Catv Cabling System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Twisted-Pair Telephone Transmission Line
High Frequency Design From November 2002 High Frequency Electronics Copyright © 2002, Summit Technical Media, LLC TRANSMISSION LINES The Twisted-Pair Telephone Transmission Line By Richard LAO Sumida America Technologies elephone line is a This article reviews the prin- balanced twisted- ciples of operation and Tpair transmission measurement methods for line, and like any electro- twisted pair (balanced) magnetic transmission transmission lines common- line, its characteristic ly used for xDSL and ether- impedance Z0 can be cal- net computer networking culated from manufactur- ers’ data and measured on an instrument such as the Agilent 4395A (formerly Hewlett-Packard HP4395A) net- Figure 1. Lumped element model of a trans- work analyzer. For lowest bit-error-rate mission line. (BER), central office and customer premise equipment should have analog front-end cir- cuitry that matches the telephone line • Category 3: BWMAX <16 MHz. Intended for impedance. This article contains a brief math- older networks and telephone systems in ematical derivation and and a computer pro- which performance over frequency is not gram to generate a graph of characteristic especially important. Used for voice, digital impedance as a function of frequency. voice, older ethernet 10Base-T and commer- Twisted-pair line for telephone and LAN cial customer premise wiring. The market applications is typically fashioned from #24 currently favors CAT5 installations instead. AWG or #26 AWG stranded copper wire and • Category 4: BWMAX <20 MHz. Not much will be in one of several “categories.” The used. Similar to CAT5 with only one-fifth Electronic Industries Association (EIA) and the bandwidth. the Telecommunications Industry Association • Category 5: BWMAX <100 MHz. -
Compact UWB Slotted Monopole Antenna with Diplexer for Simultaneous Microwave Energy Harvesting and Data Communication Applications
Progress In Electromagnetics Research C, Vol. 109, 169–186, 2021 Compact UWB Slotted Monopole Antenna with Diplexer for Simultaneous Microwave Energy Harvesting and Data Communication Applications Geriki Polaiah*, Krishnamoorthy Kandasamy, and Muralidhar Kulkarni Abstract—This paper proposes a new integration of compact ultra-wideband (UWB) slotted monopole antenna with a diplexer and rectifier for simultaneous energy harvesting and data communication applications. The antenna is composed of four symmetrical circularly slotted patches, a feed line, and a ground plane. A slotline open loop resonator based diplexer is implemented to separate the required signal from the antenna without extra matching circuit. A microwave rectifier based on the voltage doubler topology is designed for RF energy harvesting. The prototypes of the proposed antenna, diplexer, and rectifier are fabricated, measured, and compared with the simulation results. The measurement results show that the fractional impedance bandwidth of proposed UWB antenna reaches 149.7% (2.1 GHz–14.6 GHz); the diplexer minimum insertion losses (|S21|, |S31|) are 1.37 dB and 1.42 dB at passband frequencies; the output isolation (|S23|) is better than 30 dB from 1 GHz to 5 GHz; and the peak RF-DC conversion efficiency of the rectifier is 32.8% at an input power of −5dBm. The overall performance of the antenna with a diplexer and rectifier is also studied, and it is found that the proposed new configuration is suitable for simultaneous microwave energy harvesting and data communication applications. 1. INTRODUCTION Simultaneous wireless power transmission and communication is a promising technology that is intended to transmit power in free-space without wires and also provides data communication. -
HD Television on Cat 5/6 Cable Cable TV on Cat 5/6 Cable
HD Television on Cat 5/6 Cable Cable TV on Cat 5/6 Cable Innovative Technology .... Exceptional Quality! The Lynx® Television Network Distributes up to 640 digital Increases flexibility for moves, adds channels on Cat 5 or Cat 6 cable and changes Excellent for cable TV, SMATV, or Improves reliability off-air television distribution Creates a technology bridge to Simplifies cabling requirements Internet TV and IPTV The Lynx Television Network simultaneously simplifies installation, standardizes the wiring, delivers up to 210 HDTV channels, 640 and reduces maintenance requirements. standard digital channels, or 134 analog channels on Cat 5 or Cat 6 cable. Frequency The Lynx Network increases system flexibility capabilities are 5 MHz to 860 MHz. because moves, adds, and changes are easy with Cat5/6 cable. A Lynx hub in the wiring closet converts an unbalanced coaxial signal into eight or A homerun wiring design improves reliability sixteen balanced signals transmitted on because there are no taps or splitters between twisted pair cables. At the point of use a the distribution hub and the TV. wallplate F or single port converter changes the signal back to coaxial form. The Lynx Network also provides a “technology bridge” to Internet TV and IPTV by setting up the cabling that these technologies use. A patented RF balun is the centerpiece of the Lynx design. A pair of send / receive baluns delivers a clean RF signal to each TV (on pair four). The baluns use an RF technology that delivers HD, digital, and analog channels on network cables without using any bandwidth Wallplate F Single port converter on the network itself. -
