Introgression Pathway for Drought Tolerance In

Total Page:16

File Type:pdf, Size:1020Kb

Introgression Pathway for Drought Tolerance In View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Texas A&M Repository INTROGRESSION PATHWAY FOR DROUGHT TOLERANCE IN PEANUT (Arachis hypogaea L.) A Dissertation by JOHN MICHAEL CASON Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Charles E. Simpson Co-Chair of Committee William L. Rooney Committee Members, Jason E. Woodward Peter A. Dotray Head of Department, David D. Baltensperger December 2018 Major Subject: Plant Breeding Copyright 2018 John Michael Cason ABSTRACT In this study, a hybrid of the bridge species Arachis vallsii Krapov. and W.C. Greg. (VSW 9902-1) and A. dardani Krapov. and W.C. Greg. (GK12946) was created to initiate an introgression pathway for movement of possible drought tolerance genes into the cultivated peanut (A. hypogaea L.). A hybrid between the two species was successfully created and confirmed based on leaf morphology, pollen counts and intermediated leaf morphology. One-hundred and seventy-five attempts were made to double the chromosome complement using 3 methods at concentrations of 0.02% and 0.03% colchicine for exposure times ranging from 6 to 24 hours. No attempt has been successful to date. In addition, a greenhouse transcriptome study with 7 day-imposed drought was conducted on A. dardani (12946) and the reference species A. ipaënsis (Krapov. and W.C. Greg.) (KGBPScS-30076) (B genome donor of the cultivated peanut). Differential gene expression analysis (EdgeR Test) of the normalized RPKM (Reads Per Kilobase Million mapped reads) values was conducted with a fold value > abs (2) at the p ≤ 0.05 level using CLC Genomics Workbench v8. Significant transcript levels associated with drought tolerance were found in relation to the putative drought species (A. dardani (12946)), which have not been reported previously. Transcripts were identified that were higher between physiological states and between species. In total, 40 genes were identified for further study. ii ACKNOWLEDGEMENTS I would like to take this opportunity to thank those who have helped me during my time in graduate school. First and foremost, I would like to thank my Lord and Savior Jesus Christ for saving me and giving me this opportunity. Next, I would like to thank Dr. Charles Simpson, he has been an invaluable mentor both academically and professionally, as well as providing me the means to attend graduate school. His unique experiences traveling South America have given him knowledge about the genus Arachis that has been invaluable to me in my research. In addition, his unwavering support has been very much appreciated. I would also like to thank Mr. Michael Baring for his listening ear and sound advice. I have spent countless hours traveling the state of Texas with him asking questions and honing the skills that I have learned in the classroom. I would also like to thank numerous others. The other members of my committee. Dr. Bill Rooney for guidance in academic matters and advice, Drs. Jason Woodward and Peter Dotray for their encouragement and support, LeAnn Hague for being my eyes and ears on campus and Dr. Jeff Brady, Brian Bennett, Nichole Cherry and Chase Murphy for all the assistance in my research. I would also like the thank Dr. Craig Nessler, Dr. David Baltensperger and Dr. Don Cawthon for their support of my education. Last but certainly first in my heart is my wife, Nicole Cason. She has had to listen to me complain and stress out over deadlines. She has been a constant source of encouragement through the long hours of studying. She has taken up the slack for me in order to keep our family going and I could not have done this without her. iii CONTRIBUTORS AND FUNDING SOURCES Funding for education costs and research was supported by personal contributions by Dr. Charles E. Simpson, internal Texas A&M AgriLife Research funds made available by Dr. Craig L. Nessler, Dr. David D. Baltensperger and Dr. Donald L. Cawthon. In addition, a Texas A&M Genomics seed grant was used to conduct part of the transcriptomics study. This work was supported by a dissertation committee consisting of Dr. Charles E. Simpson (research advisor/co-chair) and Dr. William L. Rooney (academic advisor/co-chair), Dr. Peter A. Dotray of the Department of Soil and Crop Sciences and Dr. Jason E. Woodward of the Department of Plant Pathology and Microbiology. The analyses depicted in Chapter IV were advised by Dr. Jeffery A. Brady. In addition, Brian Bennett, Nichole Cherry and Chase Murphy assisted in data collection. iv TABLE OF CONTENTS Page ABSTRACT ......................................................................................................................... ii ACKNOWLEDGEMENTS ................................................................................................ iii CONTRIBUTORS AND FUNDING SOURCES ................................................................iv TABLE OF CONTENTS ...................................................................................................... v LIST OF FIGURES ............................................................................................................ vii LIST OF TABLES ............................................................................................................ viii CHAPTER I INTRODUCTION ........................................................................................... 1 CHAPTER II LITERATURE REVIEW ............................................................................... 5 II.1 Taxonomy and Organization of Genus Arachis and its Species ................................. 