Fish Gelatin: an Unmet Opportunity Joe M

Total Page:16

File Type:pdf, Size:1020Kb

Fish Gelatin: an Unmet Opportunity Joe M Contents Introduction .................................................. 1 From Sustainability to Full Utilization James Browning ............................................. 5 Plenary Alaska Seafood Byproducts: 2008 Update on Potential Products, Markets, and Competing Products Anthony P. Bimbo ............................................ 9 Fish Gelatin: An Unmet Opportunity Joe M. Regenstein, Peng Zhou, Yan Wang, and Gokhan Boran ......... 27 New Products and Uses Extraction and Determination of Chondroitin Sulfate from Fish Processing Byproducts Jesse J. Stine, Ted H. Wu, Alexandra C.M. Oliveira, Scott Smiley, and Peter J. Bechtel ............................... 41 Characterization of Dried Heads from Five Pacic Salmon Species, Dried at Different Temperatures Scott Smiley, Necla Demir, Alexandra C.M. Oliveira, and Peter J. Bechtel 55 Functional Proteins from Catsh Roe Subramaniam Sathivel, Huaixia Yin, Yuting Wan, Jianing Pu, Peter J. Bechtel, and Joan M. King ..................... 67 Alaska Fish Byproducts as a Feed Ingredient for Reindeer Greg Finstad, Carrie Bucki, George Aguiar, Eva Wiklund, and Peter J. Bechtel ............................... 73 Crop Nutrient Recovery from Applied Fish Coproducts M. Zhang, S. Sparrow, A. Pantoja, and P.J. Bechtel. 87 Enhancing Utilization of Alaska Fish Processing Byproduct Parts Peter J. Bechtel ............................................ 105 iii Contents Stickwater and Wash Waters Improving Waste Solids Quality and Recovery from Fish Processing Plants Alan Ismond . .115 Stickwater Processing by Membrane Filtration Leo D. Pedersen, Scott Smiley, Peter J. Bechtel, and Chris Spengler .... 121 Methods for Drying Stickwater Sébastien Plante, Scott Smiley, Alexandra C.M. Oliveira, and Peter J. Bechtel ......................................... 133 Recovery and Utilization of Protein from Surimi Processing Water Joaquín Rodrigo-García, Jacek Jaczynski, and J. Antonio Torres .......147 Storage, Stabilizing, and Processing Storage Effects on Separated Pink Salmon Processing Byproducts Ted H. Wu and Peter J. Bechtel ................................ 161 Converting Alaska Fish Byproducts into Compost: A Review Brian Himelbloom, Mingchu Zhang, and Cindy Bower .............. 177 Chemical and Quality Changes When Seeking Full Utilization of Seafood Resources through Pressure Processing Technologies Rosario Ramírez and J. Antonio Torres ......................... 189 Stabilizing Pink Salmon (Oncorhynchus gorbuscha) Byproducts through Modied Silage Processes Cynthia K. Bower, Katie A. Hietala, and Theodore C. DeLaca ........ 207 Montlake Process for Utilization of Salmon Processing Waste in Alaska Peter Nicklason, Peter Stitzel, Harold Barnett, Ron Johnson, and Michael Rust .......................................... 221 iv Contents Proteins, Hydrolysates, and Oils Hydrolysates from Scottish Salmon: Look before You Leap Ian D. Wright ............................................. 235 The Chemical Composition and Oxidative Stability of Alaska Commercial Salmon Oils Alexandra C.M. Oliveira, Trina J. Lapis, Tobias Popp, Brian Himelbloom, Scott Smiley, Peter J. Bechtel, and Charles A. Crapo 241 Effects of Extraction and Purication Processes on the Quality of Fish Oil Subramaniam Sathivel ...................................... 259 Composition of Hydrolysate Meals Made from Alaska Pollock, Salmon, and Flatsh Processing Byproducts: Comparisons with Traditional Alaska Fish Meals Scott Smiley, Sébastien Plante, Alexandra C.M. Oliveira, and Peter J. Bechtel ........................................ 265 Physical and Chemical Properties of Pollock and Salmon Skin Gelatin Films Roberto de Jesus Avena-Bustillos, Bor-Sen Chiou, Carl W. Olsen, Peter J. Bechtel, and Tara H. McHugh ........................... 281 Bioactivities Found in Sardine (Sardinops sagax caerulea) Byproduct Hydrolysates J.C. Ramirez-Suarez, R. Pacheco-Aguilar, E. Ponce-Alquicira, M.E. Lugo-Sánchez, A. Villalobos-Rodríguez, and I.G. Ortíz-Delgado .. 