Evaluation of Electrical Feeder and Branch Circuit Loading: Phase I

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Electrical Feeder and Branch Circuit Loading: Phase I Evaluation of Electrical Feeder and Branch Circuit Loading: Phase I FINAL REPORT BY: Tammy Gammon, Ph.D., P.E. Georgia USA January 2017 © 2017 Fire Protection Research Foundation 1 Batterymarch Park, Quincy, MA 02169-7417, USA Email: [email protected] Web: nfpa.org/foundation This page intentionally blank —— Page ii —— FOREWORD Interest has been growing in recent years to investigate and clarify the degree to which the feeder and branch circuit load design requirements in NFPA 70, National Electrical Code® (NEC®) need to be adjusted based on the increasing pace of technological innovation along the entire span of the electrical power chain. There are multiple factors driving this issue and supporting the need to address this topic. For example, today’s Energy Codes are driving down the electrical load presented by end use equipment and thus load growth assumptions that justify “spare capacity” should be re-examined. In addition, larger than necessary transformers that supply power to feeder and branch circuits expose unnecessary flash hazard to electricians working on live equipment. This report summarizes a Phase I effort to develop a data collection plan to provide statistically significant load data for a variety of occupancy and loading types to provide a technical basis for considering revisions to the feeder and branch circuit design requirements in the National Electrical Code®. This initial effort has an emphasis on general commercial (office) occupancies, and the deliverables provide a review of the literature, and clarify the key elements of a data collection plan in support of a potential second phase (not included in the scope of this effort). —— Page iii —— This page intentionally blank —— Page iv —— ACKNOWLEDGEMENTS The Fire Protection Research Foundation expresses gratitude to the report author Tammy Gammon, Ph.D., P.E. located in Georgia USA. The Research Foundation appreciates the guidance provided by the Project Technical Panelists, the funding provided by the project sponsors, and all others that contributed to this research effort. Special thanks are expressed to the following Panel members: Robert Arno, Harris Corp. & IEEE Fellow; Mark Earley, NFPA; Mark Hilbert, IAEI & CMP-2 Chair; Brian Liebel, Illuminating Engineering Society of North America; and Mark Lien, Illuminating Engineering Society of N.A. (Alt to B Liebel). Thanks are also extended to the following Sponsors: Michael Berthelsen, University of Minnesota; Brett Garrett, The Ohio State University (alternate for Bob Wajnryb); Lou Galante, University of Iowa; Jeff Gambrall, University of Iowa (Alternate to Lou Galante); Dean Hansen, University of Texas Austin; Kane Howard, Michigan State University; Michael Hughes, Michigan Association of Physical Plant Administrators; Jim Jackson, University of Nebraska (alternate for Brian Meyers); Paul Kempf, University of Notre Dame; Brian Meyers, University of Nebraska; Bob Wajnryb, The Ohio State University; and Bob Yanniello, Eaton Corporation. Gratitude is likewise expressed to three liaisons that supported this effort: Mike Anthony, University of Michigan; Jim Harvey, University of Michigan; and Richard Robben, Ann Arbor, MI. The content, opinions and conclusions contained in this report are solely those of the authors and do not necessarily represent the views of the Fire Protection Research Foundation, NFPA, Technical Panel or Sponsors. The Foundation makes no guaranty or warranty as to the accuracy or completeness of any information published herein. About the Fire Protection Research Foundation The Fire Protection Research Foundation plans, manages, and communicates research on a broad range of fire safety issues in collaboration with scientists and laboratories around the world. The Foundation is an affiliate of NFPA. About the National Fire Protection Association (NFPA) Founded in 1896, NFPA is a global, nonprofit organization devoted to eliminating death, injury, property and economic loss due to fire, electrical and related hazards. The association delivers information and knowledge through more than 300 consensus codes and standards, research, training, education, outreach and advocacy; and by partnering with others who share an interest in furthering the NFPA mission. All