Spatio-Temporal Analysis of Precipitation Frequency in Texas Using High-Resolution Radar Products

Total Page:16

File Type:pdf, Size:1020Kb

Spatio-Temporal Analysis of Precipitation Frequency in Texas Using High-Resolution Radar Products water Article Spatio-Temporal Analysis of Precipitation Frequency in Texas Using High-Resolution Radar Products Dawit Ghebreyesus * and Hatim O. Sharif Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA; [email protected] * Correspondence: [email protected] Received: 13 April 2020; Accepted: 9 May 2020; Published: 13 May 2020 Abstract: Understanding the frequency and intensity of precipitation is needed for many vital applications including water supply for agricultural, municipal, industrial, and power generation uses, design of hydraulic structures, and analysis and forecasting of hazards such as flood, drought, and landslide. This study examines, in detail, the spatial and temporal variability of precipitation frequency over the State of Texas and its trends from 2002 to 2019. The results indicate that Texas receives around 325 wet hours on average annually (3.7% of the time). The northern part of the Gulf Coast region witnesses the highest average precipitation frequency reaching 876 wet hours annually. The year 2015 was found to have the highest precipitation frequency across the state with an average frequency of 6% (525 wet hours) and 2011 was the driest, with an average frequency of 1.9% (170 wet hours). In terms of seasonality, the highest precipitation frequency was observed in the summer with a frequency of 4.1%. The areal average time-series of the precipitation frequency indicates that the 2011–2012 drought to be a change point. The Mann–Kendall trend analysis shows that 16.2% of the state experienced a significant positive trend in precipitation frequency including the dry western region and major cities. The results can provide useful information about storm characteristics and recent change and variability of precipitation at high spatial resolutions and can be used in a multitude of practical applications. Keywords: NEXt-generation Weather RADar (NEXRAD); precipitation; Texas; radar; STAGE IV 1. Introduction Precipitation is an essential input for water resource management studies and modeling of hydrological processes. In addition to being primary variables in climate classification, the frequency and intensity of precipitation are necessary for many vital applications including water supply for agricultural, municipal, industrial, and power-generation uses, design of hydraulic structures, and flood, drought, and landslide analysis and forecasting. However, an accurate representation of the spatial and temporal distribution of precipitation remains a major challenge facing the scientific community. Rain gauges provide accurate point measurements of precipitation, but their measurements are typically not enough to capture its spatial variability. Yatagai [1] showed that the use of spatially interpolated data obtained from a dense network of rain gauges significantly improved the spatial representation of the precipitation, but such resolutions are rarely available from existing rain gauge networks. Accordingly, numerous studies suggested that it is more efficient to use remotely sensed precipitation estimation techniques (radar-based and satellite-based) to capture the spatio-temporal variability of the precipitation [2–8]. The NEXt-generation Weather RADar (NEXRAD) systems have revolutionized the National Weather Service (NWS) forecast and warning programs by enhancing the detection mechanism of the severe weather such as wind, heavy rainfall, hail, hurricanes and tornadoes [9,10]. The network Water 2020, 12, 1378; doi:10.3390/w12051378 www.mdpi.com/journal/water Water 2020, 12, 1378 2 of 16 consists of 160 WSR-88D (Weather Surveillance Radar-1988 Doppler) radars distributed across the entire conterminous United States. The National Centers for Environmental Prediction (NCEP) stage IV quantitative precipitation estimates (QPEs) are the most widely used NEXRAD precipitation products by the research community [6,11]. Examples of the studies conducted using the products include hydrologic model evaluation [12], flood forecasting [13], radar QPE evaluation and comparison with ground measurements [2], and assessment of different satellite precipitation products [14]. Gourley [15] used both NCEP Stage IV and Satellite QPEs to force a hydrological model and compare their performance against observed discharge, citing encouraging results. Yilmaz [12] compared gauge-based, radar-based, and satellite-based precipitation estimates accounting for hydrologic modeling and highlighted the benefits of spatial coverage by the radar product. Furl [6] assessed several satellite-based precipitation products versus the NCEP stage IV after deciding that the radar product was superior even to the sparse rain gauge estimates. Several studies were performed to compare the stage IV product with rain gauges. Wang’s [2] findings suggested that NEXRAD Multi-sensor Precipitation Estimator (MPE) has a much higher correlation than the previous products and underestimates by only 7% on average in a study conducted over the Upper Guadalupe River in Texas. The study concluded that the spatial variability of the precipitation was captured at a reasonable accuracy by the NEXRAD MPE. Westcott [16] compared monthly gauges amounts to that of the stage IV product over the Midwest and found that stage IV overestimated precipitation at the low end and underestimated it for high values. Even though the comparison was carried on the averaged values at a county level, MPE accuracy increased as the value of precipitation increases, except