295 Index .......................................................311 v A Sustainable Future: Fish Processing Byproducts 1 Introduction The rst major symposium on byproducts from Alaska seafood pro- cessing, the International Conference of Fish By-Products, was orga- nized by the Alaska Fisheries Development Foundation (AFDF) in 1990, and the proceedings volume was published by the Alaska Sea Grant College Program (1). The symposium was held only a few years after the Bering Sea sheries were Americanized, with the implementation of the 200 mile Exclusive Economic Zone through the Magnuson Fisheries Conservation and Management Act of 1976. By 1990, shoreside process- ing plants had been built to handle the sheries resources of the eastern Bering Sea. These dwarfed other sh processing plants in Alaska, with capacities ranging up to 4.5 million pounds per day. The Alaska Department of Environmental Conservation, through the authority of the Environmental Protection Agency (Region 10) and the Clean Water Act, set standards for the high-capacity shoreside plants. They mandated the plants to handle seafood processing waste in a way similar to that accomplished by the City of Kodiak, after it was desig- nated a seafood processing center in 1974. Raw sh processing waste generated from human food processing lines are ground, cooked, and made into four standard coproducts: sh protein meal, sh oil, bone meal, and stickwater. Twelve years after AFDF conducted the rst byproducts symposium, leaders concluded that a second conference on byproduct advances was warranted. The rationalization of the Bering Sea sheries, though the American Fisheries Act of 1998, reduced the at-sea eet of factory trawl- ers and changed the allocation of harvests with a signicantly greater percentage going to shoreside plants. World sh production from com- mercial aquaculture was increasing rapidly, especially in China, and there were concerns about the continued availability of sh protein meals and oils for aquaculture feeds. The 2nd International Seafood Byproduct Conference, held in 2002 in Anchorage, focused on the status of Alaska’s sheries, feeds, fertilizers, and alternative fuels as well as food supplements and pharmaceuticals, among other topics. The Alaska Sea Grant College Program published the proceedings volume (2). 2 Introduction Following the 2002 byproducts symposium, huge changes accompany- ing the exponential growth of aquaculture in China and the inuence of global sh markets available through the Internet substantially altered the character of sh processing and the handling of sh processing byproducts. Additionally, seven years after the 2002 symposium, our group had published more than 50 new research papers on Alaska sheries processing byproducts and made numerous presentations at scientic meetings. Signicant changes in global marketing of seafood had occurred and the focus of the Alaska seafood industry had changed markedly. As a consequence, we decided to eld another symposium, this time seeking a substantial increase in participation of the Alaska shing industry. This book is a result of the symposium A Sustainable Future: Fish Processing Byproducts, held February 25-26, 2009, in Portland, Oregon, immediately after the 60th Pacic Fisheries Technologists annual meet- ing. The byproducts symposium was well attended and discussions were both extensive and productive. We have divided the material in the book into plenary talks and four major sections: New Products and Uses; Stickwater and Wash Water; Storage, Stabilizing, and Processing; and nally Proteins, Hydrolysates, and Oils. Acknowledgments It is important to acknowledge contributions to the symposium and the proceedings book. Individuals who helped organize the symposium, beginning in 2008, were Peter J. Bechtel, U.S. Department Agriculture, Agricultural Research Service, Fairbanks, Alaska Jim Browning, Alaska Fisheries Development Foundation, Anchorage, Alaska Robert Pawlowski, Alaska Fisheries Development