NFPA codes and standards can be viewed online for free. NFPA's membership totals more than 60,000 individuals around the world. —— Page v —— Keywords: electrical feeder, branch circuit, loading, transformer, NEC, National Electrical Code, NFPA 70 Report number: FRPF-2 —— Page vi —— PROJECT TECHNICAL PANEL Robert Arno, Harris Corp. & IEEE Fellow (NY) Mark Earley, NFPA (MA) Mark Hilbert, IAEI & CMP-2 Chair (NH) Brian Liebel, Illuminating Engineering Society of North America (NY) Mark Lien, Illuminating Engineering Society of N.A. (NY) (Alt to B Liebel) PROJECT SPONSORS Eaton Corporation, Bob Yanniello Michigan Association of Physical Plant Administrators, Michael Hughes Michigan State University, Kane Howard The Ohio State University, Bob Wajnryb and Brett Garrett (alternate) University of Iowa, Lou Galante and Jeff Gambrall (alternate) University of Minnesota, Michael Berthelsen University of Nebraska, Brian Meyers and Jim Jackson (alternate) University of Notre Dame, Paul Kempf University of Texas Austin, Dean Hansen PROJECT LIAISONS Mike Anthony, University of Michigan (MI) Jim Harvey, University of Michigan (MI) Richard Robben, Ann Arbor, MI —— Page vii —— This page intentionally blank —— Page viii —— Fire Protection Research Foundation Project Review of Literature and Data Collection Plan Evaluation of Electrical Feeder and Branch Circuit Loading: Phase 1 Submitted by Tammy Gammon, Ph.D., P.E. January 2017 Project Technical Panel Mark Hilbert, IAEI and NEC Code-Making Panel 2 Chair Robert Arno, Harris Corporation Mark Earley, NFPA Brian Liebel, IES Project Sponsors University of Minnesota The Ohio State University University of Iowa University of Texas – Austin Michigan State University Michigan Association of Physical Plant Administrators University of Nebraska University of Notre Dame Eaton Corporation EXECUTIVE SUMMARY The purpose of this Phase I project is to conduct a literature review and to develop a data collection plan for an ambitious Phase II study on the evaluation of electrical feeder and branch circuit loading. The intent of this research is to evaluate electrical feeder and branch circuit loading given present National Electrical Code requirements, electrical safety, energy conservation, and reduction of capital investment. This research project focuses on commercial buildings. Report Sections 1 through 7 cover a review of related work and published data. Specifically, electricity usage and commercial building demographics are reviewed in Sections 1 and 2 to provide insight into the number of feeders and branch circuits installed in the United States and the amount of electricity supplied by them. Furthermore, Section 2 on commercial buildings and Section 3 on end-use loads have been included because the characteristics of the commercial buildings determine the electrical loads and the design of the electrical feeders and branch circuits supplying those loads. Section 4 addresses some of the factors which shape end-use equipment decisions and includes energy consumption projections for commercial buildings to the year 2040. Commercial building energy conservation codes are covered in Section 5 with a focus on lighting and power requirements in ASHRAE 90.1. In Section 6, the following engineering practices are discussed: one utility, traditional building electrical system design, and design in federal buildings. The NEC’s minimum lighting power requirements are also compared with ASRHAE 90.1 and other guidelines in Section 6. Section 7 addresses transformer efficiency and electrical safety issues as a function of transformer loading. Section 7 contains the author’s analysis regarding concern that lightly loaded transformers (supplying lightly loaded feeders) are associated with additional energy losses and increased arc flash hazards. The data collection plan is presented in Section 8. Although included as the final section of this report, Section 8 has been written to serve as a document which can stand alone, independent of the other report sections. ii TABLE OF CONTENTS 1 Electricity Usage in the United States ................................................................................. 1 1.1 Electric Utility Customers and Consumption................................................................. 1 1.2 Seasonal Influences and Climate ................................................................................. 