Neste Renewable Diesel Process
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Renewable Diesel Fuel
Renewable Diesel Fuel Robert McCormick and Teresa Alleman July 18, 2016 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Diesel Fuel Nomenclature • Renewable diesel goes by many names: o Generic names – Hydrogenated esters and fatty acids (HEFA) diesel – Hydrogenation derived renewable diesel (HDRD) – Green diesel (colloquialism) o Company trademark names – Green Diesel™ (Honeywell/UOP) – NExBTL® (Neste) – SoladieselRD® (Solazyme) – Biofene® (Amyris) – HPR Diesel (Propel branded product) – REG-9000™/RHD • Not the same as biodiesel, may be improperly called second generation biodiesel, paraffinic biodiesel – but it is incorrect and misleading to refer to it as biodiesel 2 RD is a Very Broad Term • Renewable diesel (RD) is essentially any diesel fuel produced from a renewable feedstock that is predominantly hydrocarbon (not oxygenates) and meets the requirements for use in a diesel engine • Today almost all renewable diesel is produced from vegetable oil, animal fat, waste cooking oil, and algal oil o Paraffin/isoparaffin mixture, distribution of chain lengths • One producer ferments sugar to produce a hydrocarbon (Amyris – more economical to sell this hydrocarbon into other markets) o Single molecule isoparaffin product 3 RD and Biodiesel • Biodiesel is solely produced through esterification of fats/oils • RD can be produced through multiple processes o Hydrogenation (hydrotreating) of fats/oils/esters o Fermentation -
Move Forward with NEXBTL Renewable Diesel
Move Forward with Did you know that… NEXBTL renewable diesel As a drop-in biofuel, NEXBTL renewable diesel behaves exactly like fossil diesel. Because of its diesel-like behavior, quality-related blending limitations do not apply to NEXBTL renewable diesel. NEXBTL renewable diesel offers 40–90% CO2 reduction compared to fossil diesel. Neste Corporation Keilaranta 21 Cover image: Shutterstock PO Box 95 FI-00095 Neste, Finland Tel. +358 (0)10 45811 www.neste.com 2015 High performance from NEXBTL renewable diesel “Our experience has been extremely positive in our own fleet. We have experienced zero customer complaints or Premium-quality NEXBTL renewable diesel outperforms both issues.” conventional biodiesel and fossil diesel by a clear margin. Pat O’Keefe, Vice President, Golden Gate Petroleum, US Unlike conventional biodiesel, Neste’s NEXBTL NEXBTL renewable diesel is unique. Proprietary renewable diesel has no blending wall, and therefore hydrotreating technology converts vegetable oil it also offers greater possibilities for meeting biofuel and waste fats into premium-quality fuel. mandates. Therefore, NEXBTL renewable diesel is a pure hydrocarbon with significant performance and emission benefits. Benefits in brief 100% renewable and sustainable Lower operating costs Produced from waste fats, residues and vegetable oils, Other biofuels may increase the need for vehicle classified as hydrotreated vegetable oil (HVO) maintenance, for example through reduced oil change intervals, but with NEXBTL renewable diesel there is no Smaller environmental -
Navigating Towards Cleaner Maritime Shipping Lessons from the Nordic Region
CPB Corporate Partnership Board Navigating Towards Cleaner Maritime Shipping Lessons From the Nordic Region Decarbonising Transport Navigating Towards Cleaner Maritime Shipping Lessons From the Nordic Region Decarbonising Transport This report was funded by Nordic Energy Research, the platform for cooperative energy research and policy development under the auspices of the Nordic Council of Ministers. The International Transport Forum The International Transport Forum is an intergovernmental organisation with 62 member countries. It acts as a think tank for transport policy and organises the Annual Summit of transport ministers. ITF is the only global body that covers all transport modes. The ITF is politically autonomous and administratively integrated with the OECD. The ITF works for transport policies that improve peoples’ lives. Our mission is to foster a deeper understanding of the role of transport in economic growth, environmental sustainability and social inclusion and to raise the public profile of transport policy. The ITF organises global dialogue for better transport. We act as a platform for discussion and pre- negotiation of policy issues across all transport modes. We analyse trends, share knowledge and promote exchange among transport decision-makers and civil society. The ITF’s Annual Summit is the world’s largest gathering of transport ministers and the leading global platform for dialogue on transport policy. The Members of the Forum are: Albania, Armenia, Argentina, Australia, Austria, Azerbaijan, Belarus, Belgium, -
Neste Renewable Diesel