Foundation, Anchorage, Alaska Scott Smiley, University Alaska Fairbanks, Fishery Industrial Technology Center, Kodiak, Alaska Special thanks go to our conference coordinator Sherri Pristash of the Alaska Sea Grant College Program for her great eort and constant smile. In addition, many generous sponsoring groups made the conference and the publication of this proceedings volume possible. Sponsors contributed speakers’ travel funds and meeting expenses, and gave us cash for unrestricted use in supporting the conference: Browning, J. 2010. From Sustainability to Full Utilization. In: P.J. Bechtel and S. Smiley (eds.), 5 A Sustainable Future: Fish Processing Byproducts. Alaska Sea Grant, University of Alaska Fairbanks, pp. 5-7. doi:10.4027/spb.2010.01 © Alaska Sea Grant, University of Alaska Fairbanks From Sustainability to Full Utilization James Browning Alaska Fisheries Development Foundation, Anchorage, Alaska, [email protected] We live in an age in which technology can revolutionize a particular industry, and the Alaska shing industry needs a revolution. I am speak- ing specically of the way we think about the portions of salmon and other sh species that don’t go in the package, box, bag, or freezer, i.e., the “waste” stream. With the likelihood of carbon taxes entering the business model picture in Alaska, seafood companies should be looking ahead to every opportunity to protect their bottom line by increasing utilization and decreasing this waste stream. The more material and value extracted from the round weight processed, the better the margin will
Recommended publications
  • Download This PDF File
    Reproductive…. (Priacanthus macracanthus Cuvier, 1829) in Palabuhanratu Bay, Indonesia (Jabbar, M.A., et al) Available online at: http://ejournal-balitbang.kkp.go.id/index.php/ifrj e-mail:[email protected] INDONESIANFISHERIESRESEARCHJOURNAL Volume 24 Nomor 1 June 2018 p-ISSN: 0853-8980 e-ISSN: 2502-6569 Accreditation Number RISTEKDIKTI: 21/E/KPT/2018 REPRODUCTIVE BIOLOGY OF THE RED BIGEYE (Priacanthus macracanthus Cuvier, 1829) IN PALABUHANRATU BAY, INDONESIA Meuthia Aula Jabbar*1,2, Mohammad Mukhlis Kamal2, Mennofatria Boer2, Ali Suman3, I Nyoman Suyasa1 1Department of Aquatic Resources Management-Jakarta Fisheries University, Jl. AUP No. 1, Pasar Minggu-Jakarta Selatan, Jakarta 12520, Indonesia; 2Departement of Aquatic Resources Management, Faculty of Fisheries and Marine Science-Bogor Agricultural University, Jl. Lingkar Kampus IPB Dramaga, Bogor 16680, Indonesia 3Research Institute for Marine Fisheries-Ministry of Marine Affairs and Fisheries, Komplek Raiser Ikan Hias Cibinong, Jl. Raya Bogor KM 47 Nanggewer Mekar, Cibinong 16912, Bogor-Indonesia. Received; February 06-2018 Received in revised from May 05-2018; Accepted May 07-2018 ABSTRACT The reference point of reproductive biology play an important roles in developing a baseline information for fishery management. Different waters will provide different overview of fisheries related to its biological aspects. The red bigeye (Priacanthus macracanthus) is one of economically important demersal fish species in Indonesia. To support the biological status of this species, a regular field observation were carried out during May 2016 to April 2017 in Palabuhanratu bay, south of West Java. The objective of this study is to estimate the spawning season and potential reproductive stages including to evaluate how the key management related to the species and its gear selectivity.
    [Show full text]
  • Training Manual Series No.15/2018
    DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”. The scope of this training is to promote development of trained human resource for application of molecular tools to research problems in fisheries and aquaculture, to help them adapt to such facilities and work programs and to include analyses that comply with worldwide regulatory acts in the field of biotechnology.
    [Show full text]
  • Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
    i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr.