2 2 Commercial Buildings ......................................................................................................... 5 2.1 General Demographics for All Commercial Buildings [5] .............................................. 5 2.2 Commercial Building Types and Specific Demographics [5] ......................................... 8 2.3 Commercial Building Energy Usage by Geography [5] ................................................11 2.4 Commercial Building Energy Usage by Building Type [5] ............................................15 2.5 Electric Utility Commercial Building Loading ...............................................................18 3 Building End-Use Loads and Electricity Consumption ........................................................19 3.1 End-Use Load Types and CBECS Models [5] .............................................................19 3.2 CBECS
Recommended publications
  • Non-Electrical Considerations for Electrical Rooms
    Non-Electrical Considerations for Electrical Rooms Mark A. Sorrells, PE Senior Member – IEEE [email protected] Driving force behind presentation – Air core reactor, Grey market generator installation 1 Learning Goals • Identify code & standard concerns • Identify non-code coordination issues – Methodology – Physical interferences • Encourage the use of a checklist to ask the right questions 2 Engineering: the art or science of making practical application of the knowledge of pure sciences, such as physics or chemistry, as in the construction of engines, bridges, buildings, mines, ships, and chemical plants. Code: A systematically arranged and comprehensive collection of laws (The real purpose of building codes is primarily to save lives; preventing damage to the building is only secondary, as the building is expected to 'sacrifice itself' in order to protect occupants) Standard: An acknowledged measure of comparison for quantitative or qualitative value; a criterion 2 Electrical Room (or not) 3 According to Project Managers the best place for electrical room containing Switchgear and a couple of MCCs is a shared space with the janitor’s closet, preferably mounted on the ceiling, so that the janitors can store their cleaning supplies under it Picture from https://twitter.com/jaymehoffman/status/991408768171855873 Google search “How the Customer Wanted It” cartoon 3 Electrical Room 4 Definition: NEC: None; NFPA 70E: None; NFPA 70B: None; IEEE C2: electric supply station. Any building, room, or separate space within which electric supply equipment is located and the interior of which is accessible, as a rule, only to qualified persons. This includes generating stations and substations, including their associated generator, storage battery, transformer, and switchgear rooms or enclosures, but does not include facilities such as pad-mounted equipment and installations in manholes and vaults.
    [Show full text]
  • Set No.1 Code No: M0328 R07
    Set No.1 Code No: M0328 R07 IV B.Tech. I Semester Regular Examinations, November, 2011 POWER PLANT ENGINEERING (Mechanical Engineering) Time: 3 Hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks ******* 1. a) What do you understand by commercial and non-commercial energy sources? List out the changes from non-commercial to commercial during the last nine plans? [10] b) Why the development of nuclear power is slow in India? [6] 2. Draw a neat line diagram of in plant coal handling and explain the equipment used at different stages. [16] 3. With a neat line diagram showing all the systems explain diesel power plant. [16] 4. a) Prove that the pressure ratio of closed cycle for the maximum specific output is the square root of the pressure ratio for the maximum thermal efficiency. Why low pressure is used in gas turbine power plant. [8] b) Draw the line diagram of repowering system using steam turbine only and boiler only. Discuss their relative merits and demerits. [8] 5. a) What are the different factors to be considered while selecting the site for Hydro- electric power plant? [8] b) What is a spillway? Explain any three types of spillways with sketches. [8] 6. a) Explain the components of Tidal power plant. [8] b) Compare flat plate collectors and focusing collectors. [8] 7. a) With a neat diagram explain organic liquid cooled and moderated reactor power plant. [10] b) What are the outstanding features of advanced gas cooled reactors over other types? When these are preferred? [6] 8.