Neste Cimac Cascades 2017 Helsinki Teemu Sarjovaara, D.Sc.(Tech) Neste R&D, Products This is what we want to achieve We want to We want to be grow in the Baltic Sea global renewable downstream feedstock-based champion markets 2 Neste in numbers Comparable Revenue Several years in operating profit Largest owner ~ 5,000 the Global 100 list € 11.7 the Finnish employees of the world’s € 983 most sustainable State (50.1%) in 15 countries billion million companies 3 Neste globally Production: Headquarters: Espoo, Finland • Porvoo • Naantali • Rotterdam • Singapore • Bahrain (joint venture, Neste's share 45%) Sales and marketing: • Espoo • Stockholm • Tallinn • Riga • Vilnius • St. Petersburg • Geneva • Beringen • Houston • Toronto • Singapore 4 We operate on a global market SALES BY REGION FROM IN-HOUSE PRODUCTION IN 2016 (2015) Finland 40% (40) Other Nordic countries 16% (14) Other Europe 30% (34) USA and Canada 12% (8) Other countries 3% (3) 5 A wide range of premium-quality products SALES BY PRODUCT FROM IN-HOUSE PRODUCTION IN 2016 (2015) Diesel fuel 35% (34) Motor gasoline and gasoline components 27% (26) Jet fuel 3% (4) Base oils 3% (3) Heating oil 1% (0) Heavy fuel oil 10% (8) Renewable fuels 14% (16) Other products 7% (9) 6 Cleaner solutions through the years Lead-free and Low-sulfur sulfur-free fuels marine fuel 1980– 2007 2011 2013 2014 2015 2016 2005 2017 7 Crude Oil fractions Processing Products LPG IBP-20°C • Distillation Propane 1,5 wt-% • Desulphurization Butane Naphtha • Distillation 20-180°C • Desulphurization Gasoline 17,5 wt-% • Reformation JET A1 180-220°C • Meroxing JET A1 RMG is unique refined 6 wt% product because of: 1. -
Neste Annual Report 2019 | Content 2 2019 in Brief
Faster, bolder and together Annual Report 2019 Content 02 03 2019 in brief ................................... 3 Sustainability ............................... 20 Governance ................................. 71 CEO’s review .................................. 4 Sustainability highlights ....................... 21 Corporate Governance Statement 2019 ........ 72 Managing sustainability ....................... 22 Risk management............................. 89 Neste creates value ......................... 25 Neste Remuneration Statement 2019 ........... 93 Neste as a part of society ................... 26 01 Stakeholder engagement ...................... 27 Strategy ..................................... 7 Sustainability KPIs ............................ 31 Our climate impact ............................ 33 04 Innovation .................................... 10 Our businesses ............................... 11 Renewable and recycled raw materials ......... 38 Review by the Board of Directors ......... 105 Key events 2019 .............................. 14 Supplier engagement ......................... 45 Key figures .................................. 123 Key figures 2019 .............................. 16 Environmental management ................... 48 Calculation of key figures ..................... 125 Financial targets .............................. 17 Our people ................................... 52 Information for investors....................... 18 Human rights ............................... 52 Employees and employment ................ -
The Coconut Odyssey: the Bounteous Possibilities of Th E Tree Life
The coconut odyssey: the bounteous possibilities of th The coconut odyssey the bounteous possibilities of the tree of life e tree of life Mike Foale Mike Foale current spine width is 7mm. If it needs to be adjusted, modify the width of the coconut shells image, which should wrap from the spine to the front cover e coconut odyssey: the bounteous possibilities of the tree of life e coconut odyssey the bounteous possibilities of the tree of life Mike Foale Australian Centre for International Agricultural Research Canberra 2003 e Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES is series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives. e series is distributed internationally, with an emphasis on developing countries. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601. http://www.aciar.gov.au email: [email protected] Foale, M. 2003. e coconut odyssey: the bounteous possibilities of the tree of life. ACIAR Monograph No. 101, 132p. ISBN 1 86320 369 9 (printed) ISBN 1 86320 370 2 (online) Editing and design by Clarus Design, Canberra Printed by Brown Prior Anderson, Melbourne Foreword Coconut is a tree of great versatility. -
Renewable Diesel As a Major Heavy-Duty Transportation Fuel in California
Renewable Diesel as a Major Heavy-Duty Transportation Fuel in California PAGE INTENTIONALLY LEFT BLANK Gladstein, Neandross & Associates Page ii August 2017 Renewable Diesel as a Major Heavy-Duty Transportation Fuel in California Authorship and Uses This report was prepared by the clean transportation and energy consulting firm of Gladstein, Neandross & Associates (GNA). The opinions expressed herein are those of the authors and do not necessarily reflect the policies and views of any project co ‑sponsor. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by cosponsoring organizations or GNA. No part of this work shall be used or reproduced by any means, electronic or mechanical, without first receiving GNA’s express written permission. Acknowledgements Cover photo: AltAir Fuels renewable diesel / jet fuel refinery in Paramount CA (photo courtesy of AltAir Fuels) This report was prepared as a result of work sponsored, paid for, in whole or in part, by the South Coast Air Quality Management District and the Bay Area Air Quality Management District (“the Districts”). The opinions, findings, conclusions, and recommendations are those of the authors and do not necessarily represent the views of the Districts. The Districts, their officers, employees, contractors, and subcontractors make no warranty, expressed or implied, and assume no legal liability for the information in this report. GNA gratefully acknowledges the essential support of, and content contributions from, these organizations. The following GNA staff prepared this report: Jonathan (Jon) Leonard, Senior Vice President (lead author / editor) Patrick Couch, Vice President, Technical Services (author / technical analysis) Individuals from many organizations provided important inputs for this report, and/or generally assisted to gather information. -