    [Show full text]
  • Are You Suprised ?
    CURRICULUM VITA Name: Sahar Fahmy Youssef Mehanna Birth date: 15.4.1964 - Port Said, Egypt Occupation: Professor and Head of Fish Population Dynamics and stock assessment lab, National Institute of Oceanography and Fisheries, P. O. Box 182, Suez, Egypt. E-mail: [email protected] Work phone: +2 - 062 - 3360015 Fax: +2 - 062 - 3360016 Mobile: +201063777771 Education 1997 Ph.D. (The study of biology and population dynamics of Lethrinus mahsena in the Gulf of Suez), Faculty of Science, Zoology Department, Zagazig University. 1993 M.Sc., (Rational exploitation of kuruma shrimp Penaeus japonicus Bate, 1888 in the Gulf of Suez), Faculty of Science, Zoology Department, Zagazig University. 1985 B.Sc., (Excellent) Zoology Department - Faculty of Science, Suez Canal University. Career history March 2013- December 2013: Stock Assessment Program advisor in TCP/SNG/3402 Capacity building in fisheries stock assessment in GCC Project, FAO, GCC and Yemen, FAO. August 2013-Now: Head of Fish Population Dynamics Lab, National Institute of Oceanography and Fisheries NIOF, Egypt. Feb 2013-present: Professor in NIOF (Fisheries management and stock assessment). Sep 2011- Sep 2013: Stock assessment and Fisheries management expert in Marine sciences and Fisheries Center, Sultanate of Oman. 2005 – 2011: Head of Fish Population Dynamics Lab, National Institute of Oceanography and Fisheries NIOF, Egypt. 1 2002 - 2012 Associate professor in NIOF (Fisheries management and stock assessment) 1997 – 2002 Researcher in NIOF. Research interest Fish Population Dynamics and aquatic resources assessment Fish stock assessment Fisheries biology Concepts of aquatic ecology Trophic modeling of aquatic ecosystems Population dynamics of marine invertebrates with emphasis on cuttlefish and crabs Application of (predictive) fisheries yield models Ecosystem management List of publications Mehanna, S.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Two Species of Snappers Off Lazarus and Seringat Islands
    SINGAPORE BIODIVERSITY RECORDS 2017: 91-92 ISSN 2345-7597 Date of publication: 28 July 2017. © National University of Singapore Two species of snappers off Lazarus and Seringat Islands Subjects: Bigeye snapper, Lutjanus lutjanus (Teleostei: Lutjanidae); Russell’s snapper, Lutjanus russelli (Teleostei: Lutjanidae). Subjects identified by: Contributor & Kelvin K. P. Lim. Location, date and time: Singapore Strait, off north-western part of Lazarus Island; 20 May 2016; 1256 hrs; and the eastern part of Seringat Island; 7 June 2017; 1443 hrs. Habitat: Marine. Subtidal zone of seawalls of large granite boulders, extending to 3-4 m depth, followed by sandy substrates. Observer: Contributor. Observations: Two separate observations - Fig. 1. Fig. 2. Photographs by Daisuke Taira 1) One example of bigeye snapper (Lutjanus lutjanus) of about 10 cm total length was observed swimming along the seawall at the north-western part of Lazarus Island at a depth of about 2 m on 20 May 2016 at 1256 hrs (Fig. 1 & 2). Fig. 3. Fig. 4. Photographs by Daisuke Taira 2) A Russell’s snapper (Lutjanus russelli) around 15 cm in total length was seen along the eastern part of Seringat Island at around 4 m depth on 7 June 2017 at 1443 hrs (Fig. 3 & 4). 91 Remarks: Both Lutjanus lutjanus and Lutjanus russelli are known from Singapore waters (Fowler, 1938: 146; Lim & Low, 2008: 108 as Lutjanus madras, 109). Lutjanus lutjanus is distinguished from the similar looking and sympatric Lutjanus madras (Indian snapper) chiefly by its larger eyes and the width of the space between the lower eye margin and the mouth.
