Status of Arachis Germplasm Collection-2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetics of Nodulation in Aeschynomene Evenia Uncovers Mechanisms of the Rhizobium–Legume Symbiosis
ARTICLE https://doi.org/10.1038/s41467-021-21094-7 OPEN Genetics of nodulation in Aeschynomene evenia uncovers mechanisms of the rhizobium–legume symbiosis Johan Quilbé1, Léo Lamy1,2, Laurent Brottier 1, Philippe Leleux1,2, Joël Fardoux1, Ronan Rivallan3,4, Thomas Benichou1, Rémi Guyonnet1, Manuel Becana 5, Irene Villar5, Olivier Garsmeur3,4, Bárbara Hufnagel 6, Amandine Delteil1, Djamel Gully1, Clémence Chaintreuil1, Marjorie Pervent1, Fabienne Cartieaux 1, Mickaël Bourge 7, Nicolas Valentin7, Guillaume Martin 3,4, Loïc Fontaine8, Gaëtan Droc 3,4, Alexis Dereeper9, Andrew Farmer10, Cyril Libourel 11, Nico Nouwen1, Frédéric Gressent1, 1234567890():,; ✉ Pierre Mournet3,4, Angélique D’Hont3,4, Eric Giraud1, Christophe Klopp 2 & Jean-François Arrighi 1 Among legumes (Fabaceae) capable of nitrogen-fixing nodulation, several Aeschynomene spp. use a unique symbiotic process that is independent of Nod factors and infection threads. They are also distinctive in developing root and stem nodules with photosynthetic bra- dyrhizobia. Despite the significance of these symbiotic features, their understanding remains limited. To overcome such limitations, we conduct genetic studies of nodulation in Aeschy- nomene evenia, supported by the development of a genome sequence for A. evenia and transcriptomic resources for 10 additional Aeschynomene spp. Comparative analysis of symbiotic genes substantiates singular mechanisms in the early and late nodulation steps. A forward genetic screen also shows that AeCRK, coding a receptor-like kinase, and the symbiotic signaling genes AePOLLUX, AeCCamK, AeCYCLOPS, AeNSP2, and AeNIN are required to trigger both root and stem nodulation. This work demonstrates the utility of the A. evenia model and provides a cornerstone to unravel mechanisms underlying the rhizobium–legume symbiosis. -
Parientes Silvestres De Los Cultivos Manual Para La Conservación in Situ
Parientes Silvestres de los Cultivos Manual para la Conservación In Situ Editado por Danny Hunter y Vernon Heywood AGENCIA SUIZA PARA EL DESARROLLO Y LA COOPERACION COSUDE Editado por Danny Hunter Parientes Silvestres de los Cultivos y Vernon Heywood Manual para la Conservación In Situ Parientes Silvestres de los Cultivos Manual para la Conservación In Situ Editado por Danny Hunter y Vernon Heywood Traducción: Alexandra Walter Este libro es una traducción autorizada de Crop wild relatives: a manual of in situ conservation - ISBN: 9781849711791, publicado por Earthscan (Londres, 2011). Fotos en la portada: Agricultores en un campo de quinua en Bolivia, © M. Pinto, Fundación PROINPA; Cucurbitaceas silvestres, Sri Lanka © A. Wijesekara; Arroz silvestre, Oryza nivara, Sri Lanka © R.S.S. Ratnayake ; Ciruelo silvestre, Prunus divaricata, Armenia © A. Lane Cita: Hunter D, Heywood V, editores. 2011. Parientes silvestres de los cultivos: manual para la conservación in situ. Bioversity International, Roma, Italia. 1ª. ed. ISBN 978-92-9043-886-1 © Bioversity International, 2012 Bioversity International Via dei Tre Denari 472/a 00057 Maccarese Roma, Italia Bioversity International es el nombre bajo el cual opera el Instituto Internacional de Recursos Fitogenéticos (IPGRI). Contenido Página Agradecimientos y contribuciones iv Prólogo xv Prefacio xvii Acrónimos xxii Primera Parte: Introducción 1 Introducción y antecedentes 3 2 Los parientes silvestres de los cultivos en los países del proyecto 39 3 ¿Qué es la conservación in situ de los PSC? 57 Segunda -