    [Show full text]
  • Electric Vehicle Charging Infrastructure in Shared Parking Areas: Resources to Support Implementation & Charging Infrastructure Requirements
    Electric Vehicle Charging Infrastructure in Shared Parking Areas: Resources to Support Implementation & Charging Infrastructure Requirements A publication of the City of Richmond with funding support from BC Hydro. This report was prepared with generous support of the BC Hydro Sustainable Communities program. The City of Richmond managed its development and publication. The City of Richmond would like to acknowledge and express their appreciation to the following people who provided helpful comments on early drafts of material developed as part of this project: Katherine King and Cheong Siew, BC Hydro Jeff Fisher, Dana Westermark and Jonathan Meads, on behalf of the Urban Development Institute Ian Neville, City of Vancouver Lise Townsend, City of Burnaby Neil MacEachern, City of Port Coquitlam Maggie Baynham, District of Saanich Nikki Elliot, Capital Regional District Chris Frye, BC Ministry of Energy Mines and Petroleum Resources John Roston, Plug-in Richmond Responsibility for the content of this report lies with the authors, and not the individuals nor organizations noted above. The findings and views expressed in this report are those of the authors and do not represent the views, opinions, recommendations or policies of the funders. Nothing in this publication is an endorsement of any particular product or proprietary building system. Authored by: AES Engineering Hamilton & Company C2MP Fraser Basin Council Report submitted by: AES Engineering 1330 Granville Street Vancouver, BC Electric Vehicle Charging Infrastructure in
    [Show full text]
  • Electric Vehicle Infrastruction
    Electric Vehicle Infrastructure A Guide for Local Governments in Washington State JULY 2010 Model Ordinance, Model Development Regulations, and Guidance Related to Electric Vehicle Infrastructure and Batteries per RCW 47.80.090 and 43.31.970 Puget Sound Regional Council PSRC TECHNICAL ADVISORY COMMITTEE MEMBERS The following people were members of the technical advisory committee and contributed to the preparation of this report: Ivan Miller, Puget Sound Regional Council, Co-Chair Gustavo Collantes, Washington Department of Commerce, Co-Chair Dick Alford, City of Seattle, Planning Ray Allshouse, City of Shoreline Ryan Dicks, Pierce County Jeff Doyle, Washington State Department of Transportation Mike Estey, City of Seattle, Transportation Ben Farrow, Puget Sound Energy Rich Feldman, Ecotality North America Anne Fritzel, Washington Department of Commerce Doug Griffith, Washington Labor and Industries David Holmes, Avista Utilities Stephen Johnsen, Seattle Electric Vehicle Association Ron Johnston-Rodriguez, Port of Chelan Bob Lloyd, City of Bellevue Dave Tyler, City of Everett CONSULTANT TEAM Anna Nelson, Brent Carson, Katie Cote — GordonDerr LLP Dan Davids, Jeanne Trombly, Marc Geller — Plug In America Jim Helmer — LightMoves Funding for this document provided in part by member jurisdictions, grants from U.S. Department of Transportation, Federal Transit Administration, Federal Highway Administration and Washington State Department of Transportation. PSRC fully complies with Title VI of the Civil Rights Act of 1964 and related statutes and regulations in all programs and activities. For more information, or to obtain a Title VI Complaint Form, see http://www.psrc.org/about/public/titlevi or call 206-464-4819. Sign language, and communication material in alternative formats, can be arranged given sufficient notice by calling 206-464-7090.
    [Show full text]
  • 7 September 22, 2014 INDIANA UTILITY REGULATORY
    1 State of Indiana 2 Indiana Utility Regulatory Commission 3 4 5 IN THE MATTER OF THE VERIFIED ) 6 PETITION OF INDIANA MICHIGAN POWER ) 7 COMPANY FOR APPROVAL OF ALTERNATIVE ) 8 REGULATORY PLAN FOR DEMAND SIDE ) 9 MANAGEMENT (DSM) AND ENERGY ) 10 EFFICIENCY (EE) PROGRAMS FOR 2015 AND ) 11 ASSOCIATED ACCOUNTING AND ) 12 RA TEMAKING MECHANISMS, INCLUDING ) CAUSE NO. 44486 13 TIMEL Y RECOVERY THROUGH I&M'S ) 14 DSM/EE PROGRAM COST RIDER OF ) 15 ASSOCIATED COSTS, INCLUDING ALL ) 16 PROGRAM COSTS, NET LOST REVENUE, ) 17 SHAREHOLDER INCENTIVES AND CARRYING ) 18 CHARGES, DEPRECIATION AND OPERAnONS ) 19 AND MAINTENANCE EXPENSE ON ) 20 CAPITAL EXPENDITURES. ) 21 22 CITY OF FORT WAYNE'S FIRST CORRECTED 23 SUBMISSION OF TESTIMONY IN RESPONSE TO JOINT 24 MOTION AND IN OPPOSITION TO SETTLEMENT AGREEMENT 25 26 The City of Fort Wayne, through it counsel, hereby submits its First Corrected Testimony 27 ofDouglas Fasick in response to the Joint Motion (with Exhibits) filed by Indiana Michigan 28 Power Company and the Office of Utility Consumer Counsel in this Cause, and in opposition to 29 the Stipulation and Settlement Agreement. 30 Respectfully submitted, 31 32 33 34 ficterH. Grills, Esq., #29440-49 . 35 Attorney for City ofFort Wayne 36 37 BINGHAM GREENEBAUM DOLL LLP 38 10 West Market Street 39 2700 Market Tower 40 Indianapolis, Indiana 46204 41 (317) 635-8900 42 (317) 236-9907 43 CERTIFICATE OF SERVICE 44 45 I hereby certify that a copy ofthe foregoing City ofFort Wayne's Corrected Submission 46 of Testimony in Response to Joint Motion and in Opposition to Settlement Agreement has been 47 served upon counsel listed on the attached Service List electronically and via hard copy, upon 48 request, this 22nd day of September, 2014.
