The Spatial Distribution of Chacma Baboon (Papio Ursinus) Habitat Based on an Environmental Envelope Model

Total Page:16

File Type:pdf, Size:1020Kb

The Spatial Distribution of Chacma Baboon (Papio Ursinus) Habitat Based on an Environmental Envelope Model Int J Primatol DOI 10.1007/s10764-013-9669-9 The Spatial Distribution of Chacma Baboon (Papio ursinus) Habitat Based on an Environmental Envelope Model Olivia M. L. Stone & Shawn W. Laffan & Darren Curnoe & Andy I. R. Herries Received: 26 September 2012 /Accepted: 30 January 2013 # Springer Science+Business Media New York 2013 Abstract Predictive spatial modeling has become a key research tool for species distribution modeling where actual data are limited. Although qualitative maps and distribution descriptions for chacma baboons (Papio ursinus) are freely available, quantitative data are limited and do not provide the empirical information required to make informed decisions about issues such as population assessment, conservation, and management. Here we present the first quantitative, repeatable, and detailed predicted spatial distribution of the chacma baboon across southern Africa. Our distribution is at a finer level of detail than has previously been available. We used an environmental envelope model implemented within a geographic information system to achieve this. The model used environmental layers representing water availability, temperature and altitude, and model parameters determined from geore- ferenced observational data. The data extracted from the environmental layers sug- gest chacma baboons inhabit areas with mean minimum temperatures of the coolest month as low as −6.1 °C, mean maximum temperatures of the warmest month as high as 38.2 °C, mean annual rainfall up to 1,555 mm, and altitude up to 3,286 m. Our model demonstrates that the distribution of chacma baboons may be limited by temperature and rainfall, with the predicted northern extent of its range being temperature dependent. The model also implies that some areas well known for chacma baboon occupation today may in fact be marginal habitat. The resulting map highlights areas of suitable habitat in southern Africa. In addition, a linear “patchy” corridor was identified following the East African Rift Valley connecting Electronic supplementary material The online version of this article (doi:10.1007/s10764-013-9669-9) contains supplementary material, which is available to authorized users. O. M. L. Stone (*) : S. W. Laffan : D. Curnoe School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia e-mail: [email protected] A. I. R. Herries Archaeology Program, School of Historical and European Studies, Faculty of Humanities and Social Sciences, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia O.M.L. Stone et al. the southern habitat with northeast Africa. We find the greatest proportion of suitable habitat to be located in South Africa. This modeling approach is generic and would be suitable to analyze other primate species across similar geographic extents. Keywords Chacma baboon . Distribution . Habitat . Papio . Southern Africa Introduction Population, distribution, and landscape models are becoming vital ecological tools in conservation and management (Dunning et al. 1995), providing ecological estimates both in the absence of, and in combination with, actual data. The rapid pace and widespread impacts of economic development in Africa have meant that in some regions conservation managers are turning their attention to non-threatened species in order to manage biodiversity (Ezemvelo KZN Wildlife 2008). Unfortunately, gaining basic ecological knowledge for common species is often overlooked in favor of protecting endangered or financially beneficial animals. This is despite the need for more information to provide insight into species distributions, habitat preferences, and potential migration patterns. Detailed distributions are needed to assess the effects of ecological change and species responses to anthropogenic and climatic effects, including the future impacts of global warming. Environmental envelope models (EEM) (Guisan and Zimmermann 2000) imple- mented within geographic information systems (GIS) can be used to predict species distributions. Both the environmental and the climatic limitations of the focal organ- ism constrain the EEMs. Many factors limit species