The Genome Structure of Arachis Hypogaea (Linnaeus, 1753) and an Induced Arachis Allotetraploid Revealed by Molecular Cytogenetics
COMPARATIVE A peer-reviewed open-access journal CompCytogenThe 12(1):genome 111–140 structure (2018) ofArachis hypogaea (Linnaeus, 1753) and an induced Arachis... 111 doi: 10.3897/CompCytogen.v12i1.20334 RESEARCH ARTICLE Cytogenetics http://compcytogen.pensoft.net International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics The genome structure of Arachis hypogaea (Linnaeus, 1753) and an induced Arachis allotetraploid revealed by molecular cytogenetics Eliza F. de M. B. do Nascimento1,2, Bruna V. dos Santos2, Lara O. C. Marques2,3, Patricia M. Guimarães2, Ana C. M. Brasileiro2, Soraya C. M. Leal-Bertioli4, David J. Bertioli4, Ana C. G. Araujo2 1 University of Brasilia, Institute of Biological Sciences, Campus Darcy Ribeiro, CEP 70.910-900, Brasília, DF, Brazil 2 Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770- 917, Brasília, DF, Brazil 3 Catholic University of Brasilia, Campus I, CEP 71966-700, Brasília, DF, Brazil 4 Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, 30602-6810, Athens, Georgia, USA Corresponding author: Ana Claudia Guerra Araujo ([email protected]) Academic editor: N. Golub | Received 15 August 2017 | Accepted 23 January 2018 | Published 14 March 2018 http://zoobank.org/02035703-1636-4F8E-A5CF-54DE8C526FCC Citation: do Nascimento EFMB, dos Santos BV, Marques LOC, Guimarães PM, Brasileiro ACM, Leal-Bertioli SCM, Bertioli DJ, Araujo ACG (2018) The genome structure ofArachis hypogaea (Linnaeus, 1753) and an induced Arachis allotetraploid revealed by molecular cytogenetics. Comparative Cytogenetics 12(1): 111–140. https://doi.org/10.3897/ CompCytogen.v12i1.20334 Abstract Peanut, Arachis hypogaea (Linnaeus, 1753) is an allotetraploid cultivated plant with two subgenomes de- rived from the hybridization between two diploid wild species, A. -
(Arachis Hypogaea) and Its Most Closely Related Wild Species Using
Annals of Botany 111: 113–126, 2013 doi:10.1093/aob/mcs237, available online at www.aob.oxfordjournals.org A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers Downloaded from https://academic.oup.com/aob/article-abstract/111/1/113/182224 by University of Georgia Libraries user on 29 November 2018 Ma´rcio C. Moretzsohn1,*, Ediene G. Gouvea1,2, Peter W. Inglis1, Soraya C. M. Leal-Bertioli1, Jose´ F. M. Valls1 and David J. Bertioli2 1Embrapa Recursos Gene´ticos e Biotecnologia, C.P. 02372, CEP 70.770-917, Brası´lia, DF, Brazil and 2Universidade de Brası´lia, Instituto de Cieˆncias Biolo´gicas, Campus Darcy Ribeiro, CEP 70.910-900, Brası´lia-DF, Brazil * For correspondence. E-mail [email protected] Received: 25 June 2012 Returned for revision: 17 August 2012 Accepted: 2 October 2012 Published electronically: 6 November 2012 † Background and Aims The genus Arachis contains 80 described species. Section Arachis is of particular interest because it includes cultivated peanut, an allotetraploid, and closely related wild species, most of which are diploids. This study aimed to analyse the genetic relationships of multiple accessions of section Arachis species using two complementary methods. Microsatellites allowed the analysis of inter- and intraspecific vari- ability. Intron sequences from single-copy genes allowed phylogenetic analysis including the separation of the allotetraploid genome components. † Methods Intron sequences and microsatellite markers were used to reconstruct phylogenetic relationships in section Arachis through maximum parsimony and genetic distance analyses. † Key Results Although high intraspecific variability was evident, there was good support for most species. -