    [Show full text]
  • AN UPDATED LIST of Monogenoidea from MARINE FISHES of VIETNAM
    ACADEMIA JOURNAL OF BIOLOGY 2020, 42(2): 1–27 DOI: 10.15625/2615-9023/v42n2.14819 AN UPDATED LIST OF Monogenoidea FROM MARINE FISHES OF VIETNAM Nguyen Manh Hung*, Nguyen Van Ha, Ha Duy Ngo Institute of Ecology and Biological Resources, VAST, Vietnam Received 11 February 2020, accepted 16 April 2020 ABSTRACT In this paper, we updated the list of monogenean species from marine fishes of Vietnam. Taxonomic position of monogenean species were arranged according to the current classification system. A total of 220 monogenean species from 152 marine fish species were listed. Distribution, hosts and references of each species were given. In addition, amendations of taxonomic status of taxa were also updated. Keywords: Monogenoidea, marine fishes, East Sea, Gulf of Tonkin, Vietnam. Citation: Nguyen Manh Hung, Nguyen Van Ha, Ha Duy Ngo, 2020. An updated list of Monogenoidea from marine fishes of Vietnam. Academia Journal of Biology, 42(2): 1–27. https://doi.org/10.15625/2615-9023/v42n2.14819. *Corresponding author email: [email protected] ©2020 Vietnam Academy of Science and Technology (VAST) 1 Nguyen Manh Hung et al. INTRODUCTION subfamilies, genera and species, were arranged The study of monogeneans from marine in alphabetical order. fishes in Vietnam began in the 1950s when RESULTS few intensive surveys were undertaken by the A total of 220 monogenetic species were cooperation between Vietnam and Soviet found from 152 marine fish species. These Union parasitologists (Bychowsky & monogeneans are belonging to 108 genera, 24 Nagibina, 1954, 1959). The results of these families, 5 orders, and 2 subclasses. The list studies were published by the Soviet of monogeneans below contains information helminthologists in Russian between about its taxonomical position, host species 1961−1989 in a series of more than 30 papers.
    [Show full text]
  • Commercial and Bycatch Market Fishes Panay Island, Republic Of
    Commercial and Bycatch Market Fishes of Panay Island, Republic of the Philippines Nanarisari nga Isda nga Ginabaligya sa Merkado sa Isla sang Panay, Pilipinas Hiroyuki Motomura Ulysses B. Alama Nozomu Muto Ricardo P. Babaran Satoshi Ishikawa Commercial and Bycatch Market Fishes of Panay Island, Republic of the Philippines 1 Commercial and Bycatch Market Fishes of Panay Island, Republic of the Philippines Nanarisari nga Isda nga Ginabaligya sa Merkado sa Isla sang Panay, Pilipinas 2 H. Motomura · U. B. Alama · N. Muto · R. P. Babaran · S. Ishikawa (eds) For bibliographic purposes this book should be cited as follows: Motomura, H., U. B. Alama, N. Muto, R. P. Babaran, and S. Ishikawa (eds). 2017 (Jan.). Commercial and bycatch market fishes of Panay Island, Republic of the Philippines. The Kagoshima University Museum, Kagoshima, University of the Philippines Visayas, Iloilo, and Research Institute for Humanity and Nature, Kyoto. 246 pp, 911 figs Commercial and Bycatch Market Fishes of Panay Island, Republic of the Philippines 3 Commercial and Bycatch Market Fishes ofPanay Island, Republic of the Philippines Edited by Hiroyuki Motomura, Ulysses B. Alama, Nozomu Muto, Ricardo P. Babaran, and Satoshi Ishikawa The Kagoshima University Museum, Japan University of the Philippines Visayas, Philippines Research Institute for Humanity and Nature, Japan 4 H. Motomura · U. B. Alama · N. Muto · R. P. Babaran · S. Ishikawa (eds) Copyright © 2017 by the Kagoshima University Museum, Kagoshima, University of the Philippines Visayas, Iloilo, and Research Institute for Humanity and Nature, Kyoto All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher.
