Promethium-147
Total Page:16
File Type:pdf, Size:1020Kb
RADIONUCLIDE PRODUCTION FOR RADIOISOTOPE MICRO-POWER SOURCE TECHNOLOGIES _______________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by DAVID E. MEIER Dr. J. David Robertson, Dissertation Supervisor DECEMBER 2008 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled RADIONUCLIDE PRODUCTION FOR RADIOISOTOPE MICRO-POWER SOURCE TECHNOLOGIES presented by David Meier, a candidate for the degree of Doctor of Philosophy. and hereby certify that, in their opinion, it is worthy of acceptance. Professor J. David Robertson Professor Silvia Jurisson Professor Carol Deakyne Professor William Miller Professor Michael Greenlief For my children, Mark, Brian, Steven, Benjamin, and Madison, with the hope that you will appreciate and understand the sacrifices made for you. Nullum periculum nullum gaudium Acknowledgment I wish to thank my wife, Martha, for her strength, humor, and patience. I am grateful of the sacrifices that she made so that I could fulfill my dream. I am impressed with and proud of her commitment to our marriage and our family. I am truly amazed of her selfless nature, most notable with allowing me to pursue an internship at Lawrence Livermore National Laboratory while being 6 months pregnant with our daughter Madison. I wish to thank Dr. Dave Robertson for his passion and inspiration during my graduate career. I am also grateful for his patience and guidance in making this work possible. I will be forever in his debt. I am grateful for the support and guidance of Drs. Alexander Garnov and John Brockman, these gentlemen and their friendships are dear to me. I wish to express my respect and admiration for Dr. Silvia Jurisson for all of her support and kindness. I am also impressed with the work and dedication of the members of my committee for whom I have the utmost respect and appreciation. I am grateful for my friendship with Dr. Chris Eiting and the many people at Qynergy, GTI, and Trace Photonic for their intellectual and monetary support. I would also like to take the opportunity to thank Deborah and Danny Clark, the members of the Robertson group, the University of Missouri, the Chemistry Department, and the many people at MURR. Finally, I with to thank my mother and late father as well as all of my brothers who helped shape me into the individual that I am today. I did it Mom! ii Table Of Contents Acknowledgment ..................................................................................................... ii List of Figures......................................................................................................... vi List of Equations...................................................................................................... x List of Abbreviations ............................................................................................... xi 1 - Introduction.....................................................................................................- 1 - 1.01 - MEMS........................................................................................................- 1 - 1.02 - Energy density comparison .......................................................................- 2 - 1.03 - Potential applications of nuclear conversion technologies.........................- 5 - 1.04 - History of RIMS devices ............................................................................- 6 - 1.05 - BETACEL and ISOMITE nuclear conversion devices .............................- 11 - 1.06 - Output characteristics of RIMS device ....................................................- 12 - 1.07 - Types of RIMS.........................................................................................- 15 - 1.08 - Ideal sources ...........................................................................................- 16 - 1.09 - Non-ionizing energy loss (NIEL)..............................................................- 17 - 1.10 - Objectives................................................................................................- 20 - 2 - Sulfur-35.......................................................................................................- 21 - 2.01 - Background of production chemistries ....................................................- 22 - 2.02 - Irradiation of analysis of KCl....................................................................- 23 - 2.03 - Sulfur production chemistries ..................................................................- 36 - 2.04 - Experimental method for obtaining elemental sulfur from an irradiated KCl target and non-radioactive BaSO4 using chromium powder as the reducing agent ............................................................................................................- 37 - iii 2.05 - Experimental method for obtaining elemental sulfur from barium sulfate utilizing tin as the reducing agent .................................................................- 40 - 2.06 - Results and discussion for the production experiments utilizing the chromium reducing agent.............................................................................- 41 - 2.07 - Results of experiments utilizing tin (II) as the reducing agent..................- 45 - 2.08 - Sulfur-35 source production results utilizing tin (II) pyrophosphate reducing agent ............................................................................................................- 46 - 2.09 - Analysis of the elemental 35S source production method utilizing radiotracer studies using tin (II) pyrophosphate reducing agent...................- 48 - 2.10 - Summary of comprehensive analysis and modification proposals to the production method .......................................................................................- 57 - 2.11 - Summary method of 35S production from neutron irradiated potassium chloride optical discs ....................................................................................- 59 - 2.12 - Power generation in a liquid semiconductor............................................- 62 - 2.13 – Data, results, and discussion of the incorporation of 35S labeled elemental sulfur into liquid semiconductor device.........................................................- 64 - 3 - Promethium-147...........................................................................................- 73 - 3.01 - Surrogate testing .....................................................................................- 73 - 3.02 - Promethium-147 production ....................................................................- 75 - 3.03 - Monte Carlo N-Particle Transport Code (MCNP) calculations.................- 79 - 3.04 - Electroplating Promethium Metal.............................................................- 81 - 3.05 - Promethium chemistry.............................................................................- 86 - 3.06 - Electro-deposition of promethium metal on a platinum foil ......................- 88 - 3.07 - Promethium-147/silica sources ...............................................................- 90 - 3.08 - Solid-state RIMS power generation using 147Pm/silica source in a tungsten carbide package...........................................................................................- 92 - iv 3.09 - Solid-state RIMS power generation using 147Pm/silica source without tungsten carbide package ............................................................................- 94 - 4 – Future Studies .............................................................................................- 99 - References Cited.............................................................................................- 102 - VITA ................................................................................................................- 107 - v List of Figures Figure Page Figure 1 - Ragone plot......................................................................................- 4 - Figure 2 - Schematic of the intrinsic voltage of a p-n semiconductor................- 8 - Figure 3 - Schematic for solid-state betavoltaic RIMS device...........................- 9 - Figure 4 - Generic schematic for a RIMS device using 4π configuration........- 10 - Figure 5 - Stacked design for source..............................................................- 11 - Figure 6 - General data from a betavoltaic .....................................................- 12 - Figure 7 - Basic configurations of betavoltaic RIMS device............................- 14 - Figure 8 - Approximate values for NIEL for beta particles, protons, and alpha particles.....................................................................................................- 18 - Figure 9 - Irradiated KCl in 4mm x 8mm quartz tube ......................................- 23 - Figure 10 - Irradiated KCl discs and aluminum packaging .............................- 25 - Figure 11 - Enlargement of irradiated KCl disc...............................................- 26 - Figure 12 - Location of samples in KCl target (Irradiation #7).........................- 33 - Figure 13 - Experimental setup for sulfur experiments ...................................- 37 - Figure 14 - Trend results for the "cold"