Taxonomy of the Genus Arachis (Leguminosae)
BONPLANDIA16 (Supi): 1-205.2007 BONPLANDIA 16 (SUPL.): 1-205. 2007 TAXONOMY OF THE GENUS ARACHIS (LEGUMINOSAE) by AntonioKrapovickas1 and Walton C. Gregory2 Translatedby David E. Williams3and Charles E. Simpson4 director,Instituto de Botánicadel Nordeste, Casilla de Correo209, 3400 Corrientes, Argentina, deceased.Formerly WNR Professor ofCrop Science, Emeritus, North Carolina State University, USA. 'InternationalAffairs Specialist, USDA Foreign Agricultural Service, Washington, DC 20250,USA. 4ProfessorEmeritus, Texas Agrie. Exp. Stn., Texas A&M Univ.,Stephenville, TX 76401,USA. 7 This content downloaded from 195.221.60.18 on Tue, 24 Jun 2014 00:12:00 AM All use subject to JSTOR Terms and Conditions BONPLANDIA16 (Supi), 2007 Table of Contents Abstract 9 Resumen 10 Introduction 12 History of the Collections 15 Summary of Germplasm Explorations 18 The Fruit of Arachis and its Capabilities 20 "Sócias" or Twin Species 24 IntraspecificVariability 24 Reproductive Strategies and Speciation 25 Dispersion 27 The Sections of Arachis ; 27 Arachis L 28 Key for Identifyingthe Sections 33 I. Sect. Trierectoides Krapov. & W.C. Gregorynov. sect. 34 Key for distinguishingthe species 34 II. Sect. Erectoides Krapov. & W.C. Gregory nov. sect. 40 Key for distinguishingthe species 41 III. Sect. Extranervosae Krapov. & W.C. Gregory nov. sect. 67 Key for distinguishingthe species 67 IV. Sect. Triseminatae Krapov. & W.C. Gregory nov. sect. 83 V. Sect. Heteranthae Krapov. & W.C. Gregory nov. sect. 85 Key for distinguishingthe species 85 VI. Sect. Caulorrhizae Krapov. & W.C. Gregory nov. sect. 94 Key for distinguishingthe species 95 VII. Sect. Procumbentes Krapov. & W.C. Gregory nov. sect. 99 Key for distinguishingthe species 99 VIII. Sect. -
Integrated Small RNA and Mrna Expression Profiles Reveal Mirnas
Zhao et al. BMC Plant Biology (2020) 20:215 https://doi.org/10.1186/s12870-020-02426-z RESEARCH ARTICLE Open Access Integrated small RNA and mRNA expression profiles reveal miRNAs and their target genes in response to Aspergillus flavus growth in peanut seeds Chuanzhi Zhao1,2†, Tingting Li1,3†, Yuhan Zhao1,2, Baohong Zhang4, Aiqin Li1, Shuzhen Zhao1, Lei Hou1, Han Xia1, Shoujin Fan2, Jingjing Qiu1,2, Pengcheng Li1, Ye Zhang1, Baozhu Guo5,6 and Xingjun Wang1,2* Abstract Background: MicroRNAs are important gene expression regulators in plants immune system. Aspergillus flavus is the most common causal agents of aflatoxin contamination in peanuts, but information on the function of miRNA in peanut-A. flavus interaction is lacking. In this study, the resistant cultivar (GT-C20) and susceptible cultivar (Tifrunner) were used to investigate regulatory roles of miRNAs in response to A. flavus growth. Results: A total of 30 miRNAs, 447 genes and 21 potential miRNA/mRNA pairs were differentially expressed significantly when treated with A. flavus. A total of 62 miRNAs, 451 genes and 44 potential miRNA/mRNA pairs exhibited differential expression profiles between two peanut varieties. Gene Ontology (GO) analysis showed that metabolic-process related GO terms were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses further supported the GO results, in which many enriched pathways were related with biosynthesis and metabolism, such as biosynthesis of secondary metabolites and metabolic pathways. Correlation analysis of small RNA, transcriptome and degradome indicated that miR156/SPL pairs might regulate the accumulation of flavonoids in resistant and susceptible genotypes. The miR482/2118 family might regulate NBS-LRR gene which had the higher expression level in resistant genotype. -
