Evidence to Inform the Development of QUADAS-2

Total Page:16

File Type:pdf, Size:1020Kb

Evidence to Inform the Development of QUADAS-2 Updating QUADAS: Evidence to inform the development of QUADAS-2 Penny Whiting, Anne Rutjes, Marie Westwood, Susan Mallett, Mariska Leeflang, Hans Reitsma, Jon Deeks, Jonathan Sterne, Patrick Bossuyt 1 QUADAS Steering Group members: Penny Whiting, Department of Social Medicine, University of Bristol Anne Rutjes, Departments of Social and Preventive Medicine and Rheumatology, University of Berne Jonathan Sterne, Department of Social Medicine, University of Bristol Jon Deeks, Unit of Public Health, Epidemiology & Biostatistics, University of Birmingham Mariska Leeflang, Department of Clinical Epidemiology, Biostatistics and Informatics, AMC, University of Amsterdam Patrick Bossuyt, Department of Clinical Epidemiology, Biostatistics and Informatics, AMC, University of Amsterdam Hans Reitsma, Department of Clinical Epidemiology, Biostatistics and Informatics, AMC, University of Amsterdam Marie Westwood, Kleijnen Systematic Reviews, York Susan Mallett, Centre for Statistics in Medicine, University of Oxford 2 Contents Chapter 1: Background .......................................................................................................................... 5 Items in italics are those removed from the Cochrane version of QUADAS.Chapter 2: Approach and Scope of QUADAS-2 ............................................................................................................................... 6 Chapter 2: Approach and Scope of QUADAS-2 ...................................................................................... 7 2.1 Rationale for QUADAS-2 ............................................................................................................. 9 2.2 Scope of QUADAS-2 .................................................................................................................... 9 2.2 Develop the evidence base ....................................................................................................... 12 2.3 Generate a list of items for consideration for inclusion in QUADAS-2 (Chapter 7) .................. 13 Chapter 3: Diagnostic test accuracy (DTA) reviews: Conduct and reporting of quality assessment .. 14 3.1 Objectives .................................................................................................................................. 15 3.2 Methods .................................................................................................................................... 15 3.3 Results ....................................................................................................................................... 16 3.4 Summary ................................................................................................................................... 24 Reported problems with applying QUADAS items .......................................................................... 26 3.5 Implications for QUADAS-2 ....................................................................................................... 27 Chapter 4: Feedback from Reviewers .................................................................................................. 28 4.1 Objective .................................................................................................................................... 29 4.2 Methods ..................................................................................................................................... 29 4.3 Results ........................................................................................................................................ 29 4.4 Summary ................................................................................................................................... 43 4.5 Implications for QUADAS-2 ................................................................................................... 44 Chapter 5: Sources of Variation and Bias in Studies of Diagnostic Accuracy: an updated systematic review ............................................................................................................................ 46 5.1 Objectives .................................................................................................................................. 47 5.2 Methods ..................................................................................................................................... 47 5.3 Results ........................................................................................................................................ 49 5.4 Summary of results .................................................................................................................... 70 5.5 Implications for QUADAS-2 ........................................................................................................ 70 3 Chapter 6: Review of studies that have evaluated QUADAS ............................................................... 72 6.1 Objectives .................................................................................................................................. 73 6.2 Methods .................................................................................................................................... 73 6.3 Results ....................................................................................................................................... 73 6.3 Summary ................................................................................................................................... 76 6.4 Implications for QUADAS-2 ........................................................................................................ 76 Chapter 7: Generating a list of items .................................................................................................. 78 7.1 Recommendations from the evidence base .............................................................................. 78 8. References ....................................................................................................................................... 84 Appendix 3.1: General Details of Included Reviews .......................................................................... 