5 II.2 Drought Tolerance ....................................................................................................... 8 II.3 Breeding Strategies .................................................................................................... 11 II.4 Genomics and Molecular Markers............................................................................. 13 II.5 Chromosome Doubling Compounds ......................................................................... 16 II.6 Gene Introgression ..................................................................................................... 17 CHAPTER III MATERIALS AND METHODS ................................................................ 21 III.1 RNA-seq ................................................................................................................... 21 III.1.1 Greenhouse Study .............................................................................................. 21 III.1.2 RNA Extraction and Sequencing ....................................................................... 24 III.2 Crossing .................................................................................................................... 26 CHAPTER IV RESULTS AND DISCUSSION ................................................................. 32 IV.1 Relative Water Content ............................................................................................ 32 IV.2 Differential Gene Expression Analysis .................................................................... 34 IV.3 Crossing ................................................................................................................... 48 CHAPTER V CONCLUSIONS .......................................................................................... 55 REFERENCES .................................................................................................................... 58 v Page APPENDIX ........................................................................................................................ 75 vi LIST OF FIGURES Page Figure 1. A picture showing the crossing block layout with an A. vallsii female plant in a 36.2 cm basket with marked pollinations and hybridization isolation pots ........... 27 Figure 2. A picture showing the difference in the root systems of A. dardani and A. ipaënsis at 75 days after planting (DAP)....................................................................... 33 Figure 3. A picture documenting the presence of plant hairs and leaf angle adjustment in A. dardani. .............................................................................................. 34 Figure 4. A figure showing 8 shoot tissue DGE comparisons and the number of genes significantly up or down regulated 2 fold at an FDR-corrected p-value ≤ .05. ............. 36 Figure 5. A figure showing 8 root tissue DGE comparisons and the number of genes significantly up or down regulated 2 fold at an FDR-corrected p-value ≤.05. .............. 37 Figure 6. A figure depicting various transcription factors and their role in drought response (reprinted from Lata and Prada, 2011). ......................................................... 44 Figure 7. Pictures contrasting the leaf morphlogy of (clockwise): a. A. vallsii, b. A. dardani as compared to the intermediate morphlogy of c. A. vallsii x A. dardani hybrid and the flower morphology of the hybrid .......................................................... 51 Figure 8. A picture of an hybrid seed following colchicine treatment that is showing some promise of chromosme doubling ......................................................................... 53 vii LIST OF TABLES Page Table 1. A table showing crossing block information with the male and female parent, planting dates, first flower dates and
Recommended publications
  • Genetics of Nodulation in Aeschynomene Evenia Uncovers Mechanisms of the Rhizobium–Legume Symbiosis
    ARTICLE https://doi.org/10.1038/s41467-021-21094-7 OPEN Genetics of nodulation in Aeschynomene evenia uncovers mechanisms of the rhizobium–legume symbiosis Johan Quilbé1, Léo Lamy1,2, Laurent Brottier 1, Philippe Leleux1,2, Joël Fardoux1, Ronan Rivallan3,4, Thomas Benichou1, Rémi Guyonnet1, Manuel Becana 5, Irene Villar5, Olivier Garsmeur3,4, Bárbara Hufnagel 6, Amandine Delteil1, Djamel Gully1, Clémence Chaintreuil1, Marjorie Pervent1, Fabienne Cartieaux 1, Mickaël Bourge 7, Nicolas Valentin7, Guillaume Martin 3,4, Loïc Fontaine8, Gaëtan Droc 3,4, Alexis Dereeper9, Andrew Farmer10, Cyril Libourel 11, Nico Nouwen1, Frédéric Gressent1, 1234567890():,; ✉ Pierre Mournet3,4, Angélique D’Hont3,4, Eric Giraud1, Christophe Klopp 2 & Jean-François Arrighi 1 Among legumes (Fabaceae) capable of nitrogen-fixing nodulation, several Aeschynomene spp. use a unique symbiotic process that is independent of Nod factors and infection threads. They are also distinctive in developing root and stem nodules with photosynthetic bra- dyrhizobia. Despite the significance of these symbiotic features, their understanding remains limited. To overcome such limitations, we conduct genetic studies of nodulation in Aeschy- nomene evenia, supported by the development of a genome sequence for A. evenia and transcriptomic resources for 10 additional Aeschynomene spp. Comparative analysis of symbiotic genes substantiates singular mechanisms in the early and late nodulation steps. A forward genetic screen also shows that AeCRK, coding a receptor-like kinase, and the symbiotic signaling genes AePOLLUX, AeCCamK, AeCYCLOPS, AeNSP2, and AeNIN are required to trigger both root and stem nodulation. This work demonstrates the utility of the A. evenia model and provides a cornerstone to unravel mechanisms underlying the rhizobium–legume symbiosis.