A Reference Genome for Pea Provides Insight Into Legume Genome Evolution
SUPPLEMENTARY INFORMATIONARTICLES https://doi.org/10.1038/s41588-019-0480-1 In the format provided by the authors and unedited. A reference genome for pea provides insight into legume genome evolution Jonathan Kreplak 1,20, Mohammed-Amin Madoui 2,20, Petr Cápal3, Petr Novák 4, Karine Labadie 5, Grégoire Aubert1, Philipp E. Bayer 6, Krishna K. Gali7, Robert A. Syme 8, Dorrie Main9, Anthony Klein1, Aurélie Bérard10, Iva Vrbová4, Cyril Fournier 1, Leo d’Agata 5, Caroline Belser 5, Wahiba Berrabah5, Helena Toegelová 3, Zbyněk Milec 3, Jan Vrána3, HueyTyng Lee 6,19, Ayité Kougbeadjo 1, Morgane Térézol1, Cécile Huneau11, Chala J. Turo 12, Nacer Mohellibi 13, Pavel Neumann 4, Matthieu Falque 14, Karine Gallardo1, Rebecca McGee 15, Bunyamin Tar’an 7, Abdelhafid Bendahmane16, Jean-Marc Aury 5, Jacqueline Batley6, Marie-Christine Le Paslier10, Noel Ellis 17, Thomas D. Warkentin 7, Clarice J. Coyne 15, Jérome Salse 11, David Edwards 6, Judith Lichtenzveig 18, Jiří Macas 4, Jaroslav Doležel 3, Patrick Wincker2 and Judith Burstin 1* 1Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté Bourgogne, Université Bourgogne Franche-Comté, Dijon, France. 2Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France. 3Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic. 4Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic. 5Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France. 6School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia. 7Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. -
Phenotypic and Biochemical Characterization of the United States Department of Agriculture Core Peanut (Arachis Hypogaea L.) Germplasm Collection
PHENOTYPIC AND BIOCHEMICAL CHARACTERIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE CORE PEANUT (ARACHIS HYPOGAEA L.) GERMPLASM COLLECTION By STANLEY W. DEZERN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2018 ©2018 Stanley W. Dezern To Emily ACKNOWLEDGMENTS This research was made possible through the generous support of The Peanut Foundation, the Georgia Peanut Commission, and the Florida Peanut Producers Association. I would like to thank the University of Florida Plant Science Research and Education Unit for their assistance planting, managing, and harvesting our experiment. My committee has been incredibly helpful in shaping this research, and I would like to thank them for their commitment to this project through many ups and downs. I would especially like to thank Dr. Edzard van Santen for his generously given time and effort assisting with the statistical analysis and editing process. I would like to recognize the Forage Evaluation lab team led by Richard Fethiere for very kindly assisting me on the protein analysis. I would also like to recognize the immensely important contributions of the following former and current members of our lab team: Leah Aidif, Adina Grossman, Louisa Aarrass, Bob Querns, Anthony Cappello, and Jacob Allen. Thank you to Mike Durham and Dr. Jay Ferrell for your constant guidance and encouragement. I am especially grateful for the friendship and support of Candice Prince, who has helped me every step of the way during the past two years. I would like to thank Dr. -
Characterization of the Arachis (Leguminosae) D Genome Using Fluorescence in Situ Hybridization (FISH) Chromosome Markers and Total Genome DNA Hybridization