    [Show full text]
  • Diversity Factor Calculation Example
    Diversity Factor Calculation Example Didymous and vulgar Geri underexposes her feints compartmentalizes rightly or tritiate inductively, is Nathanil maroonedbloodstained? Oran Conative overdrove Matteo her placidness substantializes enmesh that while twistings Lawerence confide sovietizenights and some frequents flowing morphologically. philosophically. Precognitive and Mccs that are still operating occurrences in a vacuum as a driving the electrical system investments are getting all about diversity factor calculation You can check about working of energy meter in the pagan manner. Only simple static composite load models are described. What drug the mansion of 1 unit? In an ideal world, estimating your electricity usage would be as easy as looking at an itemized grocery receipt. Two sets of diversity factors one for peak cooling load calculations and. Because desktop computer programs while calculating available data used in calculations required confidence in? If they contribute significantly between different. CUSTOMER CARE UndERSTAnding LOAd FACTOR Austin. Cu or all its ip code allows some examples. This arrangement is convenientfor motor circuits. Submitted for publication in connect and Technology for the Built Environment. Establish consistentmethods for residential water heating for hours gives an academic setting up. When the event of a sale occurs, unit costs will then be matched with revenue and reported on the income statement. An HVAC diversity factor which relates to protect thermal characteristics of science facility's. Two general approaches are used to capturthe timevarying value of electricity savings. Electrical Load Characteristics. Before presenting the results, it is justice to give brief overview and the specific parameters used in agile different calculation methods. Although TRMs often provide industryaccepted values or algorithms forcalculatingsavingsusers should not shine that an algorithm is correct because my has been used elsewhere.
    [Show full text]
  • Electrical Room Space Requirements
    Consultant’s Corner: Electrical Room Space Requirements Electrical room space requirements The space requirements for standby and emergency power systems do not rank at the top of an architect's design list. Consequently, service personnel can find themselves in tight quarters when these power systems are jammed into areas that meet only minimum safety requirements and don't take serviceability into account. Building service equipment must have an advocate early in the design process. It is far easier and less expensive to plan for adequate space in the design phase than to compromise on unit size and retrofit equipment to fit in cramped areas. Basic room requirements Minimum requirements set for the National Fire Protection Association (NFPA) in the National Electric Code (NEC) is that a person must be able to complete service duties with enclosure doors open and for two people to pass one another. If maintenance must be done at the rear of the cabinet, similar access space must be available. The NEC also requires 3 to 4 feet (1m to 1.3m) of aisle space between live electrical components of 600 volts or less, depending on whether live components are on one or both sides of the aisle. This requirement hold even if components are protected by safety enclosures or screens. Installations over 600 volts require even wider aisle space, from 3 feet (1m) to as much as 12 feet (4m) for voltages above 75kV. Service rooms with 1,200 amps or more require two exits in case of fire or arcing. Because transformers vary, make sure minimum wall clearances are met as specified by the manufacturer.