102 Appendix 3.2a: Details of Quality Assessment: Reviews that used QUADAS .................................... 106 Appendix 3.2b: Details of Quality Assessment: Reviews that did not use QUADAS ......................... 111 Appendix 3.3: Details on how quality assessment was incorporated into the review ..................... 116 Appendix 3.4: Data extraction form .................................................................................................. 120 Appendix 4: QUADAS questionnaire and detailed summary of responses ....................................... 122 Appendix 5.1: Search strategies ........................................................................................................ 151 Appendix 5.2: Detailed data extraction tables from original review ................................................ 154 Appendix 6: Summary of studies that have evaluated QUADAS ....................................................... 190 4 Chapter 1: Background QUADAS is a quality assessment tool for use in systematic reviews of diagnostic test accuracy (DTA) studies that we developed in 2003 (Table 1).(1)The steps we employed to develop QUADAS are outlined in Figure 1. We developed an initial list of possible items for inclusion through reviewing sources of bias and variation in DTA studies, reviewing existing quality assessment tools for DTA studies and examining how quality was incorporated into DTA reviews. We then conducted a Delphi procedure to refine this initial list of items to produce QUADAS. Members of the Delphi panel were experts in the area of diagnostic research. The process also included a preliminary evaluation of QUADAS which involved assessing inter-rater agreement in the rating of a set of 30 studies and gathering feedback from 20 reviewers who had used QUADAS in their reviews.(2) Based on this, some modifications were proposed for the scoring of two of the QUADAS items: interpretation of uninterpretable/intermediate test results and withdrawals. Since its development QUADAS has been used in a large number of systematic reviews: it has been cited over 300 times and searching the DARE database using the term “QUADAS” identified 96 reviews. A modified version of QUADAS, with items related to the quality of reporting removed, has been adopted for use by the Cochrane Collaboration and is recommended for use in all Cochrane DTA reviews.(3) QUADAS has also been recommended for use by NICE. Our own experience, anecdotal reports, and feedback via Cochrane suggest some problems with the current version of QUADAS. These include problems in scoring certain items (in particular items on spectrum, uninterpretable/intermediate test results and withdrawals), possible overlap between items (for example partial verification bias and withdrawals), and certain situations where it is difficult to use QUADAS (for example in topics in which the reference standard involves an element of follow-up). We therefore decided to revisit QUADAS with the aim of using the experience gathered through its use and new evidence regarding sources of bias and variation to update QUADAS to produce “QUADAS-2”. 5 Figure 1: Development of original QUADAS tool Review of sources Review of diagnostic Review of use of quality of bias and quality assessment assessment in diagnostics variation tools
Recommended publications
  • Confirmation Bias I (B) (3) - P
    This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of hundreds of thousands of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com . ., NATIONAL SECURITY AGENCY FORT GEORGE G. MEADE, MARYLAND 20755-6000 FOIA Case: 104412 25 May 2018 JOHN GREENEWALD 27305 W LIVE OAK ROAD SUITE 1203 CASTAIC CA 91384 Dear Mr. Greenewald: This responds to your Freedom of Information Act (FOIA) request of 23 May 2018 for Intellipedia pages on ESP and/or Extrasensory Perception. For purposes of this request and based on the information you provided in your letter, you are considered an 'all other" requester. As such, you are allowed 2 hours of search time and the duplication of 100 pages at no cost. There are no assessable fees for this request. Your request has been processed under the FO lA. For your information, NSA provides a service of common concern for the Intelligence Community (IC) by serving as the executive agent for Intelink. As such, NSA provides technical services that enable users to access and share information with peers and stakeholders across the IC and DoD. Intellipedia pages are living documents that may be originated by any user organization, and any user organization may contribute to or edit pages after their origination. Intellipedia pages should not be considered the final, coordinated position of the ICon any particular subject.
    [Show full text]
  • Confirmation Bias and Related Errors
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1-1-2010 Confirmation Bias and Related Errors Geoffrey Ludlow Borthwick Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Let us know how access to this document benefits ou.y Recommended Citation Borthwick, Geoffrey Ludlow, "Confirmation Bias and Related Errors" (2010). Dissertations and Theses. Paper 128. https://doi.org/10.15760/etd.128 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Confirmation Bias and Related Errors by Geoffrey Ludlow Borthwick A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Systems Science: Psychology Dissertation Committee: Thomas Kindermann, Chair Barry F. Anderson Todd E. Bodner Wayne Wakeland John Settle Portland State University © 2010 i ABSTRACT This study attempted to replicate and extend the study of Doherty, Mynatt, Tweney, and Schiavo (1979), which introduced what is here called the Bayesian conditionals selection paradigm. The present study used this paradigm (and a script similar to that used by Doherty et al.) to explore confirmation bias and related errors that can appear in both search and integration in probability revision. Despite selection differences and weak manipulations, this study provided information relevant to four important questions. First, by asking participants to estimate the values of the conditional probabilities they did not learn, this study was able to examine the use of “intuitive conditionals”.