for rare heavy events. A similar conclusion was reached by Habib [17] in a validation study using a dense network of gauges carried over the south of Louisiana. Habib [17] further emphasized that the MPE Stage IV algorithm showed a significant improvement in its performance compared to its predecessors. All of the aforementioned studies did not claim that the Stage IV product was as accurate as rain gauge but suggested that it was capable of providing a very reasonable spatial representation of the precipitation with acceptable accuracy. Radar products were highly recommended for modeling practices that require high accuracy in the spatial and temporal distribution of the precipitation. In recent decades, numerous studies reported significant changes in mean precipitation over many regions not only in the US but throughout the world [18]. Several studies reported changes in the frequency and intensity of extreme events, i.e., floods and drought. Heavy precipitation events have become more frequent since the middle of the last century as reported by Osborn [19] in the UK, Sen Roy [20] in India, and by Karl [21] in the US. Precipitation has increased substantially in the state of Texas for the months December to March with an increase as large as 47% per century in Panhandle and Plains [22]. The steadiest increase, with a 15% per century rise, has been seen in East Texas, which receives a greater amount of precipitation during December to March than any other Texas climatic regions, in both absolute and relative terms. Overall, long-term precipitation trends range from about 5% per century in the Panhandle and Plains and Far West Texas to about 20% per century in South Texas and Southeast Texas. Drought has persisted in the TexMex Region, including Eastern Texas in 2011 and 2012 [23] but was followed by very wet years starting from 2015. The cost of the 2011 drought in Texas and surrounding regions in terms of U.S. agricultural losses was estimated to be $12 billion by The National Climatic Data Center [24]. Even though the most significant attribute of precipitation is the amount of precipitation that most of the rain gauges capture daily, precipitation frequency is another crucial component that needs in-depth analysis. The frequency of precipitation reveals information that is crucial in the water resource management and agricultural sectors, e.g., for better estimation of the amount and timing of irrigation and fertilizer application [25]. Only a few studies examined the precipitation frequency on regional and global scales [25,26]. The main limitation of these studies was that the majority were conducted at coarse spatial and temporal resolutions and, therefore, mask a significant part of the inherent variability of precipitation. For example, a daily analysis will provide very limited information Water 2020, 12, 1378 3 of 16 Waterbecause 2020 it, 12 seldom, x FOR PEER rains REVIEW all day. Moreover, the spatial resolution used in these studies (0.5 0.53 ofand 17 ◦ × ◦ 2.5 2.5 ) is only suitable for synoptic analysis at a global or continental scale. This study investigates ◦ × ◦ resolutionsthe precipitation from the frequency last 18 acrossyears using the state NEXRAD of Texas data with at sub-daily4 × 4 km2 temporalspatial resolution resolutions and from hourly the temporallast 18 years resolution. using NEXRAD The analysis data provides at 4 4 details km2 spatial of the spatial resolution distribution and hourly of the temporal change in resolution. trend of × theThe precipitation analysis provides frequency. details Moreover, of the spatial the distributionseasonal variability of the change in the in hourly trend offrequency the precipitation and the variabilityfrequency. of Moreover, frequency the versus seasonal the variabilityprecipitation in theintensity hourly will frequency be investigated. and the variability Precipitation of frequency of urban centersversus theis analyzed precipitation in detail intensity with the will focus be investigated.
Recommended publications
  • The Twister Sisters, Peggy Willenberg and Melanie Metz Topic
    NEWSLETTER TWIN CITIES CHAPTER AMERICAN METEOROLOGICAL SOCIETY September, 2007 Vol. 29 No. 1 The meeting of the Twin Cities Chapter of the AMS will be at 7 PM September 18th, 2007 Twin Cities WFO, Chanhassen, MN Specific directions to the meeting can be found on page 5. AMS chapter members, interested acquaintances and potential members are invited to attend. Featured Speaker: The Twister Sisters, Peggy Willenberg and Melanie Metz Topic: Chasing the Greensburg, KS, tornado of May 4, 2007 “Ok, so we're not actually sisters... but we are true Twister Sisters! We started chasing together in 2001 and have become best of friends. We both enjoy life, like a good glass of wine, think the same way, and have a common desire... to capture the perfect wedge! We always agree on a target and continue to learn more from each successful chase and each bust. Every chase is a new and exciting challenge.” “We both have a Bachelor's Degree in Science and are completed several Meteorology courses at Saint Cloud State University. We also attended a Severe Storm Forecasting class instructed by Tim Vasquez and attended the College of Du Page Severe Storms Forecasting Conference. During the chase season, we work for FOX 9 News, KMSP in Minneapolis, MN and teach basic and advanced Skywarn classes. We have given educational severe weather talks for two consecutive years at a HAM radio fest in St. Paul, MN; The Importance of Boundaries for Severe Storm Initiation and Tornadic vs. Non-Tornadic Wall Clouds. During the summer of 2002, we volunteered as IHOP Mobile Mesonet Operators at the National Severe Storms Laboratory.