distributions at a local scale, i.e., home ranges, day ranges, or foraging times (Altmann and Altmann 1970; Brain 1990; Hill 2005), but at a continental scale climatic effects are known to dominate species distributions (Pearson and Dawson 2003). Suitable habitat is considered to comprise the set of locations that fall within the defined envelopes for all environmental variables (Franklin 2009; Walker and Cocks 1991). This allows for an easily inter- preted model, as well as one that can be extrapolated to unsampled locations as a prediction. Researchers have used GIS-based approaches successfully to analyze primate habitats including habitat association, prediction, selection, ranging patterns, and zoonotic disease transfer (Harcourt 2000; Hoffman and O’Riain 2012; Hopkins and Nunn 2007; Junker et al. 2012; Ostro et al. 2000; Sleeman 2005; Stickler and Southworth 2008; Zinner and Torkler 1996). Chacma baboons are a widespread species, inhabiting much of southern Africa, though detailed distribution data are limited. Geographically, chacma baboons are the southernmost of five to six commonly recognized species (Groves 2001; Grubb et al. 2003; Zinner et al. 2009), inhabiting an area from immediately north of the Zambezi River to the Cape of Good Hope (Jolly 1993). For the most part, chacma baboon distribution maps are generalized, with the finer details of its distribution being poorly understood. As a result, published estimates are spatially general, qualitative, and based mostly on nonrepeatable methods (Anderson 1982; Henzi and Barrett 2003; Hoffman and Hilton-Taylor 2008; Skinner and Chimimba 2005; Zinner et al. 2009). This is surprising considering the genus Papio is one of the most intensively studied of non-human primate taxa (Newman et al. 2004). Spatial Modeling for Distribution of Chacma Baboons The published literature suggests temperature, availability of water, and altitude are likely to be the main environmental variables affecting habitat selection for Papio (Altmann 1974; Biquand et al. 1992; Dunbar 1992; Henzi et al. 1992; Hill 2005). This is consistent with findings from a wide range of organisms (Cavagnaro 1988; Engelbrecht et al. 2007; Guisan and Thuiller 2005). Chacma baboons inhabit areas with temperatures ranging from <−10 °C to >40 °C (Anderson 1982; Cowlishaw 1997; Gaynor 1994; Henzi et al. 1992; McQualter 2005; Noser and Byrne 2007;Van der Weyde 2004). Extreme cold restricts baboon home ranges, with baboons avoiding areas until the ground temperature returns to >0 °C (Henzi et al. 1992). Although resting time —which is directly influenced by temperature variation— is an important determinant of primate distribution, Papio and another African genus, Chlorocebus, are exceptions to this rule (Korstjens et al. 2010). Further, although high temperatures led to a decrease in foraging activity and the pursuit of shade to reduce the impact of solar radiation (Hill 2005, 2006), this held true only for locations where day length allowed the primates to rest without adversely affecting foraging. Baboons continued to forage regardless of temperature variation in areas with shorter day lengths. Interestingly, locations with longer summer day lengths were those with lower temperatures that, in theory, would be less detrimental to foraging. Although primate populations are known to suffer in drought conditions (Lemur catta: Gould et al. 1999; Cercopithecus aethiops: Struhsaker 1973; Semnopithecus entellus: Waite et al. 2007), Papio demonstrates marked interspecies variation in its responses to rainfall and water availability, ranging from more arid regions in Saudi Arabia (Biquand et al. 1992) to high rainfall regions in Kenya and Ethiopia (Dunbar and Dunbar, 1974; Popp 1979). Published data indicate that chacma baboons inhabit areas with annual rainfall ranging from <20 to >1,400 mm (Barrett and Henzi 1997; Hamilton et al. 1976). Both water availability and the distribution of drinking sites affect the day range and home range of Papio (Altmann and Altmann 1970; Barton et al. 1992; Hall 1963; Stoltz and Saayman 1970). The amount of time elapsed without water, and the distribution of water itself, appear to limit baboon distribution. Chacma baboons have been recorded to abstain from drinking for between 1 and >90 days, demon- strating a partial independence from drinking water (Brain 1988, 1990; Brain and Bohrmann 