The Genome Evolution and Low-Phosphorus Adaptation in White

Total Page:16

File Type:pdf, Size:1020Kb

The Genome Evolution and Low-Phosphorus Adaptation in White ARTICLE https://doi.org/10.1038/s41467-020-14891-z OPEN The genome evolution and low-phosphorus adaptation in white lupin ✉ ✉ Weifeng Xu 1 , Qian Zhang 1 , Wei Yuan1, Feiyun Xu1, Mehtab Muhammad Aslam1, Rui Miao1, Ying Li1, ✉ ✉ Qianwen Wang1, Xing Li1, Xin Zhang2, Kang Zhang2, Tianyu Xia 1 & Feng Cheng 2 White lupin (Lupinus albus) is a legume crop that develops cluster roots and has high phosphorus (P)-use efficiency (PUE) in low-P soils. Here, we assemble the genome of white 1234567890():,; lupin and find that it has evolved from a whole-genome triplication (WGT) event. We then decipher its diploid ancestral genome and reconstruct the three sub-genomes. Based on the results, we further reveal the sub-genome dominance and the genic expression of the dif- ferent sub-genomes varying in relation to their transposable element (TE) density. The PUE genes in white lupin have been expanded through WGT as well as tandem and dispersed duplications. Furthermore, we characterize four main pathways for high PUE, which include carbon fixation, cluster root formation, soil-P remobilization, and cellular-P reuse. Among these, auxin modulation may be important for cluster root formation through involvement of potential genes LaABCG36s and LaABCG37s. These findings provide insights into the genome evolution and low-P adaptation of white lupin. 1 Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China. 2 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural ✉ Genomics, Beijing, China. email: [email protected]; [email protected]; [email protected]; [email protected] NATURE COMMUNICATIONS | (2020) 11:1069 | https://doi.org/10.1038/s41467-020-14891-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14891-z hosphorus (P) is required for plant growth. P is often Table 1 The assembly statistics of white lupin genome. present in the soil in unavailable forms, such as phytic acid, P 1 or calcium (Ca), iron (Fe), and aluminum (Al) phosphates , Type Contig Scaffold and these forms are difficult for plants to absorb. About 5.7 bil- lion hectares of land worldwide contain too little P for crop Size (Mb) Number Size (Mb) Number 2 growth, and P deficiency constrains agricultural productivity .To Maximum 9.48 1 25.25 1 cope with P-limiting environments, several processes have N50 1.76 71 18.66 14 evolved in plants. These include morphological, physiological, N90 0.052 770 1.67 33 biochemical, and molecular adaptations3. Total length 558.74 3171 558.90 1580 White lupin (Lupinus albus,2n = 50) belonging to the family Chromosomes 474.20 25 Fabaceae can mobilize soil phosphates by the formation of den- (84.87%) sely packed lateral roots. These are also called cluster roots or Genes / / 48,719 proteoid roots. White lupin can grow without the addition of P TEs 262.71 / fertilizer or help from mycorrhizal fungi, and its ability to fix (43.86%) dinitrogen (N2) is less inhibited by P deficiency compared to 2 other legumes . The morphological and physiological factors of map17 (Supplementary Fig. 2). Finally, we obtained 1580 scaf- 4 low-P adaptation in white lupin have been well studied . How- folds, and the scaffold N50 was 18.66 Mb (Table 1). The 25 largest ever, the genome evolution and low-P adaptation in white lupin is scaffolds comprised 1616 contigs, which accounted for 84.87% unclear. (474.20 Mb) of the assembled genome and corresponded to the 25 5 All plant species have experienced polyploidization events , chromosomes of white lupin (Supplementary Table 2 and Sup- which are involved in plant speciation and evolution of new plementary Fig. 3). We compared this assembled genome with a functions. Narrow-leaf lupin (Lupinus angustifolius) is a close currently released white lupin genome18, and found that they relative of white lupin. Lupinus angustifolius experienced a hex- have a good chromosomal synteny relationship, except for some 6 aploidization event that was shared with white lupin. Based on small-scale segment inversions (Supplementary Fig. 4). 