Selection of the Most Suitable Alternative Fuel Depending on the Fuel Characteristics and Price by the Hybrid MCDM Method
sustainability Article Selection of the Most Suitable Alternative Fuel Depending on the Fuel Characteristics and Price by the Hybrid MCDM Method Sinan Erdogan 1,* and Cenk Sayin 2 1 Institute of Pure and Applied Sciences, Marmara University, Istanbul 34722, Turkey 2 Department of Mechanical Engineering, Technology Faculty, Marmara University, Istanbul 34722, Turkey; [email protected] * Correspondence: [email protected] Received: 16 April 2018; Accepted: 14 May 2018; Published: 15 May 2018 Abstract: In recent years, in order to increase the quality of life of people, energy usage has become very important. Researchers are constantly searching for new sources of energy due to increased energy demand. Engine tests are being conducted to investigate the feasibility of the new sources of energy such as alternative fuels. In the engine tests, engine performance, combustion characteristics and exhaust emissions are evaluated by obtaining the results. The effect of newly developed fuels on engine lifetime, safe transport and storage are also examined for fuel availability. In addition, the potential and the price of fuels are important in terms of sustainability. In these studies, laboratory environments are needed for experimental setups. It is difficult to determine the availability of the most suitable alternative fuel since numerous results are obtained in the engine tests and studies. This integrated model provides a great advantage in terms of time and cost. The physical and chemical properties of the fuel affect experimental results such as engine performance, combustion, and exhaust emission. The suggested model can be making the most efficient and eco-friendly fuel choice without the need for experimental studies by using physical and chemical properties of the fuel. -
Sustainability Reporting in 2020
Annual Report 2020 CHANGE RUNS ON RENEWABLES Content 2020 in brief 3 Sustainable supply chain 58 Governance 86 CEO’s review 4 Sustainability risk assessment Corporate Governance Statement 87 in our supply chain 59 Risk management 102 Strategy 7 Identifying our supply chains 59 Remuneration report 106 Innovation 9 Sustainability with our renewable Our businesses 10 raw material suppliers and oil suppliers 59 Review by the Key events 2020 13 Sustainability within indirect procurement 60 Board of Directors 112 Key figures 2020 15 Environment 62 Key figures 129 Financial targets 16 Environmental management 62 Calculation of key figures 131 Information for investors 17 Material and energy efficiency 63 Water in our own operations 63 Financial statements 134 19 Assessing the water-related risks 63 Sustainability Consolidated financial statements 135 Sustainability highlights 20 Continuous environmental quality monitoring 63 Parent company financial statements 195 Sustainability at Neste 21 Commitment to biodiversity 64 Proposal for the distribution of earnings Material sustainability topics 23 Environmental roadmap 65 and signing of the Review by the Board Stakeholder engagement 30 People 66 of Directors and the Financial Statements 212 Value creation 35 Employees and employment 66 Auditor’s Report 213 Sustainability governance and compliance 36 Human rights 68 Climate 38 Safety 71 Our climate impact 39 Performance and reporting 2020 76 Carbon neutral production by 2035 43 Performance in figures 77 Renewable raw materials 47 GRI Content Index and UN Global Compact 79 Recycled raw materials 54 Principles for calculating the key indicators 83 Independent Practitioner’s Assurance Report 84 Neste Annual Report 2020 | Content 2 Neste creates solutions for combating Revenue Leverage ratio climate change and accelerating a shift to a 11,751 MEUR -4.7% circular economy. -
Predicting the Cetane Number of Furanic Biofuel Candidates Using an Improved Artificial Neural Network Based on Molecular Structure