    [Show full text]
  • Starting a Vineyard in Texas • a GUIDE for PROSPECTIVE GROWERS •
    Starting a Vineyard in Texas • A GUIDE FOR PROSPECTIVE GROWERS • Authors Michael C ook Viticulture Program Specialist, North Texas Brianna Crowley Viticulture Program Specialist, Hill Country Danny H illin Viticulture Program Specialist, High Plains and West Texas Fran Pontasch Viticulture Program Specialist, Gulf C oast Pierre Helwi Assistant Professor and Extension Viticulture Specialist Jim Kamas Associate Professor and Extension Viticulture Specialist Justin S cheiner Assistant Professor and Extension Viticulture Specialist The Texas A&M University System Who is the Texas A&M AgriLife Extension Service? We are here to help! The Texas A&M AgriLife Extension Service delivers research-based educational programs and solutions for all Texans. We are a unique education agency with a statewide network of professional educators, trained volunteers, and county offices. The AgriLife Viticulture and Enology Program supports the Texas grape and wine industry through technical assistance, educational programming, and applied research. Viticulture specialists are located in each region of the state. Regional Viticulture Specialists High Plains and West Texas North Texas Texas A&M AgriLife Research Denton County Extension Office and Extension Center 401 W. Hickory Street 1102 E. Drew Street Denton, TX 76201 Lubbock, TX 79403 Phone: 940.349.2896 Phone: 806.746.6101 Hill Country Texas A&M Viticulture and Fruit Lab 259 Business Court Gulf Coast Fredericksburg, TX 78624 Texas A&M Department of Phone: 830.990.4046 Horticultural Sciences 495 Horticulture Street College Station, TX 77843 Phone: 979.845.8565 1 The Texas Wine Industry Where We Have Been Grapes were first domesticated around 6 to 8,000 years ago in the Transcaucasia zone between the Black Sea and Iran.
    [Show full text]
  • NEXRAD Product Improvement Program Update
    NEXRAD Product Improvement Program Update Greg Cate OS&T/PPD MARCH 2006 1 TOPICS ORDA • Dual Polarization • Super-Resolution – Recommendation to proceed • FAA Radar Data Ingest •CASA 2 ORDA • ORDA subsystem replaces the current WSR-88D Radar Data Acquisition subsystem to improve: – Receiver and signal processing hardware – User interface – Signal processing and diagnostic software – Reliability, maintainability and availability • ORDA improvements critical to meeting strategic goals for severe weather 3 RDA Status • Began production deployment November 2005 – Five Contractor install teams – Technical Support by RSIS Engineering and ROC – Five Installs/Week • 57 of 158 sites installed • Target completion date – September 2006 • Maintenance Training ongoing • Focus on Transition to O&M 4 5 ORDA Website http://www.orda.roc.noaa.gov/ 6 Dual Polarization 7 Acquisition Strategy Outline • Develop Performance Requirements – Leverage NSSL Experience – Include ROC and Agency Stakeholders • Continue Emphasis on Commercial Solutions • ORDA SIGMET Supports Dual Pol Modification • Performance-based acquisition – Development – Production – Deployment • Utilize NSSL work in Dual Pol Algorithm Development • Align with Current NEXRAD Maintenance Concept • Administer in OS&T/NPI 8 Dual Pol Program Activities • Issue – Contracting Officer is key member of Acquisition Team – NOAA Contracts support is constrained by limited resources – Alternative Contracting Services organization identified • FAA RESULTS Acquisition Group • Located at Mike Monroney Aeronautical Center in Oklahoma City 9 Dual Pol Program Activities (cont.) • Complete NOAA/FAA Inter-Agency Agreement with RESULTS Input • Coordinate Acquisition Plan and Inter- Agency Agreement with NOAA Acquisitions • Brief DOC Acquisition Review Board • Coordinate with RESULTS on: – Pre-Solicitation Activities – Evaluation Plan 10 Dual Pol Technical Activities • Tasking to NSSL – Hardware Analysis and Prototyping – Requirements Development – Polarimetric algorithm development (precip and HCA) – Support RFI/RFP evaluation.