7 genomic block (GB) systems , diploid ancestors of paleopoly- We combined de novo prediction, homology search, and 8 9 ploids have been found in Brassica and in the Poaceae . After mRNA-seq assisted prediction to predict genes in the genome of allopolyploidization events, sub-genome dominance phenomena white lupin (see Methods), and we obtained 48,719 genes are important features shaping the evolution of polyploid gen- (Supplementary Fig. 3 and Supplementary Tables 3 and 4). omes. Sub-genome dominance indicates that one sub-genome has BUSCO (Benchmarking Universal Single-Copy Ortholog) analy- a higher gene density than the others. In addition, there are more sis with embryophyta datasets19 estimated that 95.20% of the genes from this sub-genome expressed at higher levels than their conserved single-copy genes were predicted. TEs are a major 10,11 paralogs from the other sub-genomes . Transposable elements component of the white lupin genome. We used the tools (TEs) have been shown to play a role in dominant expression of RepeatModeler, RepeatMasker, and RepeatProteinMask to pre- paralogous genes between sub-genomes in Brassica rapa and dict TEs from the white lupin genome20 (see Methods). The 12,13 maize . However, they do not show low-P adaptation. combined size of all TE sequences was 262.71 Mb and occupied Knowledge of the evolution of the paleo-genome and sub- 43.86% of the assembled genome (Supplementary Table 5 and genomes in white lupin will contribute to our understanding of its Supplementary Fig. 3). Among the sequences, long terminal adaptations to low P levels. repeats were the major component (37.81%). In this study, we use the long-read sequencing of PacBio technology combined with high-throughput chromatin capture (Hi-C) datasets, as well as mRNA-sequencing (mRNA-seq), The diploid ancestral genome of paleohexaploid white lupin. comparative and evolutionary genomic analysis, pharmacology Lupinus albus and L. angustifolius experienced a common whole- assays, genetic transformation, physiology, and biochemistry genome triplication (WGT) event. We compared the genome of analyses to characterize the reference genome of white lupin and white lupin to 15 other legume species with sequenced genomes investigate its chromosomal evolution and the molecular basis of (Supplementary Table 6). Arabidopsis thaliana was used as the its adaptation to low-P availability. outgroup. First, we determined syntenic gene pairs between pairs of the 16 legume genomes using SynOrths21. From these syntenic gene datasets, we obtained 1664 homologous genes that were Results shared by all 16 genomes. We picked 78,926 synonymous sites Pseudo-chromosome construction of the white lupin genome. from these homologous genes to build a phylogenetic tree We assembled the genome of the white lupin cultivar Amiga with (Fig. 1a). The times of divergence between legume species were combined datasets from third-generation long-read SMRT estimated by calculating Ks values (the rate of synonymous sequencing (PacBio) and long-range, Hi-C sequencing. We con- mutations per synonymous locus) between syntenic genes firmed that the white lupin plant used for sequencing had 25 pairs (Fig. 1b). The results showed that L. albus has the closest rela- = of chromosomes using in situ hybridization (Supplementary tionship to L. angustifolius (Ks ~ 0.12, divergent ~9.40 million Fig. 1). We then generated 60 Gb Illumina Solexa 150 bp paired- years) (see Methods), followed by a group of combined species end reads data and estimated the genome size of white lupin as from Galegoid and Millettioid that contains Cicer arietinum and = 584.51 Mb by 17 K-mer counting. We produced 84.29 Gb Phaseolus vulgaris (L. albus to P. vulgaris, Ks ~ 0.51, divergent (~144×) PacBio reads data (Supplementary Table 1) and assem- ~39.97 million years), then by the group of Dalbergioid that bled the data into contigs using the software Canu14, followed by contains the two diploid ancestors of cultivated peanut Arachis 15 fi = sequence polish and ltering. We obtained 3171 contigs with a ipaensis and Arachis duranensis (L. albus to A. ipaensis, Ks ~ total size of 558.74 Mb. The contig N50 was 1.76 Mb; the largest 0.52, divergent ~40.75 million years) (Fig. 1). Two relatively contig was 9.48 Mb (Table 1). A Hi-C library was constructed and recent polyploidization events were found in these analyzed = generated ~100-fold coverage of Hi-C linkage data (100 bp legume species: one is a WGT (Ks ~ 0.28, ~21.94 million years) paired-end reads). We then linked the contigs into scaffolds based event shared by L. albus and L. angustifolius (Fig. 1 and Sup- on the Hi-C data16 with the help of a previously published linkage plementary Fig. 5), and the other is a whole-genome duplication 2 NATURE COMMUNICATIONS | (2020) 11:1069 | https://doi.org/10.1038/s41467-020-14891-z | www.nature.com/naturecommunications NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14891-z ARTICLE a Vigra radiata c Chr25 100 Chr24 100 Vigan angularis Chr23 Chr22 100 Vigna unguiculata Chr21 Chr20 100 Phaseolus vulgaris Chr19 Chr18 Glycine max Millettioid 100 Chr17 Chr16 100 Glycine soja Chr15 100 Cajanus cajan Chr14 Galegoid Chr13 Lotus japonicus Chr12 Chr11 Glycyrrhiza uralensis 100 L. albus Chr10 Cicer arietinum Chr09 100 Chr08 100 Medicago truncatula Chr07 Chr06 100 Trifolium pratense Chr05 Genistoid Lupinus albus Chr04 Chr03 100 Lupinus angustifolius Chr02 50 Mb 150 Mb 250 Mb 350 Mb 450 Mb Dalbergioid Arachis ipaensis Chr01 100 Arachis duranensis 30 Mb 90 Mb 150 Mb 210 Mb 270 Mb 330 Mb 390 Mb 450 Mb Arabidopsis thaliana Lan01 Lan02 Lan03 Lan04 Lan05 Lan06Lan07Lan08 Lan09Lan10 Lan11 Lan12Lan13Lan14Lan15Lan16Lan17Lan18Lan19Lan20 L.
Recommended publications
  • The Genome Structure of Arachis Hypogaea (Linnaeus, 1753) and an Induced Arachis Allotetraploid Revealed by Molecular Cytogenetics
    COMPARATIVE A peer-reviewed open-access journal CompCytogenThe 12(1):genome 111–140 structure (2018) ofArachis hypogaea (Linnaeus, 1753) and an induced Arachis... 111 doi: 10.3897/CompCytogen.v12i1.20334 RESEARCH ARTICLE Cytogenetics http://compcytogen.pensoft.net International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics The genome structure of Arachis hypogaea (Linnaeus, 1753) and an induced Arachis allotetraploid revealed by molecular cytogenetics Eliza F. de M. B. do Nascimento1,2, Bruna V. dos Santos2, Lara O. C. Marques2,3, Patricia M. Guimarães2, Ana C. M. Brasileiro2, Soraya C. M. Leal-Bertioli4, David J. Bertioli4, Ana C. G. Araujo2 1 University of Brasilia, Institute of Biological Sciences, Campus Darcy Ribeiro, CEP 70.910-900, Brasília, DF, Brazil 2 Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770- 917, Brasília, DF, Brazil 3 Catholic University of Brasilia, Campus I, CEP 71966-700, Brasília, DF, Brazil 4 Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, 30602-6810, Athens, Georgia, USA Corresponding author: Ana Claudia Guerra Araujo ([email protected]) Academic editor: N. Golub | Received 15 August 2017 | Accepted 23 January 2018 | Published 14 March 2018 http://zoobank.org/02035703-1636-4F8E-A5CF-54DE8C526FCC Citation: do Nascimento EFMB, dos Santos BV, Marques LOC, Guimarães PM, Brasileiro ACM, Leal-Bertioli SCM, Bertioli DJ, Araujo ACG (2018) The genome structure ofArachis hypogaea (Linnaeus, 1753) and an induced Arachis allotetraploid revealed by molecular cytogenetics. Comparative Cytogenetics 12(1): 111–140. https://doi.org/10.3897/ CompCytogen.v12i1.20334 Abstract Peanut, Arachis hypogaea (Linnaeus, 1753) is an allotetraploid cultivated plant with two subgenomes de- rived from the hybridization between two diploid wild species, A.