    [Show full text]
  • The Genome Structure of Arachis Hypogaea (Linnaeus, 1753) and an Induced Arachis Allotetraploid Revealed by Molecular Cytogenetics
    COMPARATIVE A peer-reviewed open-access journal CompCytogenThe 12(1):genome 111–140 structure (2018) ofArachis hypogaea (Linnaeus, 1753) and an induced Arachis... 111 doi: 10.3897/CompCytogen.v12i1.20334 RESEARCH ARTICLE Cytogenetics http://compcytogen.pensoft.net International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics The genome structure of Arachis hypogaea (Linnaeus, 1753) and an induced Arachis allotetraploid revealed by molecular cytogenetics Eliza F. de M. B. do Nascimento1,2, Bruna V. dos Santos2, Lara O. C. Marques2,3, Patricia M. Guimarães2, Ana C. M. Brasileiro2, Soraya C. M. Leal-Bertioli4, David J. Bertioli4, Ana C. G. Araujo2 1 University of Brasilia, Institute of Biological Sciences, Campus Darcy Ribeiro, CEP 70.910-900, Brasília, DF, Brazil 2 Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770- 917, Brasília, DF, Brazil 3 Catholic University of Brasilia, Campus I, CEP 71966-700, Brasília, DF, Brazil 4 Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, 30602-6810, Athens, Georgia, USA Corresponding author: Ana Claudia Guerra Araujo ([email protected]) Academic editor: N. Golub | Received 15 August 2017 | Accepted 23 January 2018 | Published 14 March 2018 http://zoobank.org/02035703-1636-4F8E-A5CF-54DE8C526FCC Citation: do Nascimento EFMB, dos Santos BV, Marques LOC, Guimarães PM, Brasileiro ACM, Leal-Bertioli SCM, Bertioli DJ, Araujo ACG (2018) The genome structure ofArachis hypogaea (Linnaeus, 1753) and an induced Arachis allotetraploid revealed by molecular cytogenetics. Comparative Cytogenetics 12(1): 111–140. https://doi.org/10.3897/ CompCytogen.v12i1.20334 Abstract Peanut, Arachis hypogaea (Linnaeus, 1753) is an allotetraploid cultivated plant with two subgenomes de- rived from the hybridization between two diploid wild species, A.
    [Show full text]
  • (Arachis Hypogaea) and Its Most Closely Related Wild Species Using
    Annals of Botany 111: 113–126, 2013 doi:10.1093/aob/mcs237, available online at www.aob.oxfordjournals.org A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers Downloaded from https://academic.oup.com/aob/article-abstract/111/1/113/182224 by University of Georgia Libraries user on 29 November 2018 Ma´rcio C. Moretzsohn1,*, Ediene G. Gouvea1,2, Peter W. Inglis1, Soraya C. M. Leal-Bertioli1, Jose´ F. M. Valls1 and David J. Bertioli2 1Embrapa Recursos Gene´ticos e Biotecnologia, C.P. 02372, CEP 70.770-917, Brası´lia, DF, Brazil and 2Universidade de Brası´lia, Instituto de Cieˆncias Biolo´gicas, Campus Darcy Ribeiro, CEP 70.910-900, Brası´lia-DF, Brazil * For correspondence. E-mail [email protected] Received: 25 June 2012 Returned for revision: 17 August 2012 Accepted: 2 October 2012 Published electronically: 6 November 2012 † Background and Aims The genus Arachis contains 80 described species. Section Arachis is of particular interest because it includes cultivated peanut, an allotetraploid, and closely related wild species, most of which are diploids. This study aimed to analyse the genetic relationships of multiple accessions of section Arachis species using two complementary methods. Microsatellites allowed the analysis of inter- and intraspecific vari- ability. Intron sequences from single-copy genes allowed phylogenetic analysis including the separation of the allotetraploid genome components. † Methods Intron sequences and microsatellite markers were used to reconstruct phylogenetic relationships in section Arachis through maximum parsimony and genetic distance analyses. † Key Results Although high intraspecific variability was evident, there was good support for most species.