    [Show full text]
  • Methods Guide for Medical Test Reviews
    Chapter 5 Assessing Risk of Bias as a Domain of Quality in Medical Test Studies P. Lina Santaguida, B.Sc.P.T., Ph.D., M.Sc., McMaster University Crystal M. Riley, M.A., Nanyang Technological University, Singapore David B. Matchar, M.D., Duke University; Duke-NUS Graduate Medical School, Singapore Abstract Assessing methodological quality is a necessary activity for any systematic review, including those evaluating the evidence for studies of medical test performance. Judging the overall quality of an individual study involves examining the size of the study, the direction and degree of findings, the relevance of the study, and the risk of bias in the form of systematic error, lack of internal validity, and other study limitations. In this chapter of the Methods Guide for Medical Test Reviews, we focus on the evaluation of risk of bias in the form of systematic error in an individual study as a distinctly important component of quality in studies of medical test performance, specifically in the context of estimating test performance (sensitivity and specificity). We make the following recommendations to systematic reviewers: (1) When assessing study limitations that are relevant to the test under evaluation, reviewers should select validated criteria that examine the risk of systematic error, (2) categorizing the risk of bias for individual studies as “low,” “medium,” or “high” is a useful way to proceed, and (3) methods for determining an overall categorization for the study limitations should be established a priori and documented clearly. Introduction Medical tests are indispensable for clinicians in that they provide information that goes beyond what is available by clinical evaluation alone.
    [Show full text]
  • Prior Belief Innuences on Reasoning and Judgment: a Multivariate Investigation of Individual Differences in Belief Bias
    Prior Belief Innuences on Reasoning and Judgment: A Multivariate Investigation of Individual Differences in Belief Bias Walter Cabral Sa A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Education University of Toronto O Copyright by Walter C.Si5 1999 National Library Bibliothèque nationaIe of Canada du Canada Acquisitions and Acquisitions et Bibliographic Services services bibliographiques 395 Wellington Street 395, rue WePington Ottawa ON K1A ON4 Ottawa ON KtA ON4 Canada Canada Your file Votre rëfërence Our fi& Notre réterence The author has granted a non- L'auteur a accordé une licence non exclusive Licence allowing the exclusive permettant à la National Libraq of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microforni, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor subçtantial extracts fi-om it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Prior Belief Influences on Reasoning and Judgment: A Multivariate Investigation of Individual Differences in Belief Bias Doctor of Philosophy, 1999 Walter Cabral Sa Graduate Department of Education University of Toronto Belief bias occurs when reasoning or judgments are found to be overly infiuenced by prior belief at the expense of a normatively prescribed accommodation of dl the relevant data.
    [Show full text]
  • The Retrospective Detective. Cognitive Bias and the Cold Case Homicide Investigator Jason Roach
    Papers from the British Criminology Conference © 2017 the author and the British Society of Criminology www.britsoccrim.org ISSN 1759-0043; Vol. 17 Paper The Retrospective Detective. Cognitive Bias and the Cold Case Homicide Investigator Jason Roach Abstract Current research on police psychology in criminal investigations assumes investigative decision-making in cold case (undetected) homicides to be the same as that of live/current homicide investigations, therefore not warranting exploration in its own right. In contrast, the present article suggests that significantly different psychological and contextual factors exist which can facilitate bias in investigator decision-making in cold case (undetected) homicides. These include the biasing effect of inheriting a chain of decisions often made by many previous investigators and the negative framing effect that the term ‘cold case’ can have on investigator confidence and on their subsequent investigative decision-making. Although the idea that cold case homicide investigation necessitates a different ‘investigative mindset’ to live cases is only suggested here, a possible agenda for a bespoke research project on cold case investigator decision- making is tentatively suggested. Key words: Police investigators; cold case, cognitive bias, homicide Introduction For one reason or another some crimes appear unsolvable, for example a stranger on stranger murder without witnesses, CCTV data, or any forensic evidence. Mercifully, most are not. The aim of this article is not to question the balance of priority which police might give to more recent crimes over historic unsolved ones, but to suggest that police investigators need to be made aware of several important psychological differences between live and cold case homicides that can have a negative influence on the investigative decisions that they make.