1992; Brain and Mitchell 1999). However, if food substitutes are not available, a single water source within a day range is required (Brain 1988; Hamilton 1985). Eight kilometers appears to be the farthest reported distance from which a troop may reside from a water source (Brain 1988). Overall, the distance from a water supply appears to restrict how far baboon troops traveled, with areas reportedly rich in food left unoccupied as they were beyond range from permanent water sources (Altmann 1974; Hamilton et al. 1976). A negative association exists between the altitude of the home range and group size for chacma baboons (Hall 1963), unlike hamadryas baboons, which tend to have larger groups at higher altitudes (Zinner et al. 2001). Dunbar (1992) suggested that Papio would not inhabit an altitude >3,000 m. However, olive baboons have been found at altitudes ranging from 3,200 to 3,600 m (Stephens et al. 2001)where conditions are less restrictive than in southern Africa. The highest
Recommended publications
  • Analysis of 100 High-Coverage Genomes from a Pedigreed Captive Baboon Colony
    Downloaded from genome.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Resource Analysis of 100 high-coverage genomes from a pedigreed captive baboon colony Jacqueline A. Robinson,1 Saurabh Belsare,1 Shifra Birnbaum,2 Deborah E. Newman,2 Jeannie Chan,2 Jeremy P. Glenn,2 Betsy Ferguson,3,4 Laura A. Cox,5,6 and Jeffrey D. Wall1 1Institute for Human Genetics, University of California, San Francisco, California 94143, USA; 2Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78245, USA; 3Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA; 4Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA; 5Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, USA; 6Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas 78245, USA Baboons (genus Papio) are broadly studied in the wild and in captivity. They are widely used as a nonhuman primate model for biomedical studies, and the Southwest National Primate Research Center (SNPRC) at Texas Biomedical Research Institute has maintained a large captive baboon colony for more than 50 yr. Unlike other model organisms, however, the genomic resources for baboons are severely lacking. This has hindered the progress of studies using baboons as a model for basic biology or human disease. Here, we describe a data set of 100 high-coverage whole-genome sequences obtained from the mixed colony of olive (P. anubis) and yellow (P. cynocephalus) baboons housed at the SNPRC.
    [Show full text]
  • The Sex Lives of Female Olive Baboons (Papio Anubis)
    Competition, coercion, and choice: The sex lives of female olive baboons (Papio anubis) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jessica Terese Walz Graduate Program in Anthropology The Ohio State University 2016 Dissertation Committee: Dawn M. Kitchen, Chair Douglas E. Crews W. Scott McGraw Copyrighted by Jessica Walz 2016 Abstract Since Darwin first described his theory of sexual selection, evolutionary biologists have used this framework to understand the potential for morphological, physiological, and behavioral traits to evolve within each sex. Recently, researchers have revealed important nuances in effects of sexual coercion, intersexual conflict, and sex role reversals. Among our closest relatives living in complex societies in which individuals interact outside of just the context of mating, the sexual and social lives of individuals are tightly intertwined. An important challenge to biological anthropologists is demonstrating whether female opportunities for mate choice are overridden by male- male competitive and male-female coercive strategies that dominate multi-male, multi- female societies. In this dissertation, I explore interactions between these various mechanisms of competition, coercion, and choice acting on the lives of female olive baboons to determine how they may influence expression of female behavioral and vocal signals, copulatory success with specific males, and the role of female competition in influencing mating patterns. I found females solicit specific males around the time of ovulation. Although what makes some males more preferred is less clear, there is evidence females choose males who might be better future protectors – males who will have long group tenures and are currently ascending the hierarchy.