    [Show full text]
  • MN GIS/Lis2011conference 21St Annual Conference and Workshops
    MN GIS/LIS2011Conference 21st Annual Conference and Workshops October 5–7, 2011 Saint Cloud River’s Edge Convention Center www.mngislis.org 1000 Westgate Drive, Suite 252 St. Paul, MN 55114-1067 (651) 203-7242 www.mngislis.org W LCOME Welcome to the 2011 MN GIS/LIS Conference and Workshops E The Minnesota GIS/LIS Board of Directors and Conference Committee first time. Consider attending the student competition on Thursday and welcome you to the 21st annual Minnesota GIS/LIS Conference and welcoming these future GIS professionals. Workshops. This year’s Conference will offer a unique experience to explore geographic information systems and land information systems We have an opportunity to recognize our former and current Polaris in Minnesota and beyond. and Lifetime award winners. Please take a minute to congratulate these committed individuals who are at the heart of GIS/LIS in Minnesota: MN Keynote speakers will bring us to new places, exhibiting how GIS is useful GIS/LIS honors them for their leadership. beyond our world. This year’s keynote speaker, Dr. Scott Mest, a research scientist with NASA, will introduce us to his work using GIS to study the Exhibitors support the conference and offer a variety of GIS products, surface of the moon and Mars. On Friday, we step back for a moment, services and information. The Exhibit hall is open Thursday at 10am. put down our wireless devices and unplug our laptops. Listen to Mr. Don’t forget to stop by the MN GIS/LIS Consortium booth in the exhibit Kenny Salwey, the “Last River Rat,” share his experiences living on the hall.
    [Show full text]
  • Weatherscope Weatherscope Application Information: Weatherscope Is a Stand-Alone Application That Makes Viewing Weather Data Easier
    User Guide - Macintosh http://earthstorm.ocs.ou.edu WeatherScope WeatherScope Application Information: WeatherScope is a stand-alone application that makes viewing weather data easier. To run WeatherScope, Mac OS X version 10.3.7, a minimum of 512MB of RAM, and an accelerated graphics card with 32MB of VRAM are required. WeatherScope is distributed freely for noncommercial and educational use and can be used on both Apple Macintosh and Windows operating systems. How do I Download WeatherScope? To download the application, go to http://earthstorm.ocs.ou.edu, select Data, Software, Download, or go to http://www. ocs.ou.edu/software. There will be three options: WeatherBuddy, WeatherScope, and WxScope Plugin. You will want to choose WeatherScope. There are two options under the application: Macintosh or Windows. Choose Macintosh to download the application. The installation wizard will automatically save to your desktop. Go to your desktop and double click on the icon that says WeatherScope- x.x.x.pkg. Several dialog messages will appear. The fi rst message will inform you that you are about to install the application. The next message tells you about computer system requirements in order to download the application. The following message is the Software License Agreement. It is strongly suggested that you read this agreement. If you agree, click Agree. If you do not agree, click Disagree and the software will not be installed onto your computer. The next message asks you to select a destination drive (usually your hard drive). The setup will run and install the software on your computer. You may then press Close.
    [Show full text]
  • Illustrated Flora of East Texas Illustrated Flora of East Texas
    ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D.