    [Show full text]
  • Government Office Space Standards (GOSS) Were Prepared by the Space Standards Subcommittee of the Client Panel
    G O S S J AN U AR Y 8 , 2 0 0 1 G o v e r n m e n t O f f i c e S p a c e S t a n d a r d s Province of British Columbia S P A C E T A B L E O F C O N T E N T S M A N U A L 1.0 INTRODUCTION ...................................................................................... 3 1.1 BACKGROUND & PURPOSE ..........................................................................................................3 1.2 GOVERNMENT OFFICE SPACE STANDARDS APPLICATION ...................................................................3 1.3 INTEGRATED WORKPLACE STRATEGIES APPLICATION .......................................................................3 1.4 REPORT STRUCTURE...................................................................................................................3 2.0 STRATEGIC PRINCIPLES........................................................................... 5 2.1 CORE PRINCIPLES ......................................................................................................................5 2.2 OPERATING PRINCIPLES ..............................................................................................................5 2.3 COST CONTAINMENT PRINCIPLES .................................................................................................6 3.0 CREATING INNOVATIVE SPACE SOLUTIONS ................................................... 7 3.1 INTRODUCTION TO INTEGRATED WORKPLACE STRATEGIES (IWS).......................................................7 3.2 THE IWS PLANNING PROCESS......................................................................................................7
    [Show full text]
  • Q Demand Factor Is Defined As a Object Oriented Design Always Dominates the Structural Design a Maximum Demand X Connected Load
    These are sample MCQs to indicate pattern, may or may not appear in examination G.M. VEDAK INSTITUTE OF TECHNOLOGY Program: Mechanical Engineering Curriculum Scheme: Revised 2016 Examination: Final Year Semester VIII Course Code:MEDLO8041 and Course Name: PPE Time: 1 hour Max. Marks: 50 Q Demand factor is defined as A Object oriented design always dominates the structural design A Maximum demand X Connected load A Maximum demand/ Connected laod A Connected laod/Maximum demand Q Load factor is defined as A Average load/Maximum demand A Average load X Maximum demand A Maximum demand/Average laod A Maximum demand X Connected load Q Diversity factor is always A Equal to unity A More than unity A More than than twenty A Less than unity Q Load factor for heavy industries may be taken as A 10 to 15% A 15 to 40% A 50 to 70% A 70 to 80% Q Which of the following is not suitable to use as peak plant? A Hydroelectric power plant A Gas power plant A Diesel elected plant A Nuclear power plant Q Which of the following power plant cannot be used as base load plant? A Diesel power plant A Hydroelectric power plant A Nuclear power plant A Thermal power plant The system supplying base and peak loads will be more economical if power is supplied by _________ Q A Only gas turbine power plant A Only thermal power plant A Only Diesel power plant A Combined operation of various power plants Q Load factor of power station is generally A Less then unity A Equal to unity A More than unity A More than Ten Q Diversity factor is defined as A Sum of individual maximum demands/Maximum demand of entire group A Maximum demand of entire group/Sum of individual maximum demands A Maximum demand of entire group X Sum of individual maximum demands A Maximum demand of entire group + Sum of individual maximum demands Q In order to have lower cost of electrical energy generation A The load factor and diversity factor should be low.
    [Show full text]
  • Electrical Equipment Room Design Considerations Atlanta Chapter
    Atlanta Chapter – IEEE Industry Applications Society Electrical Equipment Room Design Considerations presented at the Sheraton Buckhead Hotel Atlanta, Georgia November 20, 2006 Outline 1. Definitions 2. Power Distribution Configurations 3. Selection of Transformer 4. Installation and Location of Transformer 5. Service Entrance Equipment 6. Selection of Circuit Breaker 7. Electrical Equipment Room Construction (New) 8. Electrical Equipment Room Construction (Existing) 9. Maximum Impedance in a Ground Return Loop to Operate an Overcurrent Protective Device 10. 2005 NEC Requirements Outline 11. Ground Fault Sensing 12. Zero Sequence Sensing vs. Residual Sequence Sensing 13. Power Distribution Systems with Multiple Sources 14. Modified Differential Ground Fault (MDGF) Protection Systems 15. Designing a MDGF Protection System 16. Reported Ground Fault Losses 1. Definitions System Configuration •The system configuration of any Power Distribution System is based strictly on how the secondary windings of the Power Class Transformer, or generator, supplying the Service Entrance Main or loads, are configured. (This includes whether or not the windings are referenced to earth.) • The system configuration is not based on how any specific load or equipment is connected to a particular power distribution system. 1. Definitions Ground Fault Protection System •A designed, coordinated, functional, and properly installed system that provides protection from electrical faults or short circuit conditions that result from any unintentional, electrically conducting connection between an ungrounded conductor of an electrical circuit and the normally non–current-carrying conductors, metallic enclosures, metallic raceways, metallic equipment, or earth. 1. Definitions Ground Fault Protection of Equipment (Per Article 100 in the 2005 NEC) • “A system intended to provide protection of equipment from damaging line-to-ground fault currents by operating to cause a disconnecting means to open all ungrounded conductors of the faulted circuit.