    [Show full text]
  • Intellectualism and Interesting Facts on Baboons (Papio Anubis Les.; Family: Cercopithecidae) (The Olive Baboons) in Yankari Game Reserve, Bauchi, Nigeria
    International Journal of Research Studies in Zoology (IJRSZ) Volume 3, Issue 2, 2017, PP 51-55 ISSN 2454-941X http://dx.doi.org/10.20431/2454-941X.0302004 www.arcjournals.org Intellectualism and Interesting Facts on Baboons (Papio anubis Les.; Family: Cercopithecidae) (the olive baboons) in Yankari Game Reserve, Bauchi, Nigeria Ukwubile Cletus Anes Department of Science Laboratory Technology, Biology Unit, School of Science and Technology, Federal Polytechnic Bali, Nigeria. Abstract: Baboons are the type of monkey that are found in African forests and the Arabians. There are five species of baboons worldwide which are distributed in different habitats such as tropical rainforests, savannas, open woodlands and semi-arid areas. A close observation made on baboons at the Yankari Game Reserve(YGR), showed that they feed on various foods which are the reason they are known as pests as well as they are scavengers on elephant's dung. Apart from poaching activity by humans, baboons at YGR are also threatened by loss of habitat due to regular predatory activity by a lion (Pathera leo) in the reserve on the baboons. Out of the five species, only one species (Papio anubis) are found in the large population at the Yankari Game Reserve. This increase in the population of the olive baboons at the YGR has become a source of concern to tourists and researchers who visit the reserve. Due to frequent visits by people to the reserve, the baboons has developed a high level of intellectualism as well as tricks to overcome the dominance by humans encroaching their habitat. Some of these behaviours are groupings, pretence, and acrobatics.
    [Show full text]
  • Mitochondrial Phylogeography of Baboons (Papio Spp.)–Indication For
    BMC Evolutionary Biology BioMed Central Research article Open Access Mitochondrial phylogeography of baboons (Papio spp.) – Indication for introgressive hybridization? Dietmar Zinner*1, Linn F Groeneveld2,3, Christina Keller1,4 and Christian Roos5 Address: 1Cognitive Ethology, Deutsches Primatenzentrum, Kellnerweg 4, D-37077 Göttingen, Germany, 2Behavioral Ecology and Sociobiology, Deutsches Primatenzentrum, Kellnerweg 4, D-37077 Göttingen, Germany, 3Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany, 4Göttinger Zentrum für Biodiversitätsforschung und Ökologie, Untere Karspüle 2, D-37073 Göttingen, Germany and 5Gene Bank of Primates and Primate Genetics, Deutsches Primatenzentrum, Kellnerweg 4, D-37077 Göttingen, Germany Email: Dietmar Zinner* - [email protected]; Linn F Groeneveld - [email protected]; Christina Keller - [email protected]; Christian Roos - [email protected] * Corresponding author Published: 23 April 2009 Received: 4 July 2008 Accepted: 23 April 2009 BMC Evolutionary Biology 2009, 9:83 doi:10.1186/1471-2148-9-83 This article is available from: http://www.biomedcentral.com/1471-2148/9/83 © 2009 Zinner et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Baboons of the genus Papio are distributed over wide ranges of Africa and even colonized parts of the Arabian Peninsula. Traditionally, five phenotypically distinct species are recognized, but recent molecular studies were not able to resolve their phylogenetic relationships. Moreover, these studies revealed para- and polyphyletic (hereafter paraphyletic) mitochondrial clades for baboons from eastern Africa, and it was hypothesized that introgressive hybridization might have contributed substantially to their evolutionary history.