    [Show full text]
  • The Economic Climate of Texas the Case for Richardson
    The Economic Climate of Texas The Case for Richardson Internaonal Business Development Our Business Model The Richardson Chamber of Commerce staffs and manages all three organiza7ons. Texas Business Climate • CEOs and site selec6on consultants agree: – 2012 Texas is Governor’s Cup Winner – Most Compe66ve State Site Selecon Magazine – 2012 Texas is Best State for Business CEO Magazine – 2012-13 Best Business Climate Business Facili(es Magazine – 2013 Best State for Business Chief Execu(ve.net – 2013 A Top State for Fortune 500 Headquarters Fortune Magazine – 2013 America’s Top State for Economy & Intrastructure CNBC Texas Business Climate • Texas is #2 in the naon in terms of economic output over the past ten years. • #1 State in exports last 10 years ($250 Billion in 2011) • Texas is home to 51 of the Fortune 500 corporaons • Texas is #1 state in job creaon the last 4 years • Texas is #2 state in the number of high tech Workers and businesses in the U.S. (50% higher than #3 state) • Texas is centrally located to serve all of U.S., Canada, Lan America • Texas residents enjoy a high standard of living • Texas has a loW cost of living • Texas has NO state personal income tax • For more informaon on Texas: WWW.TexasWideOpenforBusiness.com Texas Business Climate • LoW Taxes Cost of Living Comparison Corporate Tax Rates Housing Price Comparison Texas Business Climate • Fair Legal System – Texas has passed sWeeping reforms so that innocent employers can put their money into job groWth rather than damage aWards from laWsuits. • Tort Reform • Medical Liability Reform • Skilled Workforce – Steadily groWing civilian Workforce of over 12 million people – Second largest technology Workforce in the U.S.
    [Show full text]
  • Clim-60 Outline
    Climate of Texas Introduction This publication consists of a narrative that describes some of the principal climatic features and a number of climatological summaries for stations in various geographic regions of the State. The detailed information presented should be sufficient for general use; however, some users may require additional information. The National Climatic Data Center (NCDC) located in Asheville, North Carolina is authorized to perform special services for other government agencies and for private clients at the expense of the requester. The amount charged in all cases is intended to solely defray the expenses incurred by the government in satisfying such specific requests to the best of its ability. It is essential that requesters furnish the NCDC with a precise statement describing the problem so that a mutual understanding of the specifications is reached. Unpublished climatological summaries have been prepared for a wide variety of users to fit specific applications. These include wind and temperature studies at airports, heating and cooling degree day information for energy studies, and many others. Tabulations produced as by-products of major products often contain information useful for unrelated special problems. The Means and Extremes of meteorological variables in the Climatography of the U.S. No.20 series are recorded by observers in the cooperative network. The Normals, Means and Extremes in the Local Climatological Data, annuals are computed from observations taken primarily at airports. The editor of this publication expresses his thanks to those State Climatologists, who, over the years, have made significant and lasting contributions toward the development of this very useful series.
    [Show full text]
  • Multifunction Phased Array Radar
    MULTIFUNCTION PHASED ARRAY RADAR PROGRAM STATUS AND POTENTIAL SERVICE IMPROVEMENTS Prepared by: Working Group for Multifunction Phased Array Radar (WG/MPAR) August 2009 Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM) 8455 Colesville Road, Suite 1500 Silver Spring, MD 20910 Foreword Weather radar has proven its value to the Nation since the installation of the current weather surveillance network began in 1990. In 2020, the WSR-88D radars forming this NEXRAD network will be 23 to 30 years old. In about the same time frame, most of the Nation’s aircraft surveillance radars will be nearing the end of their design life. Decisions on replacing or repairing and upgrading these National radar assets must be made over the next 10 to 15 years. We are now on the threshold of a revolution in civilian radar capability, enabled by the adaptation of established military radar technology to existing civilian applications, plus new capabilities beyond what current systems can provide. The Working Group for Multifunction Phased Array Radar (WG/MPAR) is coordinating an interagency initiative to investigate the feasibility of applying the capabilities of phased array technology to perform weather and aircraft surveillance simultaneously. This paper presents a snapshot of the status of that initiative and projects potential service improvements that would be derived from the operational application of phased array radar to aircraft and weather surveillance. I wish to thank the members of WG/MPAR—especially Dr. James (Jeff) Kimpel, Director of the National Severe Storms Laboratory (NOAA) and Mr. William Benner, Weather Processors Group Manager (FAA)—as well as the OFCM staff, especially Mr.