Genetics and Molecular Biology, 31, 3, 717-724 (2008) Copyright © 2008, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article Characterization of the Arachis (Leguminosae) D genome using fluorescence in situ hybridization (FISH) chromosome markers and total genome DNA hybridization Germán Robledo1 and Guillermo Seijo1,2 1Instituto de Botánica del Nordeste, Corrientes, Argentina. 2Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina. Abstract Chromosome markers were developed for Arachis glandulifera using fluorescence in situ hybridization (FISH) of the 5S and 45S rRNA genes and heterochromatic 4’-6-diamidino-2-phenylindole (DAPI) positive bands. We used chro- mosome landmarks identified by these markers to construct the first Arachis species ideogram in which all the ho- mologous chromosomes were precisely identified. The comparison of this ideogram with those published for other Arachis species revealed very poor homeologies with all A and B genome taxa, supporting the special genome con- stitution (D genome) of A. glandulifera. Genomic affinities were further investigated by dot blot hybridization of biotinylated A. glandulifera total DNA to DNA from several Arachis species, the results indicating that the D genome is positioned between the A and B genomes. Key words: chromosome markers, DAPI bands, rDNA loci, dot blot hybridization, genome relationships. Received: June 29, 2007; Accepted: November 22, 2007. Introduction row et al., 2001; Simpson, 2001; Mallikarjuna, 2002; Mal- The genus Arachis comprises 80 wild species and the likarjuna et al., 2004). For this reason, great efforts have cultivated crop Arachis hypogaea L. (Fabales, Legumi- been directed towards understanding the relationships be- nosae) commonly known as groundnut or peanut. -
Resistência Ao Tripes-Do-Prateamento E Seleção Em Genótipos Interespecíficos De Amendoim
UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CÂMPUS DE JABOTICABAL RESISTÊNCIA AO TRIPES-DO-PRATEAMENTO E SELEÇÃO EM GENÓTIPOS INTERESPECÍFICOS DE AMENDOIM Melina Zacarelli Pirotta Bióloga 2016 UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CÂMPUS DE JABOTICABAL RESISTÊNCIA AO TRIPES-DO-PRATEAMENTO E SELEÇÃO EM GENÓTIPOS INTERESPECÍFICOS DE AMENDOIM Melina Zacarelli Pirotta Orientadora: Profa. Dra. Sandra Helena Unêda-Trevisoli Coorientadores: Dr. Ignácio José de Godoy e Dr. Marcos Doniseti Michelotto Dissertação apresentada à Faculdade de Ciências Agrárias e Veterinárias – Unesp, Câmpus de Jaboticabal, como parte das exigências para a obtenção do título de Mestre em Agronomia (Genética e Melhoramento de Plantas) 2016 Pirotta, Melina Zacarelli P672r Resistência ao tripes-do-prateamento e seleção em genótipos interespecíficos de amendoim / Melina Zacarelli Pirotta. – – Jaboticabal, 2016 xiii, 86 p. : il. ; 29 cm Dissertação (mestrado) - Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, 2016 Orientadora: Sandra Helena Unêda-Trevisoli Coorientadores: Ignácio José de Godoy, Marcos Doniseti Michelotto Banca examinadora: Gustavo Vitti Môro, Ivana Marino Bárbaro Bibliografia 1. Análise de agrupamento. 2. Arachis hypogaea L. 3. Componentes principais. 4. Enneothrips flavens. 5. REML/BLUP. I. Título. II. Jaboticabal-Faculdade de Ciências Agrárias e Veterinárias. CDU 631.52:634.58 Ficha catalográfica elaborada pela Seção Técnica de Aquisição e Tratamento da Informação – Serviço Técnico de Biblioteca e Documentação - UNESP, Câmpus de Jaboticabal. DADOS CURRICULARES DA AUTORA Melina Zacarelli Pirotta – filha de Antônio Paulo Pirotta e Silmara Cristina Zacarelli, nasceu no município de Catanduva, SP em 19 de dezembro de 1988. Iniciou o curso de Ciências Biológicas no Instituto Municipal de Ensino Superior de Catanduva (IMES – Catanduva) no primeiro semestre de 2008, obtendo o grau de licenciatura plena em 2010 e bacharelado em 2013. -
Publications1