    [Show full text]
  • Taxonomy of the Genus Arachis (Leguminosae)
    BONPLANDIA16 (Supi): 1-205.2007 BONPLANDIA 16 (SUPL.): 1-205. 2007 TAXONOMY OF THE GENUS ARACHIS (LEGUMINOSAE) by AntonioKrapovickas1 and Walton C. Gregory2 Translatedby David E. Williams3and Charles E. Simpson4 director,Instituto de Botánicadel Nordeste, Casilla de Correo209, 3400 Corrientes, Argentina, deceased.Formerly WNR Professor ofCrop Science, Emeritus, North Carolina State University, USA. 'InternationalAffairs Specialist, USDA Foreign Agricultural Service, Washington, DC 20250,USA. 4ProfessorEmeritus, Texas Agrie. Exp. Stn., Texas A&M Univ.,Stephenville, TX 76401,USA. 7 This content downloaded from 195.221.60.18 on Tue, 24 Jun 2014 00:12:00 AM All use subject to JSTOR Terms and Conditions BONPLANDIA16 (Supi), 2007 Table of Contents Abstract 9 Resumen 10 Introduction 12 History of the Collections 15 Summary of Germplasm Explorations 18 The Fruit of Arachis and its Capabilities 20 "Sócias" or Twin Species 24 IntraspecificVariability 24 Reproductive Strategies and Speciation 25 Dispersion 27 The Sections of Arachis ; 27 Arachis L 28 Key for Identifyingthe Sections 33 I. Sect. Trierectoides Krapov. & W.C. Gregorynov. sect. 34 Key for distinguishingthe species 34 II. Sect. Erectoides Krapov. & W.C. Gregory nov. sect. 40 Key for distinguishingthe species 41 III. Sect. Extranervosae Krapov. & W.C. Gregory nov. sect. 67 Key for distinguishingthe species 67 IV. Sect. Triseminatae Krapov. & W.C. Gregory nov. sect. 83 V. Sect. Heteranthae Krapov. & W.C. Gregory nov. sect. 85 Key for distinguishingthe species 85 VI. Sect. Caulorrhizae Krapov. & W.C. Gregory nov. sect. 94 Key for distinguishingthe species 95 VII. Sect. Procumbentes Krapov. & W.C. Gregory nov. sect. 99 Key for distinguishingthe species 99 VIII. Sect.
    [Show full text]
  • Integrated Small RNA and Mrna Expression Profiles Reveal Mirnas
    Zhao et al. BMC Plant Biology (2020) 20:215 https://doi.org/10.1186/s12870-020-02426-z RESEARCH ARTICLE Open Access Integrated small RNA and mRNA expression profiles reveal miRNAs and their target genes in response to Aspergillus flavus growth in peanut seeds Chuanzhi Zhao1,2†, Tingting Li1,3†, Yuhan Zhao1,2, Baohong Zhang4, Aiqin Li1, Shuzhen Zhao1, Lei Hou1, Han Xia1, Shoujin Fan2, Jingjing Qiu1,2, Pengcheng Li1, Ye Zhang1, Baozhu Guo5,6 and Xingjun Wang1,2* Abstract Background: MicroRNAs are important gene expression regulators in plants immune system. Aspergillus flavus is the most common causal agents of aflatoxin contamination in peanuts, but information on the function of miRNA in peanut-A. flavus interaction is lacking. In this study, the resistant cultivar (GT-C20) and susceptible cultivar (Tifrunner) were used to investigate regulatory roles of miRNAs in response to A. flavus growth. Results: A total of 30 miRNAs, 447 genes and 21 potential miRNA/mRNA pairs were differentially expressed significantly when treated with A. flavus. A total of 62 miRNAs, 451 genes and 44 potential miRNA/mRNA pairs exhibited differential expression profiles between two peanut varieties. Gene Ontology (GO) analysis showed that metabolic-process related GO terms were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses further supported the GO results, in which many enriched pathways were related with biosynthesis and metabolism, such as biosynthesis of secondary metabolites and metabolic pathways. Correlation analysis of small RNA, transcriptome and degradome indicated that miR156/SPL pairs might regulate the accumulation of flavonoids in resistant and susceptible genotypes. The miR482/2118 family might regulate NBS-LRR gene which had the higher expression level in resistant genotype.