    [Show full text]
  • Tañon Strait
    Love Letter to TAÑON STRAIT Stacy K. Baez, Ph.D., Charlotte Grubb, Margot L. Stiles and Gloria Ramos Tañon Strait PROTECTED SEASCAPE Bantayan Santa Fe Daanbantayan Medellin The Largest Marine Protected Area Visayan Sea IN THE PHILIPPINES San Remigio Cadiz Sagay Escalante Tabuela Tuburan Toboso Bacolod Asturias San Carlos Balambam Vallehermoso Toledo Cebu Pinamungahan Aloguinsan Gulhulngan Barili La Libertad Dumanjug Aloguinsan Jimalalud Ronda Tayasan Pescador Island Moalboal Ayungon Badian Bindoy Mantalip Reef Alegria Manjuyod Malabuyoc Bais Ginatilan Talabong Mangrove Park Tanjay Samboan Pamplona Amlan Santander San Jose Sibulan Dumaguete Bohol Sea 1 PH.OCEANA.ORG Modified from L. Aragones Introduction Bantayan Santa Fe Daanbantayan Medellin The Largest Marine Protected Area Visayan Sea IN THE PHILIPPINES San Remigio Cadiz Sagay Escalante Tabuela añon Strait Protected Seascape Colorful bangkas grace blue waters is the largest marine protected teeming with fish, and thatched roof Tuburan Toboso Tarea in the Philippines, and the nipa huts shelter families of farmers Bacolod third largest park, nearly as extensive as and fisherfolk all along the shorelines the two largest terrestrial natural parks of Negros and Cebu. Tañon Strait was Asturias in the Northern Sierra Madre and Samar declared a protected seascape in 1998, Island which protect the Philippine in honor of the 14 species of whales and Balambam San Carlos Eagle and other wonders. Tañon Strait dolphins which live within this special is their marine counterpart, with an area place. Several of the Philippines’ most 2 Vallehermoso Toledo of 5,182 km , more than three times the ancient and endangered animals have area of the Tubbataha National Park.
    [Show full text]
  • EASTERN INDIAN OCEAN Fishing Area 57 and WESTERN CENTRAL PACIFIC Fishing Area 71
    FAO SPECIES IDENTIFICATION SHEETS FOR FISHERY PURPOSES EASTERN INDIAN OCEAN Fishing Area 57 and WESTERN CENTRAL PACIFIC Fishing Area 71 Volume 1 Bony Fishes Technical Terms Species Identification Sheets A à Cl Volume 2 Bony Fishes Species Identification Sheets Co à L Volume 3 Bony Fishes Species Identification Sheets M à Sci Volume 4 Bony Fishes Species Identification Sheets Sco à T Index to Scientific and FAO English Names FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1974 FAO SPECIES IDENTIFICATION SHEETS FOR FISHERY PURPOSES EASTERN INDIAN OCEAN Fishing Area 57 a nd WESTERN CENTRAL PACIFIC Fishing Area 71 VOLUME IV FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1974 FAO SPECIES IDENTIFICATION SHEETS FOR FISHERY PURPOSES EASTERN INDIAN OCEAN (Fishing Area 57) and WESTERN CENTRAL PACIFIC (Fishing Area 71) Compiled by the Fishery Resources and Environment Division, FAO Based on material prepared at the FAO/DANIDA Seminar on Fish Taxonomy in South East Asia held at the Phuket Marine Biological Center, Phuket, Thailand, 6 November to 8 December 1972 This publication has been printed on behalf of the UNDP/FAO South China Sea Fisheries Development and Coordinating Programme for the use of its participating countries VOLUME IV - Bony Fishes: Families from S (in part) to Z FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1974 Bibliographic Reference : Fischer, W. & P.J.P. Whitehead (Eds.) (1974) Rome, FAO, pag. var. FAO species identification sheets for fishery purposes. Eastern Indian Ocean (fishing area 57) and Western Central Pacific (fishing area 71). Volume 4 ISW, ISEW. Teleostei. Identification sheets - taxonomy, geographic distribution, fisheries, vernacular names.