Introduction to Digital Subscriber's Line (DSL) Chapter 2 Telephone
Introduction to Digital Subscriber’s Line (DSL) Professor Fu Li, Ph.D., P.E. © Chapter 2 Telephone Infrastructure · Telephone line dates back to Bell in 1875 · Digital Transmission technology using complex algorithm based on DSP and VLSI to compensate impairments common to phone lines. · Phone line carries the single voice signal with 3.4 KHz bandwidth, DSL conveys 100 Compressed voice signals or a video signals. 1 · 15% phones require upgrade activities. · Phone company spent approximately 1 trillion US dollars to construct lines; · 700 millions are in service in 1997, 900 millions by 2001. · Most lines will support 1 Mb/s for DSL and many will support well above 1Mb/s data rate. Typical Voice Network 2 THE ACCESS NETWORK • DSL is really an access technology, and the associated DSL equipment is deployed in the local access network. • The access network consists of the local loops and associated equipment that connects the service user location to the central office. • This network typically consists of cable bundles carrying thousands of twisted-wire pairs to feeder distribution interfaces (FDIs). Two primary ways traditionally to deal with long loops: • 1.Use loading coils to modify the electrical characteristics of the local loop, allowing better quality voice-frequency transmission over extended distances (typically greater than 18,000 feet). • Loading coils are not compatible with the higher frequency attributes of DSL transmissions and they must be removed before DSL-based services can be provisioned. 3 Two primary ways traditionally to deal with long loops • 2. Set up remote terminals where the signals could be terminated at an intermediate point, aggregated and backhauled to the central office. -
Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems
Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems Paul Sabatino, [email protected] This paper details the impact of new advances in residential broadband networking, including ADSL, HDSL, VDSL, RADSL, cable modems. History as well as future trends of these technologies are also addressed. OtherReports on Recent Advances in Networking Back to Raj Jain's Home Page Table of Contents ● 1. Introduction ● 2. DSL Technologies ❍ 2.1 ADSL ■ 2.1.1 Competing Standards ■ 2.1.2 Trends ❍ 2.2 HDSL ❍ 2.3 SDSL ❍ 2.4 VDSL ❍ 2.5 RADSL ❍ 2.6 DSL Comparison Chart ● 3. Cable Modems ❍ 3.1 IEEE 802.14 ❍ 3.2 Model of Operation ● 4. Future Trends ❍ 4.1 Current Trials ● 5. Summary ● 6. Glossary ● 7. References http://www.cis.ohio-state.edu/~jain/cis788-97/rbb/index.htm (1 of 14) [2/7/2000 10:59:54 AM] Digital Subscriber Lines and Cable Modems 1. Introduction The widespread use of the Internet and especially the World Wide Web have opened up a need for high bandwidth network services that can be brought directly to subscriber's homes. These services would provide the needed bandwidth to surf the web at lightning fast speeds and allow new technologies such as video conferencing and video on demand. Currently, Digital Subscriber Line (DSL) and Cable modem technologies look to be the most cost effective and practical methods of delivering broadband network services to the masses. <-- Back to Table of Contents 2. DSL Technologies Digital Subscriber Line A Digital Subscriber Line makes use of the current copper infrastructure to supply broadband services. -
Multi-Coupled Resonator Microwave Diplexer with High Isolation
Proceedings of the 46th European Microwave Conference Multi-Coupled Resonator Microwave Diplexer with High Isolation Augustine O. Nwajana, Kenneth S. K. Yeo Department of Electrical and Electronic Engineering University of East London London, UK [email protected] Abstract—A microwave diplexer achieved by coupling a dual- and dual-band filter (DBF) design [7], engineers can achieve band bandpass filter onto two single-bands (transmit, Tx and diplexers purely based on existing formulations rather than receive, Rx) bandpass filters is presented. This design eliminates developing complex optimisation algorithm to achieve the the need for employing external junctions in diplexer design, as same function. Also, since the resultant diplexer in this paper is opposed to the conventional design approach which requires formed by coupling a section of the BPF resonators, onto a th separate junctions for energy distribution. A 10-pole (10 order) section of the DBF resonators, a reduced sized diplexer is diplexer has been successfully designed, simulated, fabricated achieved. This is because the energy distributing resonators and measured. The diplexer is composed of 2 poles from the dual- (that is, the two DBF resonators), contribute one resonant pole band filter, 4 poles from the Tx bandpass filter, and the to the diplexer Tx channel and one resonant pole to the diplexer remaining 4 poles from the Rx bandpass filter. The design was implemented using asynchronously tuned microstrip square Rx channel. Therefore, the large size issue with the open-loop resonators. The simulation and measurement results conventional diplexer design can be avoided, as external show that an isolation of 50 dB is achieved between the diplexer junctions (or external/common resonator) are not required. -