    [Show full text]
  • Thinking and Reasoning
    Thinking and Reasoning Thinking and Reasoning ■ An introduction to the psychology of reason, judgment and decision making Ken Manktelow First published 2012 British Library Cataloguing in Publication by Psychology Press Data 27 Church Road, Hove, East Sussex BN3 2FA A catalogue record for this book is available from the British Library Simultaneously published in the USA and Canada Library of Congress Cataloging in Publication by Psychology Press Data 711 Third Avenue, New York, NY 10017 Manktelow, K. I., 1952– Thinking and reasoning : an introduction [www.psypress.com] to the psychology of reason, Psychology Press is an imprint of the Taylor & judgment and decision making / Ken Francis Group, an informa business Manktelow. p. cm. © 2012 Psychology Press Includes bibliographical references and Typeset in Century Old Style and Futura by index. Refi neCatch Ltd, Bungay, Suffolk 1. Reasoning (Psychology) Cover design by Andrew Ward 2. Thought and thinking. 3. Cognition. 4. Decision making. All rights reserved. No part of this book may I. Title. be reprinted or reproduced or utilised in any BF442.M354 2012 form or by any electronic, mechanical, or 153.4'2--dc23 other means, now known or hereafter invented, including photocopying and 2011031284 recording, or in any information storage or retrieval system, without permission in writing ISBN: 978-1-84169-740-6 (hbk) from the publishers. ISBN: 978-1-84169-741-3 (pbk) Trademark notice : Product or corporate ISBN: 978-0-203-11546-6 (ebk) names may be trademarks or registered trademarks, and are used
    [Show full text]
  • Application to Diagnostic Medicine
    Evaluating the Medical Literature II. Application to Diagnostic Medicine Continuing Education for Nuclear Pharmacists And Nuclear Medicine Professionals By Hazel H. Seaba, R.Ph., M.S. The University of New Mexico Health Sciences Center, College of Pharmacy is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education. Program No. 0039-0000-14- 181-H04-P 5.0 Contact Hours or 0.5 CEUs. Initial release date: 10/15/2014 -- Intentionally left blank -- Evaluating the Medical Literature II. Application to Diagnostic Medicine By Hazel H. Seaba, R.Ph., M.S Editor, CENP Jeffrey Norenberg, MS, PharmD, BCNP, FASHP, FAPhA UNM College of Pharmacy Editorial Board Stephen Dragotakes, RPh, BCNP, FAPhA Vivian Loveless, PharmD, BCNP, FAPhA Michael Mosley, RPh, BCNP, FAPhA Neil Petry, RPh, MS, BCNP, FAPhA Tim Quinton, PharmD, BCNP, FAPhA Sally Schwarz, BCNP, FAPhA Duann Vanderslice Thistlethwaite, RPh, BCNP, FAPhA John Yuen, PharmD, BCNP Advisory Board Christine Brown, RPh, BCNP Leana DiBenedetto, BCNP Dave Engstrom, PharmD, BCNP Walter Holst, PharmD, BCNP Scott Knishka, BCNP Susan Lardner, BCNP Brigette Nelson, MS, PharmD, BCNP Brantley Strickland, BCNP Director, CENP Administrator, CE & Web Publisher Kristina Wittstrom, PhD, RPh, BCNP, FAPhA Christina Muñoz, M.A. UNM College of Pharmacy UNM College of Pharmacy While the advice and information in this publication are believed to be true and accurate at the time of press, the author(s), editors, or the publisher cannot accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, Copyright 2014 University of New Mexico Health Sciences Center Pharmacy Continuing Education Instructions: Upon purchase of this Lesson, you will have gained access to this lesson and the corresponding assessment via the following link < https://pharmacyce.health.unm.edu > To receive a Statement of Credit you must: 1.