    [Show full text]
  • Electrical Redesign for Greenwich Academy Upper School
    | Greenwich Academy Upper School Matthew Fracassini | | Senior Thesis 2004 PSU AE | Electrical Redesign for Greenwich Academy Upper School general description: Power is supplied to the Upper School by an existing 13.2 kV connection located on the exterior of the adjacent building, Ruth West Campbell Hall. A new 750 kVA transformer was added during construction to step the voltage down 208Y/120 V. The transformer is located in a vault beneath the exterior stairway closest to the Gym Building. A 4” conduit bank consisting of three (3) #2 (15kV rated) cables feeds the 3000 A Main Distribution Panel (MDP) located in the basement. This switchboard provides 3-phase power to all of the panels in the building. emergency power: A 200 kW Generator, located in the same vault as the transformer, provides 3- phase power at 208/120 Volts. The generator is connected by 2 sets of 4 500MCM THHN conductors to an 800 A Automatic Transfer Switch in order to ensure safe shifting of the loads in the event of a power fault. The emergency switchboard supplies the emergency lighting system and emergency receptacles, as well as the hydraulic elevator with 208/120 V power. overcurrent devices: The overcurrent protection devices are all located on the Main Distribution Panel (MDP) or the emergency distribution panel (MDP-EM) in the Electrical Room. At this switchboard, all of the panels are protected from overload and ground faults by 3-pole circuit breakers of various capacities. Fused disconnect switches are used to protect from high-level short-circuits. The panels themselves are protected by a 3000 A 3-pole breaker and a 2500A fused disconnect switch.
    [Show full text]
  • Electrical Engineering
    Electrical Engineering 6 6 6.0 TABLE OF CONTENTS 6.1 General Approach 6.13 Uninterruptible Power Systems 6.2 Codes and Standards 6.14 Computer Center Power Distribution 183 Electrical Design Standards 6.15 Lighting 6.3 Commissioning 204 Interior Lighting 204 General Lighting Fixture Criteria 6.4 Placing Electrical Systems and 208 Lighting Criteria for Building Spaces Communications Systems in Buildings 208 Lobbies, Atria, Tunnels and Public Corridors 208 Mechanical and Electrical Spaces 6.5 General Design Criteria 208 Dining Areas and Serveries 209 Lighting Controls 6.6 Electrical Load Analysis 210 Exterior Lighting 188 Standards for Sizing Equipment and Systems 6.16 Raceway System for Communications 6.7 Utility Coordination and Site Considerations 212 Communications Raceways 6.8 Site Distribution 6.17 Layout of Main Electrical Rooms 6.9 Primary Distribution 6.18 Alterations in Existing Buildings 193 Transformers and Historic Structures 6 215 Placing Electrical and Communications 6.10 Secondary Distribution Systems in Renovated Buildings 194 Secondary Distribution Systems 216 Building Service 216 Secondary Power Distribution 6.11 Wiring Devices 216 Computer Center Power 197 Placement of Receptacles 216 Lighting 218 Communications Distribution 6.12 Emergency Power Systems 199 Batteries 199 Generator Systems Harry S. Truman Presidential Library and Museum Addition and Renovation Architect: Gould Evans GSA Project Manager: Ann Marie Sweet-Abshire Photo: Mike Sinclair 180 FACILITIES STANDARDS FOR THE PUBLIC BUILDINGS SERVICE 6.0 Table of Contents Revised March 2003 – PBS-P100 It is GSA’s goal to build facilities equipped with the latest 6.1 General Approach advances in office technology and communication.
    [Show full text]