    [Show full text]
  • Among Reefs in the Central Great Barrier Reef, Australia
    313 Abstraet.-The recent age valida­ Variability in the population structure tion of the tropical snappers L. adetii and L. quinquelineatus has facilitated the comparison of growth, mortality, of Lutjanus adetii (Castelnau, 1873) and age structures for both these spe­ cies at the spatial scale of individual and L. quinquelineatus (Bloch, 1790) reefs. The age structure ofboth species among reefs within the Great Barrier among reefs in the central Great ReefMarine Park was based on counts ofannuli from sectioned otoliths. There Barrier Reef, Australia* was significant variability in growth, mortality, and age structures. Signifi­ cant differences in mean length, age. Stephen J. Newman and weight (independent of the sex of Australian Institute of Marine Science. PM.B. NO.3 the fish) were observed for both species Townsville, M.e., Queensland. 4810. Australia among reefs. Peaks in abundance of year classes were variable from reefto and reef. Comparisons of the von Berta­ lanffy growth curves indicated that the Department of Marine Biology. James Cook University pattern of growth in individuals of L. Townsville, 48 J 1, Australia quinquelineatus was significantly dif­ Present address: Western Australia Marine Research Laboratories ferent among reefs, whereas the pat­ Fisheries Department of Western Australia, PO. Box 20 tern of growth in L. adetii was not. North Beach. 6020, Western Australia However. there were no significant dif­ ferences in the mean length ofthe early age classes of either species among David MeB. Williams reefs. The mortality rates and hence Australian Institute of Marine Science, PM.B. NO.3 survivorship of both L. adetii and L. quinquelineatus among reefs were Townsville, M.e., Queensland, 48 JO.
    [Show full text]
  • Checklist of the Shore Fishes of Europa Island, Mozambique Channel, Southwestern Indian Ocean, Including 302 New Records
    Stuttgarter Beiträge zur Naturkunde A, Neue Serie 6: 247–276; Stuttgart, 30.IV.2013 247 Checklist of the shore fishes of Europa Island, Mozambique Channel, southwestern Indian Ocean, including 302 new records RONALD FRICKE, PATRICK DURVILLE, GIACOMO BERNARDI, PHILIPPE BORSA, GÉRARD MOU-THAM & PASCALE CHABANET Abstract An annotated checklist of the fish species of Europa Island (Mozambique Channel, southwestern Indian Ocean) comprises a total of 389 species in 62 families. 302 species are recorded from Europa Island for the first time. All species are autochthonous; no introduced species have been found. The fish fauna is exclusively marine, with the Labridae, Pomacentridae, Serranidae, Gobiidae and Acanthuridae being the families with most representatives. The fish fauna at Europa Island is typical for offshore, low islands in the southwestern Indian Ocean. Zoogeo- graphically, the main element of the fish fauna of Europa Island consists of widespread tropical Indo-Pacific species (292 species, 75.1 % of the total occurring species). A total of 13 species (3.3 %) are found worldwide, either cir- cumtropical or circumtropical including warm temperate zones. An additional 76 species (19.5 %) are Indian Ocean endemics, including 36 western Indian Ocean endemics (9.2 %), and 10 southwestern Indian Ocean endemics (2.6 %). No endemic fish species are reported for Europa Island. K e y w o r d s : Checklist, Pisces, southwestern Indian Ocean, Europa Island, new records, zoogeography. Zusammenfassung Die Checkliste der Fische der Insel Europa (Kanal von Mosambik, südwestlicher Indischer Ozean) enthält 389 Arten in 62 Familien. 302 Arten werden zum ersten Mal von der Insel Europa beobachtet. Alle Fischarten sind au- thochthon; es wurden keine durch den Menschen eingeführten oder eingeschleppten Arten gefunden.
    [Show full text]