    [Show full text]
  • Fixing Biases: Principles of Cognitive De-Biasing
    Fixing biases: Principles of cognitive de-biasing Pat Croskerry MD, PhD Clinical Reasoning in Medical Education National Science Learning Centre, University of York Workshop, November 26, 2019 Case q A 65 year old female presents to the ED with a complaint of shoulder sprain. She said she was gardening this morning and injured her shoulder pushing her lawn mower. q At triage she has normal vital signs and in no distress. The triage nurse notes her complaint and triages her to the fast track area. q She is seen by an emergency physician who notes her complaint and examines her shoulder. He orders an X-ray. q The shoulder X ray shows narrowing of the joint and signs of osteoarthrtritis q He discharges her with a sling and Rx for Arthrotec q She is brought to the ED 4 hours later following an episode of syncope, sweating, and weakness. She is diagnosed with an inferior MI. Biases q A 65 year old female presents to the ED with a complaint of ‘shoulder sprain’. She said she was gardening this morning and sprained her shoulder pushing her lawn mower (Framing). q At triage she has normal vital signs and in no distress. The triage nurse notes her complaint and triages her to the fast track area (Triage cueing). q She is seen by an emergency physician who notes her complaint and examines her shoulder. He orders an X-ray (Ascertainment bias). q The shoulder X ray shows narrowing of the joint and signs of osteoarthrtritis. He explains to the patient the cause of her pain (Confirmation bias).
    [Show full text]
  • Diagnostic Downshift’: Clinical and System Consequences of Extrapolating Secondary Care Testing Tactics to Primary Care
    EBM analysis BMJ EBM: first published as 10.1136/bmjebm-2020-111629 on 7 June 2021. Downloaded from ‘Diagnostic downshift’: clinical and system consequences of extrapolating secondary care testing tactics to primary care Imran Mohammed Sajid ,1,2 Kathleen Frost,3 Ash K Paul4 10.1136/bmjebm-2020-111629 ABSTRACT Several drivers push specialist diagnostic Numerous drivers push specialist diagnostic approaches down to the broader primary care layer of a health system, which we describe as ‘diag- 1NHS West London Clinical approaches down to primary care (‘diagnostic Commissioning Group, downshift’), intuitively welcomed by clinicians nostic downshift’. Aspirations for earlier disease London, UK and patients. However, primary care’s different detection or capacity pressures in specialist and 2University of Global Health population and processes result in under- cancer pathways underlie shifting of tests from Equity, Kigali, Rwanda recognised, unintended consequences. Testing high- cost hospital settings to primary care. Such 3 NHS Central London Clinical performs poorer in primary care, with indication assumptions have led to procurement and growth Commissioning Group, creep due to earlier, more undifferentiated of GP diagnostics, with unfettered direct access to London, UK presentation and reduced accuracy due to physiology tests, endoscopy, ultrasound, MRI, CT, 4NHS South West London spectrum bias and the ‘false-positive paradox’. and biochemical and immunological tests, often Health and Care Partnership only evaluated in secondary care. It is increasingly STP, London, UK In low- prevalence settings, tests without near- 100% specificity have their useful yield eclipsed expected, sometimes mandated, for GPs to perform by greater incidental or false- positive findings. secondary care- based testing strategies prior to Correspondence to: Ensuing cascades and multiplier effects can referral.
    [Show full text]
  • Bias Miguel Delgado-Rodrı´Guez, Javier Llorca
    635 J Epidemiol Community Health: first published as 10.1136/jech.2003.008466 on 13 July 2004. Downloaded from GLOSSARY Bias Miguel Delgado-Rodrı´guez, Javier Llorca ............................................................................................................................... J Epidemiol Community Health 2004;58:635–641. doi: 10.1136/jech.2003.008466 The concept of bias is the lack of internal validity or Ahlbom keep confounding apart from biases in the statistical analysis as it typically occurs when incorrect assessment of the association between an the actual study base differs from the ‘‘ideal’’ exposure and an effect in the target population in which the study base, in which there is no association statistic estimated has an expectation that does not equal between different determinants of an effect. The same idea can be found in Maclure and the true value. Biases can be classified by the research Schneeweiss.5 stage in which they occur or by the direction of change in a In this glossary definitions of the most com- estimate. The most important biases are those produced in mon biases (we have not been exhaustive in defining all the existing biases) are given within the definition and selection of the study population, data the simple classification by Kleinbaum et al.2 We collection, and the association between different have added a point for biases produced in a trial determinants of an effect in the population. A definition of in the execution of the intervention. Biases in data interpretation, writing, and citing will not the most common biases occurring in these stages is given. be discussed (see for a description of them by ..........................................................................