PREDICTING THE CETANE NUMBER OF FURANIC BIOFUEL CANDIDATES USING AN IMPROVED ARTIFICIAL NEURAL NETWORK BASED ON MOLECULAR STRUCTURE Travis Kessler Eric R. Sacia University of Massachusetts Lowell University of California at Berkeley Lowell, Massachusetts, United States Berkeley, California, United States Alexis T. Bell J. Hunter Mack University of California at Berkeley University of Massachusetts Lowell Berkeley, California, United States Lowell, Massachusetts, United States ABSTRACT of fuel candidate types, specifically the class of furans and furan derivatives, by including specific molecules for the model The next generation of alternative fuels is being investigated to incorporate. The new molecules considered include through advanced chemical and biological production tetrahydrofuran, 2-methylfuran, 2-methyltetrahydrofuran, 5,5'- techniques for the purpose of finding suitable replacements to (furan-2-ylmethylene)bis(2-methylfuran), 5,5'- diesel and gasoline while lowering production costs and ((tetrahydrofuran-2-yl)methylene)bis(2-methyltetrahydrofuran), increasing process yields. Chemical conversion of biomass to tris(5-methylfuran-2-yl)methane, and tris(5- fuels provides a plethora of pathways with a variety of fuel methyltetrahydrofuran-2-yl)methane. Model architecture molecules, both novel and traditional, which may be targeted. adjustments improved the overall root-mean-squared error In the search for new fuels, an initial, intuition-driven (RMSE) of the base database predictions by 5.54%. evaluation of fuel compounds with desired properties is Additionally, through the targeted database expansion, it is required. Due to the high cost and significant production time shown that the predicted cetane number of the furan-based needed to synthesize these materials at a scale sufficient for molecules improves on average by 49.21% (3.74 CN units) and exhaustive testing, a predictive model would allow chemists to significantly for a few of the individual molecules. -
Biodiesel and Other Renewable Diesel Fuels
Diesel fuel can be produced from biomass via for combustion in a compression ignition engine, several types of technologies. Some use specific such as a diesel engine. ASTM establishes the grade Biodiesel biomass components, while others can convert of diesel according to the boiling range, along with many forms of biomass into fuel. At present, federal allowable ranges of other fuel properties such as and Other tax incentives apply only to certain biomass-derived cetane number, cloud point, flash point, viscosity, diesel fuels; others do not qualify. Understanding aniline point, sulfur content, water content, ash Renewable the technologies used and resulting products helps content, copper strip corrosion, and carbon residue. to identify eligible fuels. Diesel Technically, any hydrocarbon distillate material Defining Renewable Diesel and Biodiesel derived from biomass that meets the appropriate ASTM specification can be defined as diesel, or Fuels According to EPAct 2005, renewable diesel is as biodiesel. diesel fuel derived from biomass, as defined in Section 45K (c)(3), using the process of thermal Feedstocks for diesel fuels derived from biomass depolymerization that meets the following: include soybean, rape seed, canola, palm, and waste cooking oils, along with animal fats. Starting oils • Registration requirements for fuels and can also come from algae. Vegetable oils can be chemicals established by the Environmental used directly as diesel fuels, but their properties Protection Agency under Section 211 of the such as high viscosity and low volatility cause Clean Air Act (42 U.S.C. 7545) durability problems in fuel systems. • Requirements of the American Society of Various processes convert biomass to diesel fuels. -
Preliminary Design of the Green Diesel Production Process by Hydrotreatment of Vegetable Oils
Student Contest Problem 2018 | EURECHA Preliminary design of the green diesel production process by hydrotreatment of vegetable oils Javier Moreno Fernández-Villamil∗,1 and Aurelio Hurtado de Mendoza Paniagua∗ ∗Polytechnic University of Madrid (ETSII) ABSTRACT In this work, a conceptual design is presented of a HVO/green diesel production unit with a processing capacity of 74 ton/h (500 000 ton/year) of vegetable oils and a production rate of 59 ton/h of diesel. Firstly, an extensive literature review has been conducted regarding the state-of-the-art techniques as well as process equipment, mechanisms of reaction and thermodynamical properties. A market analysis is also presented which estimates feedstock availability and target production rate. With this information, a preliminary Process Flow Diagram is proposed, along with explanations on the type of equipment used and its operating conditions. Process design and simulation has been performed using Aspen Plus®, while Aspen Custom Modeler® has been used to develop more accurate models where necessary. The present study concludes with an analysis of process flexibility, considerations for heat integration and an economic assessment. KEYWORDS Green diesel; Hydrotreatment of Vegetable Oils; Computer-aided Process Engineering Introduction tional diesel engines, mainly due to its stability and cold flow properties [2]. On the other hand, the sustainability of these n the last decade, alternative fuels have gained increasing processes has been questioned, since the food-based crops that I attention from the scientific community, given the growing are commonly used as feedstock tamper with food prices and energy demand and the global warming effect derived from availability in the regions of growth, a problem that has been CO2 emissions.