    [Show full text]
  • Genome Amplification 81
    Application of high performance compute technology in bioinformatics Sven Warris Thesis committee Promotor Prof. Dr D. de Ridder Professor of Bioinformatics Wageningen University & Research Co-promotor Dr J.P. Nap Professor of Life Sciences & Renewable Energy Hanze University of Applied Sciences Groningen Other members Prof. Dr B. Tekinerdogan, Wageningen University & Research Prof. Dr R.C.H.J. van Ham, Delft University of Technology & KeyGene N.V., Wageningen Dr P. Prins, University of Tennessee, USA Prof. Dr R.V. van Nieuwpoort, Netherlands eScience Center, Amsterdam Application of high performance compute technology in bioinformatics Sven Warris Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 22 October 2019 at 4:00 p.m. in the Aula Sven Warris Application of high performance compute technology in bioinformatics, 159 pages. PhD thesis, Wageningen University, Wageningen, the Netherlands (2019) With references, with summaries in English and Dutch ISBN: 978-94-6395-112-8 DOI: https://doi.org/10.18174/499180 Table of contents 1 Introduction 9 2 Fast selection of miRNA candidates based on large- scale pre-computed MFE sets of randomized sequences 27 3 Flexible, fast and accurate sequence alignment profiling on GPGPU with PaSWAS 47 4 pyPaSWAS: Python-based multi-core CPU and GPU sequence alignment 67 5 Correcting palindromes in long reads after whole- genome amplification 81 6 Mining functional annotations across species 103 7 General discussion 125 Summary 141 Samenvatting 145 Acknowledgements 149 Curriculum vitae 153 List of publications 155 Propositions 159 7 1 Introduction 9 Advances in DNA sequencing technology In recent years, technological developments in the life sciences have progressed enormously.
    [Show full text]
  • A Reference Genome for Pea Provides Insight Into Legume Genome Evolution
    SUPPLEMENTARY INFORMATIONARTICLES https://doi.org/10.1038/s41588-019-0480-1 In the format provided by the authors and unedited. A reference genome for pea provides insight into legume genome evolution Jonathan Kreplak 1,20, Mohammed-Amin Madoui 2,20, Petr Cápal3, Petr Novák 4, Karine Labadie 5, Grégoire Aubert1, Philipp E. Bayer 6, Krishna K. Gali7, Robert A. Syme 8, Dorrie Main9, Anthony Klein1, Aurélie Bérard10, Iva Vrbová4, Cyril Fournier 1, Leo d’Agata 5, Caroline Belser 5, Wahiba Berrabah5, Helena Toegelová 3, Zbyněk Milec 3, Jan Vrána3, HueyTyng Lee 6,19, Ayité Kougbeadjo 1, Morgane Térézol1, Cécile Huneau11, Chala J. Turo 12, Nacer Mohellibi 13, Pavel Neumann 4, Matthieu Falque 14, Karine Gallardo1, Rebecca McGee 15, Bunyamin Tar’an 7, Abdelhafid Bendahmane16, Jean-Marc Aury 5, Jacqueline Batley6, Marie-Christine Le Paslier10, Noel Ellis 17, Thomas D. Warkentin 7, Clarice J. Coyne 15, Jérome Salse 11, David Edwards 6, Judith Lichtenzveig 18, Jiří Macas 4, Jaroslav Doležel 3, Patrick Wincker2 and Judith Burstin 1* 1Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France. 2Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France. 3Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic. 4Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic. 5Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France. 6School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia. 7Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
    [Show full text]
  • Phenotypic and Biochemical Characterization of the United States Department of Agriculture Core Peanut (Arachis Hypogaea L.) Germplasm Collection
    PHENOTYPIC AND BIOCHEMICAL CHARACTERIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE CORE PEANUT (ARACHIS HYPOGAEA L.) GERMPLASM COLLECTION By STANLEY W. DEZERN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2018 ©2018 Stanley W. Dezern To Emily ACKNOWLEDGMENTS This research was made possible through the generous support of The Peanut Foundation, the Georgia Peanut Commission, and the Florida Peanut Producers Association. I would like to thank the University of Florida Plant Science Research and Education Unit for their assistance planting, managing, and harvesting our experiment. My committee has been incredibly helpful in shaping this research, and I would like to thank them for their commitment to this project through many ups and downs. I would especially like to thank Dr. Edzard van Santen for his generously given time and effort assisting with the statistical analysis and editing process. I would like to recognize the Forage Evaluation lab team led by Richard Fethiere for very kindly assisting me on the protein analysis. I would also like to recognize the immensely important contributions of the following former and current members of our lab team: Leah Aidif, Adina Grossman, Louisa Aarrass, Bob Querns, Anthony Cappello, and Jacob Allen. Thank you to Mike Durham and Dr. Jay Ferrell for your constant guidance and encouragement. I am especially grateful for the friendship and support of Candice Prince, who has helped me every step of the way during the past two years. I would like to thank Dr.