900152-001-How to Make CAT-5 Twisted-Pair Network Cables
April 2005 900152-001 - Rev 00 How to make category 5 twisted-pair network cables Introduction The purpose of this document is to show you how to make the two kinds Stranded wire patch cables are often specified for cable segments running of category 5 twisted-pair network cables that can be used to network one from a wall jack to a PC and for patch panels. They are more flexible than or more countertops together with a jukebox to form quick and simple solid core wire. However, the rational for using it is that the constant local area network (LAN). flexing of patch cables may wear-out solid core cable-break it. Also, stranded cable is susceptible to degradation from moisture infiltration, may use an alternate color code, and should not be used for cables longer LANs simplified than 3 Meters (about 10 feet). A LAN can be as simple as two units, each having a network interface card CAT 5 cable has four twisted (NIC) or network adapter and running network software, connected pairs of wire for a total of eight together with a crossover cable. The next step up would be a network individually insulated wires. consisting of (the hub performs the crossover function). Each pair is color coded with one wire having a solid color (blue, orange, green, or brown) twisted around a second wire with a white background and a stripe of the same color. The solid colors may have a white stripe in some cables. Cable colors are commonly described using the background color followed by the color of the stripe; e.g., white-orange is a cable with a white background and an orange stripe. -
Model-Based Vector-Fitting Method for Circuit Model Extraction of Coupled-Resonator Diplexers Ping Zhao, Student Member, IEEE, and Ke-Li Wu, Fellow, IEEE
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 64, NO. 6, JUNE 2016 1787 Model-Based Vector-Fitting Method for Circuit Model Extraction of Coupled-Resonator Diplexers Ping Zhao, Student Member, IEEE, and Ke-Li Wu, Fellow, IEEE Abstract— In this paper, a novel rational function approxi- In mass production of such microwave devices, the physical mation method, namely, model-based vector fitting (MVF), is realization is highly sensitive to the dimensional tolerance of proposed for accurate extraction of the characteristic functions the resonators as well as the coupling elements. Therefore, of a coupled-resonator diplexer with a resonant type of junction from noise-contaminated measurement data. MVF inherits all the manual tuning is necessary in the production process to meet merits of the vector-fitting (VF) method and can also stipulate the stringent system specifications. Traditionally, the tuning the order of the numerator of the model. Thus, MVF is suitable is accomplished by skilled technologists through consecutive for the high-order diplexer system identification problem against manual adjustments based on their years of accumulated measurement noise. With the extracted characteristic functions, experience. Tuning a coupled-resonator device with a complex a three-port transversal coupling matrix of a diplexer can be synthesized. A matrix orthogonal transformation strategy is also coupling topology is a demanding, time-consuming, and costly proposed to transform the obtained transversal matrix to a target process. A computer-aided tuning (CAT) tool that can identify coupling matrix configuration, whose entries have one-to-one those unsatisfying coupling values and deterministically guide relationship with the physical tuning elements. -
Mantchingpost
ANALYSIS AND SYNTHESIS OF MILLIMETRIC E-PLANE DIPLEXERS IN RECTANGULAR WAVEGUIDE -Antonio Morini, Tullio Rozzi Dipartimento di Elettronica e Automatica, Universitk di Ancona ABSTRACI A novel E-plane diplexer is proposed and discussed. Its feature is the matching section of the three-port junction, obtained by means of an E-plane septum, realized on the same mask as the branching filters and placed in the cavity of an abrupt E- plane junction. The latter is designed-in such-a way that, when combine d with two,reasbnably 7good filters, separately designed and suitably positioned, the resulting diplexer gives good performances without further optimization. This design technique, based on the properties of the scattering parameters of a reciprocal lossless three-portjunction, is , as such, of general validity and easily extended to other structures. INTRQD_UCTION The more expensive part of an E-plane circuit in rectangular waveguide for millimetric application is its housing. In fact, its fabrication requires high precision milling machines and it is difficult to: reduce tolerances below 10 t for each half housing. Therefore, it becomes important to simplify as much as possible the housing geometry, even increasing the complexity of the mask. For this reason, we study an E-plane diplexer based on an abrupt three-portjunction, in lieu of a tapered junction, Dittlof and Andt- (1-2), Vahldieck and Varailhon- de la Filolie(3), requiring more expensive mechanical construction. The junction is tuned by a single inductive post, built on the same mask as the E-plane filters and placed between the junction and the bifurcation, as shown in fig.1, Morini et al. -