    [Show full text]
  • Colobus Guereza
    Lauck et al. Retrovirology 2013, 10:107 http://www.retrovirology.com/content/10/1/107 RESEARCH Open Access Discovery and full genome characterization of two highly divergent simian immunodeficiency viruses infecting black-and-white colobus monkeys (Colobus guereza) in Kibale National Park, Uganda Michael Lauck1, William M Switzer2, Samuel D Sibley3, David Hyeroba4, Alex Tumukunde4, Geoffrey Weny4, Bill Taylor5, Anupama Shankar2, Nelson Ting6, Colin A Chapman4,7,8, Thomas C Friedrich1,3, Tony L Goldberg1,3,4 and David H O'Connor1,9* Abstract Background: African non-human primates (NHPs) are natural hosts for simian immunodeficiency viruses (SIV), the zoonotic transmission of which led to the emergence of HIV-1 and HIV-2. However, our understanding of SIV diversity and evolution is limited by incomplete taxonomic and geographic sampling of NHPs, particularly in East Africa. In this study, we screened blood specimens from nine black-and-white colobus monkeys (Colobus guereza occidentalis) from Kibale National Park, Uganda, for novel SIVs using a combination of serology and “unbiased” deep-sequencing, a method that does not rely on genetic similarity to previously characterized viruses. Results: We identified two novel and divergent SIVs, tentatively named SIVkcol-1 and SIVkcol-2, and assembled genomes covering the entire coding region for each virus. SIVkcol-1 and SIVkcol-2 were detected in three and four animals, respectively, but with no animals co-infected. Phylogenetic analyses showed that SIVkcol-1 and SIVkcol-2 form a lineage with SIVcol, previously discovered in black-and-white colobus from Cameroon. Although SIVkcol-1 and SIVkcol-2 were isolated from the same host population in Uganda, SIVkcol-1 is more closely related to SIVcol than to SIVkcol-2.
    [Show full text]
  • AFRICAN PRIMATES the Journal of the Africa Section of the IUCN SSC Primate Specialist Group
    Volume 9 2014 ISSN 1093-8966 AFRICAN PRIMATES The Journal of the Africa Section of the IUCN SSC Primate Specialist Group Editor-in-Chief: Janette Wallis PSG Chairman: Russell A. Mittermeier PSG Deputy Chair: Anthony B. Rylands Red List Authorities: Sanjay Molur, Christoph Schwitzer, and Liz Williamson African Primates The Journal of the Africa Section of the IUCN SSC Primate Specialist Group ISSN 1093-8966 African Primates Editorial Board IUCN/SSC Primate Specialist Group Janette Wallis – Editor-in-Chief Chairman: Russell A. Mittermeier Deputy Chair: Anthony B. Rylands University of Oklahoma, Norman, OK USA Simon Bearder Vice Chair, Section on Great Apes:Liz Williamson Oxford Brookes University, Oxford, UK Vice-Chair, Section on Small Apes: Benjamin M. Rawson R. Patrick Boundja Regional Vice-Chairs – Neotropics Wildlife Conservation Society, Congo; Univ of Mass, USA Mesoamerica: Liliana Cortés-Ortiz Thomas M. Butynski Andean Countries: Erwin Palacios and Eckhard W. Heymann Sustainability Centre Eastern Africa, Nanyuki, Kenya Brazil and the Guianas: M. Cecília M. Kierulff, Fabiano Rodrigues Phillip Cronje de Melo, and Maurício Talebi Jane Goodall Institute, Mpumalanga, South Africa Regional Vice Chairs – Africa Edem A. Eniang W. Scott McGraw, David N. M. Mbora, and Janette Wallis Biodiversity Preservation Center, Calabar, Nigeria Colin Groves Regional Vice Chairs – Madagascar Christoph Schwitzer and Jonah Ratsimbazafy Australian National University, Canberra, Australia Michael A. Huffman Regional Vice Chairs – Asia Kyoto University, Inuyama,
    [Show full text]
  • Two Newly Observed Cases of Fish-Eating in Anubis Baboons
    Vol. 7 No.1 (2016) 5-9. and folivore needs longer feeding time. The risk of losing Two Newly Observed time when folivore fail to catch fish or vertebrate might Cases of Fish-eating in be serious for them. Examination of possible factors of fish-eating in non-human primates shed a light on this Anubis Baboons question. One of the factors is seasonality. Catching fish be- Akiko Matsumoto-Oda 1,*, Anthony D. Collins 2 comes easier during the dry season because temporary small pools or shallow rivers appear (Hamilton & Tilson, 1 Graduate School of Tourism Sciences, University of the Ryukyus, Okinawa 903-0213, Japan 1985; de Waal, 2001). Most of cases that non-human 2 The Jane Goodall Institute, Gombe Stream Research Centre, Kigoma P.O. primates obtained fishes were beside shallow water Box 185, Tanzania (Stewart, Gordon, Wich, Schroor, & Meijaard, 2008). *Author for correspondence ([email protected]) In rehabilitant orangutans in Central Kalimantan, 79% events (19/24) were in the wet-dry transition or in the dry Most non-human primates are omnivorous and eat season, and they obtained 21% (4/19) of fsh from shallow a wide variety of food types like as fruit, leaves, ponds and 79% (15/19) on riverbanks (Russon et al., 2014). seeds, insects, gums or a mixture of these items. In Hunting frequency becomes high when low availability spite of frequent eating of fish in human, there are of preferred foods create a need for fallback foods (e.g., few species to eat fishes in non-human primates. Teleki, 1973; Rose, 2001).