    [Show full text]
  • Bias in Diagnostic Research and G Sources of Variation
    27/12/2010 Bias in diagnostic research and sources of variation Karen R Steingart, MD, MPH [email protected] Chennai, 13 December 2010 Disclosure and acknowledgements • I serve as co-chair of the Evidence Synthesis subgroup of Stop TB Partnership’ ssNew New Diagnostics Working Group • Slides used by permission of Madhu Pai • Description of QUADAS-2, used by permission of Penny Whiting 1 27/12/2010 The medical literature can be compared to a jungle. It is fast growing, full of deadwood, sprinkled with hidden treasure and infested with spiders and snakes. Morgan. Can Med Assoc J, 134, Jan 15, 1986 Overview • Discuss major forms of bias and sources of variation in diagnostic studies • Describe assessment of methodological quality of diagnostic accuracy studies 2 27/12/2010 Diagnostic studies lack methodological rigor Diagnostic studies in four prominent general medical journals Peeling et al. Nature Rev Micro 2006 (data are from Reid et al. JAMA. 1995 (274):645–651) Lack of rigor: example from TB literature 12 meta-analyy;ses; > 500 diagnostic studies • 65% used prospective design • 33% used consecutive or random sampling • 72% used a cross-sectional design; 1/3 used case-control • Blinding reported in 34% Pai et al. Exp Rev Mol Diagn 2006 3 27/12/2010 “Bias is any process at any stage of inference which tends to produce results or conclusions that differ systematically from the truth.” * Biases - can arise through problems in design, execution, analysis, and interpretation - can lead to over or underestimates of test accuracy Any factor that influences the assessment of disease status or test results can produce bias *Murphy.
    [Show full text]
  • Challenges in Planning and Conducting Diagnostic Studies with Molecular Biomarkers
    e14 Review article Challenges in planning and conducting diagnostic studies with molecular biomarkers Herausforderungen an die Planung und Durchführung von Diagnosestudien mit molekularen Biomarkern Authors A. Ziegler1,2, I.R. König1 P. Schulz-Knappe3 Institute 1 Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany 2 Zentrum für Klinische Studien Lübeck, Universität zu Lübeck, Lübeck, Germany 3 Protagen AG, Dortmund, Germany MedicalReview article publishing Introduction gies such as genomics or proteomics, or imaging ▼ techniques; for a comprehensive definition, see Keywords q Biomarkers are currently a topic of intense re- Ziegler et al. [1]. biomarker search in science and medicine. However, biolo- qcoefficient of variation gical markers have been used for thousands of qdiagnostic study Prognostic, diagnostic, and predictive qmolecular diagnostics years. Already in the ancient world, physicians biomarkers qsampling bias, validation used biomarkers for diagnosis. Probably the Biomarkers are currently applied in all patient- qverification bias most well-known example is the examination of relevant areas, in diagnosis, prognosis, and thera- urine, which was described by Galen in the se- py. While prognostic biomarkers predict the pa- cond century. In the Middle Ages, uroscopy was tients’ disease course, diagnostic biomarkers al- considered an almost infallible diagnostic tool low determining the disease. By definition, pre- for almost all diseases. Some of these indicators dictive biomarkers are linked to the treatment of are still in use, such as glucose in the urine as a patient. For example, predictive biomarkers evidence for diabetes mellitus. At the same time, estimate the probability for the success of a spe- many more characteristics are used as biomar- cific therapy, or the probability for a specific se- kers by now, so that the development of very ge- vere adverse event of an intervention.
    [Show full text]