    [Show full text]
  • (Arachis Hypogaea) and Its Most Closely Related Wild Species Using
    Annals of Botany 111: 113–126, 2013 doi:10.1093/aob/mcs237, available online at www.aob.oxfordjournals.org A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers Downloaded from https://academic.oup.com/aob/article-abstract/111/1/113/182224 by University of Georgia Libraries user on 29 November 2018 Ma´rcio C. Moretzsohn1,*, Ediene G. Gouvea1,2, Peter W. Inglis1, Soraya C. M. Leal-Bertioli1, Jose´ F. M. Valls1 and David J. Bertioli2 1Embrapa Recursos Gene´ticos e Biotecnologia, C.P. 02372, CEP 70.770-917, Brası´lia, DF, Brazil and 2Universidade de Brası´lia, Instituto de Cieˆncias Biolo´gicas, Campus Darcy Ribeiro, CEP 70.910-900, Brası´lia-DF, Brazil * For correspondence. E-mail [email protected] Received: 25 June 2012 Returned for revision: 17 August 2012 Accepted: 2 October 2012 Published electronically: 6 November 2012 † Background and Aims The genus Arachis contains 80 described species. Section Arachis is of particular interest because it includes cultivated peanut, an allotetraploid, and closely related wild species, most of which are diploids. This study aimed to analyse the genetic relationships of multiple accessions of section Arachis species using two complementary methods. Microsatellites allowed the analysis of inter- and intraspecific vari- ability. Intron sequences from single-copy genes allowed phylogenetic analysis including the separation of the allotetraploid genome components. † Methods Intron sequences and microsatellite markers were used to reconstruct phylogenetic relationships in section Arachis through maximum parsimony and genetic distance analyses. † Key Results Although high intraspecific variability was evident, there was good support for most species.
    [Show full text]
  • Taxonomy of the Genus Arachis (Leguminosae)
    BONPLANDIA16 (Supi): 1-205.2007 BONPLANDIA 16 (SUPL.): 1-205. 2007 TAXONOMY OF THE GENUS ARACHIS (LEGUMINOSAE) by AntonioKrapovickas1 and Walton C. Gregory2 Translatedby David E. Williams3and Charles E. Simpson4 director,Instituto de Botánicadel Nordeste, Casilla de Correo209, 3400 Corrientes, Argentina, deceased.Formerly WNR Professor ofCrop Science, Emeritus, North Carolina State University, USA. 'InternationalAffairs Specialist, USDA Foreign Agricultural Service, Washington, DC 20250,USA. 4ProfessorEmeritus, Texas Agrie. Exp. Stn., Texas A&M Univ.,Stephenville, TX 76401,USA. 7 This content downloaded from 195.221.60.18 on Tue, 24 Jun 2014 00:12:00 AM All use subject to JSTOR Terms and Conditions BONPLANDIA16 (Supi), 2007 Table of Contents Abstract 9 Resumen 10 Introduction 12 History of the Collections 15 Summary of Germplasm Explorations 18 The Fruit of Arachis and its Capabilities 20 "Sócias" or Twin Species 24 IntraspecificVariability 24 Reproductive Strategies and Speciation 25 Dispersion 27 The Sections of Arachis ; 27 Arachis L 28 Key for Identifyingthe Sections 33 I. Sect. Trierectoides Krapov. & W.C. Gregorynov. sect. 34 Key for distinguishingthe species 34 II. Sect. Erectoides Krapov. & W.C. Gregory nov. sect. 40 Key for distinguishingthe species 41 III. Sect. Extranervosae Krapov. & W.C. Gregory nov. sect. 67 Key for distinguishingthe species 67 IV. Sect. Triseminatae Krapov. & W.C. Gregory nov. sect. 83 V. Sect. Heteranthae Krapov. & W.C. Gregory nov. sect. 85 Key for distinguishingthe species 85 VI. Sect. Caulorrhizae Krapov. & W.C. Gregory nov. sect. 94 Key for distinguishingthe species 95 VII. Sect. Procumbentes Krapov. & W.C. Gregory nov. sect. 99 Key for distinguishingthe species 99 VIII. Sect.