PUBLICATIONS1 Book Chapters: Zettler LW, J Sharma, and FN Rasmussen. 2003. Mycorrhizal Diversity (Chapter 11; pp. 205-226). In Orchid Conservation. KW Dixon, SP Kell, RL Barrett and PJ Cribb (eds). 418 pages. Natural History Publications, Kota Kinabalu, Sabah, Malaysia. ISBN: 9838120782 Books and Book Chapters Edited: Sharma J. (Editor). 2010. North American Native Orchid Conservation: Preservation, Propagation, and Restoration. Conference Proceedings of the Native Orchid Conference - Green Bay, Wisconsin. Native Orchid Conference, Inc., Greensboro, North Carolina. 131 pages, plus CD. (Public Review by Dr. Paul M. Catling published in The Canadian Field-Naturalist Vol. 125. pp 86 - 88; http://journals.sfu.ca/cfn/index.php/cfn/article/viewFile/1142/1146). Peer-reviewed Publications (besides Journal publications or refereed proceedings) Goedeke, T., Sharma, J., Treher, A., Frances, A. & *Poff, K. 2016. Calopogon multiflorus. The IUCN Red List of Threatened Species 2016: e.T64175911A86066804. https://dx.doi.org/10.2305/IUCN.UK.2016- 1.RLTS.T64175911A86066804.en. Treher, A., Sharma, J., Frances, A. & *Poff, K. 2015. Basiphyllaea corallicola. The IUCN Red List of Threatened Species 2015: e.T64175902A64175905. https://dx.doi.org/10.2305/IUCN.UK.2015- 4.RLTS.T64175902A64175905.en. Goedeke, T., Sharma, J., Treher, A., Frances, A. & *Poff, K. 2015. Corallorhiza bentleyi. The IUCN Red List of Threatened Species 2015: e.T64175940A64175949. https://dx.doi.org/10.2305/IUCN.UK.2015- 4.RLTS.T64175940A64175949.en. Treher, A., Sharma, J., Frances, A. & *Poff, K. 2015. Eulophia ecristata. The IUCN Red List of Threatened Species 2015: e.T64176842A64176871. https://dx.doi.org/10.2305/IUCN.UK.2015- 4.RLTS.T64176842A64176871.en. -
Reference Transcriptomes and Comparative Analyses of Six Species
www.nature.com/scientificreports OPEN Reference transcriptomes and comparative analyses of six species in the threatened rosewood genus Dalbergia Tin Hang Hung 1*, Thea So2, Syneath Sreng2, Bansa Thammavong3, Chaloun Boounithiphonh3, David H. Boshier 1 & John J. MacKay 1* Dalbergia is a pantropical genus with more than 250 species, many of which are highly threatened due to overexploitation for their rosewood timber, along with general deforestation. Many Dalbergia species have received international attention for conservation, but the lack of genomic resources for Dalbergia hinders evolutionary studies and conservation applications, which are important for adaptive management. This study produced the frst reference transcriptomes for 6 Dalbergia species with diferent geographical origins and predicted ~ 32 to 49 K unique genes. We showed the utility of these transcriptomes by phylogenomic analyses with other Fabaceae species, estimating the divergence time of extant Dalbergia species to ~ 14.78 MYA. We detected over-representation in 13 Pfam terms including HSP, ALDH and ubiquitin families in Dalbergia. We also compared the gene families of geographically co-occurring D. cochinchinensis and D. oliveri and observed that more genes underwent positive selection and there were more diverged disease resistance proteins in the more widely distributed D. oliveri, consistent with reports that it occupies a wider ecological niche and has higher genetic diversity. We anticipate that the reference transcriptomes will facilitate future population genomics and gene-environment association studies on Dalbergia, as well as contributing to the genomic database where plants, particularly threatened ones, are currently underrepresented. Te genus Dalbergia Linn. f. (Fabaceae: Faboideae) contains around 250 species, many of which are globally recognized for their economic value.