministically guide relationship with the physical tuning elements. -
Mantchingpost
ANALYSIS AND SYNTHESIS OF MILLIMETRIC E-PLANE DIPLEXERS IN RECTANGULAR WAVEGUIDE -Antonio Morini, Tullio Rozzi Dipartimento di Elettronica e Automatica, Universitk di Ancona ABSTRACI A novel E-plane diplexer is proposed and discussed. Its feature is the matching section of the three-port junction, obtained by means of an E-plane septum, realized on the same mask as the branching filters and placed in the cavity of an abrupt E- plane junction. The latter is designed-in such-a way that, when combine d with two,reasbnably 7good filters, separately designed and suitably positioned, the resulting diplexer gives good performances without further optimization. This design technique, based on the properties of the scattering parameters of a reciprocal lossless three-portjunction, is , as such, of general validity and easily extended to other structures. INTRQD_UCTION The more expensive part of an E-plane circuit in rectangular waveguide for millimetric application is its housing. In fact, its fabrication requires high precision milling machines and it is difficult to: reduce tolerances below 10 t for each half housing. Therefore, it becomes important to simplify as much as possible the housing geometry, even increasing the complexity of the mask. For this reason, we study an E-plane diplexer based on an abrupt three-portjunction, in lieu of a tapered junction, Dittlof and Andt- (1-2), Vahldieck and Varailhon- de la Filolie(3), requiring more expensive mechanical construction. The junction is tuned by a single inductive post, built on the same mask as the E-plane filters and placed between the junction and the bifurcation, as shown in fig.1, Morini et al. -
(12) United States Patent (10) Patent No.: US 7,593,639 B2 Farmer Et Al
US007593639B2 (12) United States Patent (10) Patent No.: US 7,593,639 B2 Farmer et al. (45) Date of Patent: Sep. 22, 2009 (54) METHOD AND SYSTEM FOR PROVIDINGA 4.495,545 A 1/1985 Dufresne et al. RETURN PATH FOR SIGNALS GENERATED 4,500,990 A 2f1985 Akashi BY LEGACY TERMINALS IN AN OPTICAL (Continued) NETWORK (75) FOREIGN PATENT DOCUMENTS Inventors: James O. Farmer, Lilburn, GA (US); John J. Kenny, Suwanee, GA (US); CA 2107922 A1 4, 1995 Patrick W. Quinn, Lafayette, CA (US); (Continued) Deven J. Anthony, Tampa, FL (US) OTHER PUBLICATIONS (73) Assignee: Enablence USA FTTX Networks Inc., Title: Spectral Grids for WDM Applications: CWDM Wavelength Alpharetta, GA (US) Grid, Publ: International Telecommunications Union, pp. i-iii and 1-4, Date: Dec. 1, 2003. (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 0 days. Primary Examiner Agustin Bello (74) Attorney, Agent, or Firm—Sentry Law Group; Steven P. (21) Appl. No.: 11/654,392 Wigmore (65) Prior Publication Data A return path system includes inserting RF packets between US 2007/0223928A1 Sep. 27, 2007 regular upstream data packets, where the data packets are generated by communication devices such as a computer or Related U.S. Application Data internet telephone. The RF packets can be derived from ana log RF signals that are produced by legacy video service (63) Continuation of application No. 10,041,299, filed on terminals. In this way, the present invention can provide an Jan. 8, 2002, now Pat. -
Digital Audio for NTSC Television
Digital Audio for NTSC Television Craig C. Todd Dolby Laboratories San Francisco 0. Abstract A previously proposed method of adding a digital similarities between B-PAL and M-NTSC indicated carrier to the NTSC broadcast channel was found to that the Scandinavian test results would apply in the be marginally compatible with adjacent channel U.S. Our original 1987 proposal was: operation. The technique also has some problems unique to broadcasters. Digital transmission A. QPSK carrier with alpha=0.7 filtering. techniques are reviewed, and a new set of digital transmission parameters are developed which are B. Carrier frequency 4.85 MHz above video thought to be optimum for digital sound with NTSC carrier. television. C. Carrier level -20 dB with respect to peak vision carrier level. I. Introduction Compatibility testing of that system has been It is very feasible to compatibly add digital audio to performed, and some television sets have been found the NTSC television signal as carried on cable on which the data carrier causes detectable television systems. Besides the marketing advantage interference to the upper adjacent video channel in a which can accompany the use of anything "digital", clean laboratory setting. It should be noted that with there are some real advantages to digital these problem sets, the FM aural carrier also caused broadcasting, especially where the transmission path noticeable interference to the upper adjacent picture. is imperfect. Digital transmission is inherently The interference from data occurs into luminance, robust. While the coding of high quality audio into and manifests itself as additive noise between digital form theoretically entails a loss of quality, approximately 1 MHz and 1.4 MHz. -