    [Show full text]
  • Integrated Small RNA and Mrna Expression Profiles Reveal Mirnas
    Zhao et al. BMC Plant Biology (2020) 20:215 https://doi.org/10.1186/s12870-020-02426-z RESEARCH ARTICLE Open Access Integrated small RNA and mRNA expression profiles reveal miRNAs and their target genes in response to Aspergillus flavus growth in peanut seeds Chuanzhi Zhao1,2†, Tingting Li1,3†, Yuhan Zhao1,2, Baohong Zhang4, Aiqin Li1, Shuzhen Zhao1, Lei Hou1, Han Xia1, Shoujin Fan2, Jingjing Qiu1,2, Pengcheng Li1, Ye Zhang1, Baozhu Guo5,6 and Xingjun Wang1,2* Abstract Background: MicroRNAs are important gene expression regulators in plants immune system. Aspergillus flavus is the most common causal agents of aflatoxin contamination in peanuts, but information on the function of miRNA in peanut-A. flavus interaction is lacking. In this study, the resistant cultivar (GT-C20) and susceptible cultivar (Tifrunner) were used to investigate regulatory roles of miRNAs in response to A. flavus growth. Results: A total of 30 miRNAs, 447 genes and 21 potential miRNA/mRNA pairs were differentially expressed significantly when treated with A. flavus. A total of 62 miRNAs, 451 genes and 44 potential miRNA/mRNA pairs exhibited differential expression profiles between two peanut varieties. Gene Ontology (GO) analysis showed that metabolic-process related GO terms were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses further supported the GO results, in which many enriched pathways were related with biosynthesis and metabolism, such as biosynthesis of secondary metabolites and metabolic pathways. Correlation analysis of small RNA, transcriptome and degradome indicated that miR156/SPL pairs might regulate the accumulation of flavonoids in resistant and susceptible genotypes. The miR482/2118 family might regulate NBS-LRR gene which had the higher expression level in resistant genotype.
    [Show full text]
  • A Reference Genome for Pea Provides Insight Into Legume Genome Evolution
    SUPPLEMENTARY INFORMATIONARTICLES https://doi.org/10.1038/s41588-019-0480-1 In the format provided by the authors and unedited. A reference genome for pea provides insight into legume genome evolution Jonathan Kreplak 1,20, Mohammed-Amin Madoui 2,20, Petr Cápal3, Petr Novák 4, Karine Labadie 5, Grégoire Aubert1, Philipp E. Bayer 6, Krishna K. Gali7, Robert A. Syme 8, Dorrie Main9, Anthony Klein1, Aurélie Bérard10, Iva Vrbová4, Cyril Fournier 1, Leo d’Agata 5, Caroline Belser 5, Wahiba Berrabah5, Helena Toegelová 3, Zbyněk Milec 3, Jan Vrána3, HueyTyng Lee 6,19, Ayité Kougbeadjo 1, Morgane Térézol1, Cécile Huneau11, Chala J. Turo 12, Nacer Mohellibi 13, Pavel Neumann 4, Matthieu Falque 14, Karine Gallardo1, Rebecca McGee 15, Bunyamin Tar’an 7, Abdelhafid Bendahmane16, Jean-Marc Aury 5, Jacqueline Batley6, Marie-Christine Le Paslier10, Noel Ellis 17, Thomas D. Warkentin 7, Clarice J. Coyne 15, Jérome Salse 11, David Edwards 6, Judith Lichtenzveig 18, Jiří Macas 4, Jaroslav Doležel 3, Patrick Wincker2 and Judith Burstin 1* 1Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France. 2Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France. 3Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic. 4Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic. 5Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France. 6School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia. 7Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
    [Show full text]
  • Phenotypic and Biochemical Characterization of the United States Department of Agriculture Core Peanut (Arachis Hypogaea L.) Germplasm Collection
    PHENOTYPIC AND BIOCHEMICAL CHARACTERIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE CORE PEANUT (ARACHIS HYPOGAEA L.) GERMPLASM COLLECTION By STANLEY W. DEZERN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2018 ©2018 Stanley W. Dezern To Emily ACKNOWLEDGMENTS This research was made possible through the generous support of The Peanut Foundation, the Georgia Peanut Commission, and the Florida Peanut Producers Association. I would like to thank the University of Florida Plant Science Research and Education Unit for their assistance planting, managing, and harvesting our experiment. My committee has been incredibly helpful in shaping this research, and I would like to thank them for their commitment to this project through many ups and downs. I would especially like to thank Dr. Edzard van Santen for his generously given time and effort assisting with the statistical analysis and editing process. I would like to recognize the Forage Evaluation lab team led by Richard Fethiere for very kindly assisting me on the protein analysis. I would also like to recognize the immensely important contributions of the following former and current members of our lab team: Leah Aidif, Adina Grossman, Louisa Aarrass, Bob Querns, Anthony Cappello, and Jacob Allen. Thank you to Mike Durham and Dr. Jay Ferrell for your constant guidance and encouragement. I am especially grateful for the friendship and support of Candice Prince, who has helped me every step of the way during the past two years. I would like to thank Dr.