    [Show full text]
  • Papio Cynocephalus) in a Primate Rich Habitat: the Issa Valley of Western Tanzania
    _________________________________________________________________________Swansea University E-Theses The feeding and movement ecology of yellow baboons (Papio cynocephalus) in a primate rich habitat: The Issa Valley of Western Tanzania. Johnson, Caspian How to cite: _________________________________________________________________________ Johnson, Caspian (2015) The feeding and movement ecology of yellow baboons (Papio cynocephalus) in a primate rich habitat: The Issa Valley of Western Tanzania.. thesis, Swansea University. http://cronfa.swan.ac.uk/Record/cronfa42215 Use policy: _________________________________________________________________________ This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author. Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository. Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference above.) http://www.swansea.ac.uk/library/researchsupport/ris-support/ 'M fcMchd The feeding and movement ecology of yellow baboons (Papio in a primate rich habitat: the Issa valley of western Tanzania Caspian Johnson Submitted to Swansea University in fulfilment of the requirements for the Degree of Doctor of Philosophy of Biology Swansea University 2015 ProQuest Number: 10797917 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Acoustic Features of Female Chacma Baboon Barks
    Ethology 107, 33Ð54 (2001) Ó 2001 Blackwell Wissenschafts-Verlag, Berlin ISSN 0179±1613 Department of Biology, University of Pennsylvania, Philadelphia; Department of Psychology, University of Pennsylvania, Philadelphia; Deutsches Primatenzentrum, Abteilung Neurobiologie, GoÈttingen Acoustic Features of Female Chacma Baboon Barks Julia Fischer, Kurt Hammerschmidt, Dorothy L. Cheney & Robert M. Seyfarth Fischer, J., Hammerschmidt, K., Cheney, D. L. & Seyfarth, R. M. 2001: Acoustic features of female chacma baboon barks. Ethology 107, 33Ð54. Abstract We studied variation in the loud barks of free-ranging female chacma baboons (Papio cynocephalus ursinus) with respect to context, predator type, and individuality over an 18-month period in the Moremi Game Reserve, Botswana. To examine acoustic dierences in relation to these variables, we extracted a suite of acoustic parameters from digitized calls and applied discriminant function ana- lyses. The barks constitute a graded continuum, ranging from a tonal, harmoni- cally rich call into a call with a more noisy, harsh structure. Tonal barks are typically given when the signaler is at risk of losing contact with the group or when a mother and infant have become separated (contact barks). The harsher variants are given in response to large predators (alarm barks). However, there are also intermediate forms between the two subtypes which may occur in both situations. This ®nding is not due to an overlap of individuals' distinct distributions but can be replicated within individuals. Within the alarm bark category, there are signi®- cant dierences between calls given in response to mammalian carnivores and those given in response to crocodiles. Again, there are intermediate variants. Both alarm call types are equally dierent from contact barks, indicating that the calls vary along dierent dimensions.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Journal of Human Evolution 60 (2011) 731e745 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Morphological systematics of the kipunji (Rungwecebus kipunji) and the ontogenetic development of phylogenetically informative characters in the Papionini Christopher C. Gilbert a,b,c,*, William T. Stanley d, Link E. Olson e, Tim R.B. Davenport f, Eric J. Sargis g,h a Department of Anthropology, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10021, USA b Department of Anthropology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA c New York Consortium in Evolutionary Primatology, New York, NY, USA d Department of Zoology, The Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA e Department of Mammalogy, University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK 99775, USA f Wildlife Conservation Society, Tanzania Program, P.O.