Solutions to Problems
Solutions to Problems Chapter l 2.6 1.1 (a)M-IC3T3/2;(b)M-IL-3y4J2; (c)ML2 r 2r 1 1.3 (a) 102.5 W; (b) 11.8 V; (c) 5900 W; (d) 6000 w 1.4 Two in series connected in parallel with two others. The combination connected in series with the fifth 1.5 6 V; 16 W 1.6 2 A; 32 W; 8 V 1.7 ~ D.;!b n 1.8 in;~ n 1.9 67.5 A, 82.5 A; No.1, 237.3 V; No.2, 236.15 V; No. 3, 235.4 V; No. 4, 235.65 V; No.5, 236.7 V Chapter 2 2.1 3il + 2i2 = 0; Constraint equation, 15vl - 6v2- 5v3- 4v4 = 0 i 1 - i2 = 5; i 1 = 2 A; i2 = - 3 A -6v1 + l6v2- v3- 2v4 = 0 2.2 va\+va!=-5;va=2i2;va=-3il; -5vl- v2 + 17v3- 3v4 = 0 -4vl - 2vz- 3v3 + l8v4 = 0 i1 = 2 A;i2 = -3 A 2.7 (a) 1 V ±and 2.4 .!?.; (b) 10 V +and 2.3 v13 + v2 2 = 0 (from supernode 1 + 2); 10 n; (c) 12 V ±and 4 n constraint equation v1- v2 = 5; v1 = 2 V; v2=-3V 2.8 3470 w 2.5 2.9 384 000 w 2.10 (a) 1 .!?., lSi W; (b) Ra = 0 (negative values of Ra not considered), 162 W 2.11 (a) 8 .!?.; (b),~ W; (c) 4 .!1. 2.12 ! n. By the principle of superposition if 1 A is fed into any junction and taken out at infinity then the currents in the four branches adjacent to the junction must, by symmetry, be i A. -
2-PORT CIRCUITS Objectives
Notes for course EE1.1 Circuit Analysis 2004-05 TOPIC 10 – 2-PORT CIRCUITS Objectives: . Introduction . Re-examination of 1-port sub-circuits . Admittance parameters for 2-port circuits . Gain and port impedance from 2-port admittance parameters . Impedance parameters for 2-port circuits . Hybrid parameters for 2-port circuits 1 INTRODUCTION Amplifier circuits are found in a large number of appliances, including radios, TV, video, audio, telephony (mobile and fixed), communications and instrumentation. The applications of amplifiers are practically unlimited. It is clear that an amplifier circuit has an input signal and an output signal. This configuration is represented by a device called a 2-port circuit, which has an input port for the input signal and an output port for the output signal. In this topic, we look at circuits from this point of view. To develop the idea of 2-port circuits, consider a general 1-port sub-circuit of the type we are very familiar with: The basic passive elements, resistor, inductor and capacitor, and the independent sources, are the simplest 1-port sub-circuits. A more general 1-port sub-circuit contains any number of interconnected resistors, capacitors, inductors, and sources and could have many nodes. Sometimes, perhaps when we have finished designing a circuit, we become less interested in the detail of the elements interconnected in the circuit and are happy to represent the 1-port circuit by how it behaves at its terminals. This is achieved by use of circuit analysis to determine the relationship between the voltage V1 across the terminals and the current I1 flowing through the terminals which leads to a Thevenin or Norton equivalent circuit, which can be used as a simpler replacement for the original complex circuit. -
Tvtransmitter 2/O.2 Kw Band Lll with Modulation at a Fixed Lf :T
SIEMENS TVTransmitter 2/O.2 kW Band lll with modulation at a fixed lF :t Contents V l. Design ll. Features lll. Construction lV. Principles of Operation V. Electrical Data Vl. Scope ol Delivery rt v lssued by Bereich Bauelemente, Vertrieb, Balanstraße 73.8000 München 80 Terms of de lverv and riahts to chanse desisn reserved. l. Design fhe 2/O.2 kW VHF Band lll television transmitter consists Transmitter preamplifier stages up to an output power ot vof separate amplifier chains for the picture and sound approx. 1O W fitted with silicon transistors. signals with a combining network at the output. The pic- ture and sound pre stage with associated power supply Modulation at f ixed lF. is located in one cabinet together with the 2/0.2 kW out- For TV transmission in accordance with CCIR Recom- put stage with power supply and the diplexer in a second mendalions (625 lines, channel bandwidth 7 MHz). cabinet, the combining unit. lt is possible to house in picture this cabinet also some monitoring equipment. As Also available for FCC or OIRT standards. monitor, oscilloscope, switch point selector, sound de- modulator, Nyquist demodulator, but note this equipment Completely color-compatible for NTSC, PAL or SECAM is not part of the transmitter. standards. The standard version is designed for operation in accord- ance with the CCIR Recommendations (625 lines, T MHz channel bandwldth). lf required the transmitter can also be supplied to the FCC standard (525 lines, 6 MHz channel bandwidth), or OIRT standard (625 lines, S MHz channel lll. Construction For is fully bandwidth).