    [Show full text]
  • Characterization of the Arachis (Leguminosae) D Genome Using Fluorescence in Situ Hybridization (FISH) Chromosome Markers and Total Genome DNA Hybridization
    Genetics and Molecular Biology, 31, 3, 717-724 (2008) Copyright © 2008, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article Characterization of the Arachis (Leguminosae) D genome using fluorescence in situ hybridization (FISH) chromosome markers and total genome DNA hybridization Germán Robledo1 and Guillermo Seijo1,2 1Instituto de Botánica del Nordeste, Corrientes, Argentina. 2Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina. Abstract Chromosome markers were developed for Arachis glandulifera using fluorescence in situ hybridization (FISH) of the 5S and 45S rRNA genes and heterochromatic 4’-6-diamidino-2-phenylindole (DAPI) positive bands. We used chro- mosome landmarks identified by these markers to construct the first Arachis species ideogram in which all the ho- mologous chromosomes were precisely identified. The comparison of this ideogram with those published for other Arachis species revealed very poor homeologies with all A and B genome taxa, supporting the special genome con- stitution (D genome) of A. glandulifera. Genomic affinities were further investigated by dot blot hybridization of biotinylated A. glandulifera total DNA to DNA from several Arachis species, the results indicating that the D genome is positioned between the A and B genomes. Key words: chromosome markers, DAPI bands, rDNA loci, dot blot hybridization, genome relationships. Received: June 29, 2007; Accepted: November 22, 2007. Introduction row et al., 2001; Simpson, 2001; Mallikarjuna, 2002; Mal- The genus Arachis comprises 80 wild species and the likarjuna et al., 2004). For this reason, great efforts have cultivated crop Arachis hypogaea L. (Fabales, Legumi- been directed towards understanding the relationships be- nosae) commonly known as groundnut or peanut.
    [Show full text]
  • Reference Transcriptomes and Comparative Analyses of Six Species
    www.nature.com/scientificreports OPEN Reference transcriptomes and comparative analyses of six species in the threatened rosewood genus Dalbergia Tin Hang Hung 1*, Thea So2, Syneath Sreng2, Bansa Thammavong3, Chaloun Boounithiphonh3, David H. Boshier 1 & John J. MacKay 1* Dalbergia is a pantropical genus with more than 250 species, many of which are highly threatened due to overexploitation for their rosewood timber, along with general deforestation. Many Dalbergia species have received international attention for conservation, but the lack of genomic resources for Dalbergia hinders evolutionary studies and conservation applications, which are important for adaptive management. This study produced the frst reference transcriptomes for 6 Dalbergia species with diferent geographical origins and predicted ~ 32 to 49 K unique genes. We showed the utility of these transcriptomes by phylogenomic analyses with other Fabaceae species, estimating the divergence time of extant Dalbergia species to ~ 14.78 MYA. We detected over-representation in 13 Pfam terms including HSP, ALDH and ubiquitin families in Dalbergia. We also compared the gene families of geographically co-occurring D. cochinchinensis and D. oliveri and observed that more genes underwent positive selection and there were more diverged disease resistance proteins in the more widely distributed D. oliveri, consistent with reports that it occupies a wider ecological niche and has higher genetic diversity. We anticipate that the reference transcriptomes will facilitate future population genomics and gene-environment association studies on Dalbergia, as well as contributing to the genomic database where plants, particularly threatened ones, are currently underrepresented. Te genus Dalbergia Linn. f. (Fabaceae: Faboideae) contains around 250 species, many of which are globally recognized for their economic value.