    [Show full text]
  • CITOGENÉTICA MOLECULAR DA VARIEDADE BRS PÉROLA BRANCA (Arachis Hypogaea L.) E DE SEUS GENITORES
    VANESSA EMANUELLE DE OLIVEIRA MACIEL CITOGENÉTICA MOLECULAR DA VARIEDADE BRS PÉROLA BRANCA (Arachis hypogaea L.) E DE SEUS GENITORES RECIFE 2014 VANESSA EMANUELLE DE OLIVEIRA MACIEL CITOGENÉTICA MOLECULAR DA VARIEDADE BRS PÉROLA BRANCA (Arachis hypogaea L.) E DE SEUS GENITORES Dissertação apresentada ao Programa de Pós-Graduação em Agronomia– Melhoramento Genético de Plantas (PPGAMGP) da Universidade Federal Rural de Pernambuco, como parte dos requisitos para obtenção do título de mestre. Orientador: Prof. Dr. Reginaldo De Carvalho Co-Orientadoras: Dra. Roseane Cavalcanti dos Santos Dra. Lidiane de Lima Feitoza RECIFE 2014 MACIEL, V.E.O. Citogenética molecular da variedade BRS Pérola Branca (Arachis hypogaea L.)... i VANESSA EMANUELLE DE OLIVEIRA MACIEL CITOGENÉTICA MOLECULAR DA VARIEDADE BRS PÉROLA BRANCA (Arachis hypogaea L.) E DE SEUS GENITORES Dissertação apresentada ao Programa de Pós-Graduação em Agronomia–Melhoramento Genético de Plantas (PPGAMGP) da Universidade Federal Rural de Pernambuco, como parte dos requisitos para obtenção do título de mestre em Melhoramento Genético de Plantas. Dissertação defendida e aprovada pela banca examinadora em: 28/07/2014. ORIENTADOR: Dr. Reginaldo de Carvalho Departamento de Biologia/UFRPE EXAMINADORES: Dr. Edson Ferreira da Silva Departamento de Biologia/UFRPE Dra. Maria Rita Cabral Sales de Melo MACIEL, V.E.O. Citogenética molecular da variedade BRS Pérola Branca (Arachis hypogaea L.)... ii Dedico a minha amada avó, Maria da Glória Rodrigues (In memoriam). MACIEL, V.E.O. Citogenética molecular da variedade BRS Pérola Branca (Arachis hypogaea L.)... iii AGRADECIMENTOS Primeiramente, a Deus por me proporcionar a conclusão de mais uma etapa em minha formação profissional. Aos meus pais, Ivônia Rodrigues de Oliveira e Manoel José Alves Maciel e, a minha querida avó, Maria da Glória Rodrigues (In memoriam), que são os meus pilares, por todo incentivo e ensinamento de valores fundamentais para a minha vida.