(12) United States Patent (10) Patent No.: US 7,593,639 B2 Farmer Et Al
US007593639B2 (12) United States Patent (10) Patent No.: US 7,593,639 B2 Farmer et al. (45) Date of Patent: Sep. 22, 2009 (54) METHOD AND SYSTEM FOR PROVIDINGA 4.495,545 A 1/1985 Dufresne et al. RETURN PATH FOR SIGNALS GENERATED 4,500,990 A 2f1985 Akashi BY LEGACY TERMINALS IN AN OPTICAL (Continued) NETWORK (75) FOREIGN PATENT DOCUMENTS Inventors: James O. Farmer, Lilburn, GA (US); John J. Kenny, Suwanee, GA (US); CA 2107922 A1 4, 1995 Patrick W. Quinn, Lafayette, CA (US); (Continued) Deven J. Anthony, Tampa, FL (US) OTHER PUBLICATIONS (73) Assignee: Enablence USA FTTX Networks Inc., Title: Spectral Grids for WDM Applications: CWDM Wavelength Alpharetta, GA (US) Grid, Publ: International Telecommunications Union, pp. i-iii and 1-4, Date: Dec. 1, 2003. (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 0 days. Primary Examiner Agustin Bello (74) Attorney, Agent, or Firm—Sentry Law Group; Steven P. (21) Appl. No.: 11/654,392 Wigmore (65) Prior Publication Data A return path system includes inserting RF packets between US 2007/0223928A1 Sep. 27, 2007 regular upstream data packets, where the data packets are generated by communication devices such as a computer or Related U.S. Application Data internet telephone. The RF packets can be derived from ana log RF signals that are produced by legacy video service (63) Continuation of application No. 10,041,299, filed on terminals. In this way, the present invention can provide an Jan. 8, 2002, now Pat. -
Digital Audio for NTSC Television
Digital Audio for NTSC Television Craig C. Todd Dolby Laboratories San Francisco 0. Abstract A previously proposed method of adding a digital similarities between B-PAL and M-NTSC indicated carrier to the NTSC broadcast channel was found to that the Scandinavian test results would apply in the be marginally compatible with adjacent channel U.S. Our original 1987 proposal was: operation. The technique also has some problems unique to broadcasters. Digital transmission A. QPSK carrier with alpha=0.7 filtering. techniques are reviewed, and a new set of digital transmission parameters are developed which are B. Carrier frequency 4.85 MHz above video thought to be optimum for digital sound with NTSC carrier. television. C. Carrier level -20 dB with respect to peak vision carrier level. I. Introduction Compatibility testing of that system has been It is very feasible to compatibly add digital audio to performed, and some television sets have been found the NTSC television signal as carried on cable on which the data carrier causes detectable television systems. Besides the marketing advantage interference to the upper adjacent video channel in a which can accompany the use of anything "digital", clean laboratory setting. It should be noted that with there are some real advantages to digital these problem sets, the FM aural carrier also caused broadcasting, especially where the transmission path noticeable interference to the upper adjacent picture. is imperfect. Digital transmission is inherently The interference from data occurs into luminance, robust. While the coding of high quality audio into and manifests itself as additive noise between digital form theoretically entails a loss of quality, approximately 1 MHz and 1.4 MHz. -
Conducted and Wireless Media (Part I)
School of Business Eastern Illinois University Conducted and Wireless Media (Part I) (October 3, 2016) © Abdou Illia, Fall 2016 2 Learning Objectives Outline characteristics of conducted media Select conducted media in LAN design 3 Major categories of Media Conducted Media – Physically connect network devices Wireless Media – Use electromagnetic waves/radiation 1 4 Conducted Media Twisted Pair cable Coaxial cable Optical Fiber cable Twisted Pair wire 5 Shielded Twisted Pair (STP) Versus Unshielded Twisted Pair (UTP) Typically 2 or more Twisted pair wires & different standards for different applications http://en.wikipedia.org/wiki/Twisted_pair Twisted Pair wire 6 2 Q: Are Shielded Twisted Pairs (STP) affected by interference ? 2 Coaxial cable 7 A single wire wrapped in a foam (or plastic) insulation surrounded by a braided metal shield, then covered in a plastic jacket Cable can be thick or thin Provides for wide range of frequencies Coaxial cable 8 Two major coaxial technologies: Baseband Coaxial tech. Broadband Coaxial tech. Uses digital signaling Transmits anal./digital signals One channel of digital data Multiple channels of data ~1 kilometer w/o repeater ~ 4 kilometer w/o repeater Thin coaxial cable – Typically used for digital data transmission in Ethernet LANs – Typically used for baseband transmission Thick coaxial cable Less – Typically for broadband transmission noise/interference – Typically used for video transmission compared to twisted pairs Coaxial cable 9 Coaxial cable standards: Type ① Ohm rating② Use RG-11 75 ohm Used in 10Base5 Ethernet (known as Thick Ethernet) RG-58 50 ohm Used in 10Base2 Ethernet RG (Radio Guide) specifies characteristics like wire thickness, insulation thickness, electrical properties, etc.