    [Show full text]
  • (Lupinus Angustifolius L.) Genome
    ORIGINAL RESEARCH published: 21 April 2015 doi: 10.3389/fpls.2015.00268 Structure, expression profile and phylogenetic inference of chalcone isomerase-like genes from the narrow-leafed lupin (Lupinus angustifolius L.) genome Łucja Przysiecka 1, 2, Michał Ksi ˛azkiewicz˙ 1*, Bogdan Wolko 1 and Barbara Naganowska 1 1 Department of Genomics, Institute of Plant Genetics of the Polish Academy of Sciences, Poznan,´ Poland, 2 NanoBioMedical Centre, Adam Mickiewicz University, Poznan,´ Poland Edited by: Lupins, like other legumes, have a unique biosynthesis scheme of 5-deoxy-type Richard A. Jorgensen, flavonoids and isoflavonoids. A key enzyme in this pathway is chalcone isomerase University of Arizona, USA (CHI), a member of CHI-fold protein family, encompassing subfamilies of CHI1, Reviewed by: Martin Lohr, CHI2, CHI-like (CHIL), and fatty acid-binding (FAP) proteins. Here, two Lupinus Johannes Gutenberg angustifolius (narrow-leafed lupin) CHILs, LangCHIL1 and LangCHIL2, were identified University, Germany and characterized using DNA fingerprinting, cytogenetic and linkage mapping, Jean-Philippe Vielle-Calzada, CINVESTAV, Mexico sequencing and expression profiling. Clones carrying CHIL sequences were assembled *Correspondence: into two contigs. Full gene sequences were obtained from these contigs, and mapped Michał Ksi ˛azkiewicz,˙ in two L. angustifolius linkage groups by gene-specific markers. Bacterial artificial Department of Genomics, Institute of Plant Genetics of the Polish Academy chromosome fluorescence in situ hybridization approach confirmed the localization of of Sciences, Strzeszynska´ 34, two LangCHIL genes in distinct chromosomes. The expression profiles of both LangCHIL Poznan´ 60-479, Poland isoforms were very similar. The highest level of transcription was in the roots of the third [email protected] week of plant growth; thereafter, expression declined.
    [Show full text]
  • The Evolution of Gene and Genome Duplication in Soybean
    THE EVOLUTION OF GENE AND GENOME DUPLICATION IN SOYBEAN by BRIAN D. NADON (Under the Direction of Scott A. Jackson) ABSTRACT Duplication of DNA is one of the prime drivers of diversification, speciation, and adaptation for life on earth. Plants are highly tolerant of polyploidy or whole-genome duplication (WGD) - indeed, all characterized plant genomes show traces of a history of polyploidy. Duplicated genes often diverge in their function post-duplication, and can assume subsets of their old functions, take on new functions, or be deleted altogether. Studying how these processes have affected crop plants can illuminate their evolution and show how they might be improved through breeding in the future. Legumes, and especially soybean (Glycine max L.), offer a valuable system to study this. For this work, first, the soybean genome was aligned to itself, which showed that gene pairs from the most recent duplication event in soybean have maintained similar expression profiles within tissues and have maintained their methylation status more consistently than older duplicate pairs. Next, an algorithm (TetrAssign) was developed to reconstruct and phase ancient soybean subgenomes post-WGD, and comparison of these reconstructions with maize showed that soybean’s ancient subgenome sets were less divergent in their gene deletion, expression, and methylation profiles than maize’s. Then, a set of gene families (orthogroups) for soybean and several other sequenced legume genomes was analyzed to reveal that rates of stochastic gene duplication were low, while gene deletion (death) rates were higher but variable among the legume branches, and furthermore found that the Glycine-specific duplication event had a much higher retention of gene duplicates post-WGD than the Faboideae duplication.