    [Show full text]
  • Noaa Technical Memorandum Nwswr-177 Climate Of
    NOAA TECHNICAL MEMORANDUM NWSWR-177 CLIMATE OF PHOENIX, ARIZONA Robert J. Schmidli and Austin Jamison NEXRAD Weather Service Forecast Office Phoenix9 Arizona July 1996 Third Revision u.s. DEPARTMENT OF I National Oceanic and National Weather COMMERCE Atmospheric Administration I Service Williams, Jr., May 1972. (COM 72 10707) 76 Monthly Climatological Charts of the Behavior of Fog and Low Stratus at Los Angeles lntematicnal Airport Donald M. Gales, July 1972. (COM 7211140) n A Study of Radar Echo Distribution in Arizona During July and August John E. Hales, Jr., July 1972. (COM 7211136) 78 Forecasting Precipitation at Bakersfield, California, Using Pressure Gradient Vectors. Earl T. Riddiough, July 1972. (COM 7211146) 79 Climate of Stockton, Calffomia. Robert C. Nelson, July 1972. (COM 7210920) NOAA TECHNICAL MEMORANDA 80 Estimation of Number of Days Above or Below Selected Temperatures. Clarence M. Sakamoto, National Weather Service, Western Region Subseries October 1972. (COM 72 10021) . 81 An Aid fer Forecasting Summer Maximum Temperatures at Seattie, Washington. Edgar G. Johnson, November 1972. (COM 7310150) The National Weather Service (NWS) Westem Region (WR) Subseries provides an informal medium for the documentation and quick dissemination of results not appropriate, or not yet ready, for formal 82 Flash Flood Forecasting and Warning Program in the Western Region. Phifip Williams, Jr., ChesterLGJenn, and Roland L. Raetz, December1972, (Revised March 1978). (COM 7310251) publication. The series is used to report on work in progress, to describe technical Proc:e'dures and 83 A comparison of Manual and Semiautomatic Methods of Digitizing Analog Wind Records. Glenn practices, or to relate progress to a limited audience.
    [Show full text]
  • Time Series Analysis of Monthly and Annual Precipitation in the State of Texas Using High-Resolution Radar Products
    water Article Time Series Analysis of Monthly and Annual Precipitation in The State of Texas Using High-Resolution Radar Products Dawit Ghebreyesus * and Hatim O. Sharif Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA; [email protected] * Correspondence: [email protected] Abstract: Precipitation is the main source for replenishing groundwater stored in aquifers for a myriad of beneficial purposes, especially in arid and semi-arid regions. A significant portion of the municipal and agricultural water demand is satisfied through groundwater withdrawals in Texas. These withdrawals have to be monitored and regulated to be in balance with the recharge amount from precipitation in order to ensure water security. The main goal of this study is to understand the spatio-temporal variability of precipitation in the 21st century using high spatial resolution stage-IV radar data over the state of Texas and examine some climatic controls behind this variability. The results will shed light on the trends of precipitation and hence will contribute to improving water resources management strategies and policies. Pettit’s test and Standard Normal Homogeneity Test (SNHT), tools for detecting change-point in the monthly precipitation, suggested change-points have occurred across the state around the years 2013 and 2014. The test for the homogeneity of the data before and after 2013 revealed that, in over 64% of the state, the precipitation means were significantly different. The Panhandle region (northern part) is the only part of the state that did not show a significant difference in the mean precipitation before and after 2013.
    [Show full text]
  • Flora of North Central Texas Flora of North Central Texas
    SHINNERS & MAHLER’S FLOR A OF NORTH CENTRAL TEXAS GEORGE M. DIGGSIGGS,, JJR.. BBARNEY L. LIPSCOMBIPSCOMB ROBERT J. O’KENNON D VEGETATIONAL AREAS OF TEXAS MODIFIED FROM CHECKLIST OF THE VASCULAR PLANTS OF TEXAS (HATCH ET AL. 1990). NEARLY IDENTICAL MAPS HAVE BEEN USED IN NUMEROUS WORKS ON TEXAS INCLUDING GOULD (1962) AND CORRELL AND JOHNSTON (1970). 1 PINEYWOODS 2 GULF PRAIRIES AND MARSHEs 3 POST OAK SAVANNAH 4 BLACKLAND PRAIRIES 5 CROSS TIMBERS AND PRAIRIES 6 SOUTH TEXAS PLAINS 7 EDWARDS PLATEAU 8 ROLLING PLAINS 9 HIGH PLAINS 10 TRANS-PECOS, MOUNTAINS AND BASINS D VEGETATIONAL AREAS OF NORTH CENTRAL TEXAS D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D SHINNERS & MAHLER’S ILLUSTRATED FLORA OF NORTH CENTRAL TEXAS Shinners & Mahler’s ILLUSTRATED FLORA OF NORTH CENTRAL TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) BASS FOUNDATION ROBERT J. O’KENNON RUTH ANDERSSON MAY MARY G. PALKO AMON G. CARTER FOUNDATION MARGRET M. RIMMER MIKE AND EVA SANDLIN INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE OTHER CONTRIBUTORS: PEG AND BEN KEITH FRIENDS OF HAGERMAN NAT IONAL WILDLIFE REFUGE SUMMERLEE FOUNDATION JOHN D.
    [Show full text]