    [Show full text]
  • SOCIAL VIGILANCE BEHAVIOUR of the CHACMA BABOON, PAPIO URSINUS by K
    SOCIAL VIGILANCE BEHAVIOUR OF THE CHACMA BABOON, PAPIO URSINUS by K. R. L. HALL 1) (Dept. of Psychology, Bristol, England) (Rec. 15-XII-1959) 1. INTRODUCTION Accounts of the behaviour of wild baboon groups when raiding a plan- tation, crossing a road, foraging for their food or resting in areas where predators may attack them, frequently refer to "sentry" or "sentinel-posting". FiTZSiMMOrrs (19m), in a mixed naturalistic-fictional account of baboon life, describes baboons posting sentries on either side of a dirt road to give warning of the approach of vehicles while the troop foraged for ants. ELLIOTT (r913), introducing the Papio genus, says: "When engaged in any operation considered dangerous, a sentinel is always posted in some favourable place to give warning of a foe's approach and enable the de- predators to escape" (p. m6). Specifically with reference to the Chacma baboon, ELLIOTT quotes from a correspondent in the Grahamstown area of South Africa who writes that" ... when resting a sentinel or two is always placed on top -of a rock in order to warn the troop of approaching danger" (p. 136). ALLEE (1931) quotes JOHN PHILLIPS as follows: "The sentinel is exceedingly sharp and detects the least noise, scent, or appearance of man or leopard. In East Africa I have seen other species of baboon behaving in the same manner. The sentinels are often the largest, strongest males, that is with the exception of the real leader of the group; they will remain faithfully at their post 'waughing'... despite the proximity of danger. Upon these notes of warning reaching the ear of the leader, he will im- I) I wish to thank my colleagues in Cape Town, in particular Professor MONICA WILSON,Mr P.
    [Show full text]
  • Papio Ursinus – Chacma Baboon
    Papio ursinus – Chacma Baboon Taxonomic status: Species Taxonomic notes: Although up to eight Chacma forms have been suggested in the literature (Hill 1970), today only three are commonly accepted (Jolly 1993; Groves 2001). These are: P. u. ursinus, P. u. griseipes, and P. u. ruacana. Papio u. ursinus, the typical Chacma, is a large baboon with black nape fringes, dark brown fur, black fur on hands and feet and a relatively short tail. This variant occurs in the more southerly and westerly part of the Chacma range, including South Africa and some parts of Botswana. This group incorporates Hill’s (1970) ursinus, orientalis and occidentalis subspecies. Papio ursinus griseipes, the Grey-Footed Baboon, is more fawn coloured and found in southwestern Zambia, Zimbabwe, in Mozambique south of the Zambezi, in parts of the Limpopo Province of South Africa, and in the Okavango Delta, Botswana (Jolly 1993). These are smaller than P. u. ursinus and have grey hands and feet, the same colour as their limbs, and a longer tail. This group incorporates Hill’s griesipes, ngamiensis, chobiensis and jubilaeus subspecies. Today it is clear that jubilaeus is in fact a Yellow Baboon and not a Chacma at all. Papio ursinus ruacana is a small black-footed baboon that is darker than P. u griseipes and smaller than P. u. ursinus. They are found in Namibia and southwestern Angola (Groves 2001). Mitochondrial genetic data confirms at least two distinct lineages within Chacma separating the species into northern (griseipes) and southern (ursinus) populations Emmanuel Do Linh San (Sithaldeen et al. 2009; Zinner et al.
    [Show full text]