    [Show full text]
  • Status of Arachis Germplasm Collection-2020
    Status of Arachis Germplasm Collection Peanut Crop Germplasm Committee 06/10/2020 1 Summary of significant accomplishments (2019): • Total number of active accessions of cultivated and wild species include 9275 and 558, respectively. • Acquired 62 accessions of 26 wild Arachis species from Dr. Charles Simpson, Texas AgriLife Research, TAMU. • Acquired 25 accessions of 17 wild species from Dr. Tom Stalker, North Carolina State University for replenishment. • Provided seeds of 2600 PIs of African origin for the genotyping project by Dr. Peggy Ozias-Akins, UGA-Tifton. • Provided samples of wild species for genotyping to Dr. Soraya Leal-Bertioli, UGA-Athens. • Completed total oil, fatty acids and protein content of 200 accessions of 46 wild species. • Completed total oil and fatty acid profiles of about 8,700 cultivated peanut PIs. • 4,527 accessions were distributed for domestic and international research and education uses. • Completed germ testing of 521 PIs including both cultivated and wild species accessions. 2 Table of Contents 1 Introduction 5 1.1 Biological features 6 1.2 World production 7 1.3 U. S. Production regions and market types 8 1.4 Domestic production, demand, and consumption 9 1.5 Impact of U.S. Legislation on peanut production 11 1.6 Origin and biogeographical distribution of Arachis 11 1.7 Botanical classification of A. hypogaea 14 1.8 Peanut breeding activities in the U. S. 15 1.9 Development and use of genetic markers for marker assisted selection 16 2 Urgency and extent of crop vulnerabilities and threats to food
    [Show full text]
  • An Overview of Peanut and Its Wild Relatives
    q NIAB 2011 Plant Genetic Resources: Characterization and Utilization (2011) 9(1); 134–149 ISSN 1479-2621 doi:10.1017/S1479262110000444 An overview of peanut and its wild relatives David J. Bertioli1,2*, Guillermo Seijo3, Fabio O. Freitas4, Jose´ F. M. Valls4, Soraya C. M. Leal-Bertioli4 and Marcio C. Moretzsohn4 1University of Brası´lia, Institute of Biological Sciences, Campus Darcy Ribeiro, Brası´lia-DF, Brazil, 2Catholic University of Brası´lia, Biotechnology and Genomic Sciences, Brası´lia-DF, Brazil, 3Laboratorio de Citogene´tica y Evolucio´n, Instituto de Bota´nica del Nordeste, Corrientes, Argentina and 4Embrapa Genetic Resources and Biotechnology, PqEB Final W3 Norte, Brası´lia-DF, Brazil Abstract The legume Arachis hypogaea, commonly known as peanut or groundnut, is a very important food crop throughout the tropics and sub-tropics. The genus is endemic to South America being mostly associated with the savannah-like Cerrado. All species in the genus are unusual among legumes in that they produce their fruit below the ground. This profoundly influences their biology and natural distributions. The species occur in diverse habitats including grass- lands, open patches of forest and even in temporarily flooded areas. Based on a number of criteria, including morphology and sexual compatibilities, the 80 described species are arranged in nine infrageneric taxonomic sections. While most wild species are diploid, cultivated peanut is a tetraploid. It is of recent origin and has an AABB-type genome. The most probable ancestral species are Arachis duranensis and Arachis ipae¨nsis, which contributed the A and B genome components, respectively. Although cultivated peanut is tetraploid, genetically it behaves as a diploid, the A and B chromosomes only rarely pairing during meiosis.
    [Show full text]