    [Show full text]
  • Characterization of the Arachis (Leguminosae) D Genome Using Fluorescence in Situ Hybridization (FISH) Chromosome Markers and Total Genome DNA Hybridization
    Genetics and Molecular Biology, 31, 3, 717-724 (2008) Copyright © 2008, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article Characterization of the Arachis (Leguminosae) D genome using fluorescence in situ hybridization (FISH) chromosome markers and total genome DNA hybridization Germán Robledo1 and Guillermo Seijo1,2 1Instituto de Botánica del Nordeste, Corrientes, Argentina. 2Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina. Abstract Chromosome markers were developed for Arachis glandulifera using fluorescence in situ hybridization (FISH) of the 5S and 45S rRNA genes and heterochromatic 4’-6-diamidino-2-phenylindole (DAPI) positive bands. We used chro- mosome landmarks identified by these markers to construct the first Arachis species ideogram in which all the ho- mologous chromosomes were precisely identified. The comparison of this ideogram with those published for other Arachis species revealed very poor homeologies with all A and B genome taxa, supporting the special genome con- stitution (D genome) of A. glandulifera. Genomic affinities were further investigated by dot blot hybridization of biotinylated A. glandulifera total DNA to DNA from several Arachis species, the results indicating that the D genome is positioned between the A and B genomes. Key words: chromosome markers, DAPI bands, rDNA loci, dot blot hybridization, genome relationships. Received: June 29, 2007; Accepted: November 22, 2007. Introduction row et al., 2001; Simpson, 2001; Mallikarjuna, 2002; Mal- The genus Arachis comprises 80 wild species and the likarjuna et al., 2004). For this reason, great efforts have cultivated crop Arachis hypogaea L. (Fabales, Legumi- been directed towards understanding the relationships be- nosae) commonly known as groundnut or peanut.
    [Show full text]
  • Simple Approach for Species Discrimination of Fabaceae Family on the Basis of Length Variation in PCR Amplified Products Using Barcode Primers
    Int.J.Curr.Microbiol.App.Sci (2018) 7(12): 921-928 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 12 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.712.115 Simple Approach for Species Discrimination of Fabaceae Family on the Basis of Length Variation in PCR Amplified Products Using Barcode Primers Sumana Sikdar1*, Sharad Tiwari2, Swapnil Sapre1 and Vishwa Vijay Thakur3 1Biotechnology Centre, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India 2Department of Plant breeding and Genetics, College of Agriculture, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India 3ICAR-IINRG, Namkum Ranchi- 834010, India *Corresponding author ABSTRACT Fabaceae is one of the most diversified and complex family of flowering plants. The important pulses and the medicinally important plant species under this family have a high market value. Now a day, adulteration in the food and herbal medicinal products has become a severe problem. Adulteration of therapeutic herbs and major pulses with related K e yw or ds or conflicting species has proved to be hazardous to human health in several cases. We Barcode primers, have projected here, a PCR-based method using some of the major universal DNA barcode PCR, Agarose gel primers from the plastid region to address this problem. The basic idea behind this study electrophoresis, was to utilize the amplicon length polymorphisms exhibited by these primers to Adulteration, differentiate the plant species. PCR amplification success and species discrimination Fabaceae ability of five major DNA barcode primers (trnH-psbA, trnL, atpF-atpH, matK and rbcL) Article Info was studied among 24 representative plant species of Fabaceae family.
    [Show full text]
  • Reference Transcriptomes and Comparative Analyses of Six Species
    www.nature.com/scientificreports OPEN Reference transcriptomes and comparative analyses of six species in the threatened rosewood genus Dalbergia Tin Hang Hung 1*, Thea So2, Syneath Sreng2, Bansa Thammavong3, Chaloun Boounithiphonh3, David H. Boshier 1 & John J. MacKay 1* Dalbergia is a pantropical genus with more than 250 species, many of which are highly threatened due to overexploitation for their rosewood timber, along with general deforestation. Many Dalbergia species have received international attention for conservation, but the lack of genomic resources for Dalbergia hinders evolutionary studies and conservation applications, which are important for adaptive management. This study produced the frst reference transcriptomes for 6 Dalbergia species with diferent geographical origins and predicted ~ 32 to 49 K unique genes. We showed the utility of these transcriptomes by phylogenomic analyses with other Fabaceae species, estimating the divergence time of extant Dalbergia species to ~ 14.78 MYA. We detected over-representation in 13 Pfam terms including HSP, ALDH and ubiquitin families in Dalbergia. We also compared the gene families of geographically co-occurring D. cochinchinensis and D. oliveri and observed that more genes underwent positive selection and there were more diverged disease resistance proteins in the more widely distributed D. oliveri, consistent with reports that it occupies a wider ecological niche and has higher genetic diversity. We anticipate that the reference transcriptomes will facilitate future population genomics and gene-environment association studies on Dalbergia, as well as contributing to the genomic database where plants, particularly threatened ones, are currently underrepresented. Te genus Dalbergia Linn. f. (Fabaceae: Faboideae) contains around 250 species, many of which are globally recognized for their economic value.
    [Show full text]