Activated-Sludge Stabilization of Swine Waste Ronald Eldon Hermanson Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Activated-Sludge Stabilization of Swine Waste Ronald Eldon Hermanson Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1967 Activated-sludge stabilization of swine waste Ronald Eldon Hermanson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Bioresource and Agricultural Engineering Commons Recommended Citation Hermanson, Ronald Eldon, "Activated-sludge stabilization of swine waste " (1967). Retrospective Theses and Dissertations. 3156. https://lib.dr.iastate.edu/rtd/3156 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfihned exactly as received " HERMANSON, Ronald Eldon, 1933- ACTIVATED-SLUDGE STABILIZATION OF SWINE WASTE. Iowa State University of Science and Technology, Ph.D., 1967 Ei^ineering, agricultural Engineering, sanitary and municipal University Microfilms, Inc., Ann Arbor, Michigan ACTIVATED-SLUDGE STABILIZATION OF SWINE WASTE by Ronald Eldon Hermanson A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Water Resources (Agricultural Engineering) Approved: Signature was redacted for privacy. In Charge of Majo^ Work Signature was redacted for privacy. Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1967 PLEASE NOTE: Figure pages are not original copy. They tend to "curl". Filmed in the best possible way. University Microfilms, Inc. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS vi INTRODUCTION 1 Nature of the Problem 3 Objectives 7 Terminology 8 HISTORICAL BACKGROUND 9 Incubation Period 9 The Activated-Sludge Process 11 RECENT RESEARCH 20 EXTENDED-AERATION THEORY 23 General 23 Assumptions 23 Nomenclature 25 Development of Mathematical Model 25 Comparison of Model with Domestic-Waste Data 41 EQUIPMENT AND TECHNIQUE 46 Equipment 46 Influent Waste 54 Operational Procedure 56 Sampling Procedure 60 Analytical Techniques 61 iii Page RESULTS 69 Preliminary Comments 69 Performance 71 Analysis 76 Application 80 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 82 Summary 82 Conclusions 83 Recommendations 84 REFERENCES CITED 85 APPENDIX A; TABLES 92 APPENDIX B; FIGURES 97 iv LIST OF TABLES Page 1. Activated-sludge process performance with domestic waste 19 2. Nomenclature 26 3. BOD-reduction data for domestic waste 44 4. Selected details of sedimentation units 50 5. Removal of the contents of a completely-mixed system 58 6. Experimental BOD-reduction data for swine waste 93 7. Biochemical oxygen demand and suspended solids in milligrams per liter 95 8. Nitrogen concentrations in milligrams per liter ammonium-nitrogen 96 V LIST OF FIGURES Page 1. Flow diagram of extended-aeration, activated-sludge plant 30 2. The BOD curve 38 3. BOD-reduction efficiency for domestic waste 45 4. Flow diagram of experimental plant 47 5. Experimental plant, empty 49 6. Experimental plant in operation 49 7. Chemical oxygen demand reflux apparatus 66 8. Membrane filter apparatus and other equipment for suspended solids determinations 66 9. Steam distillation apparatus for ammonium-, nitrite-, and nitrate-nitrogen analyses 68 10. Air temperature recorder in controlled-temperature room 6 8 11. BOD-reduction efficiency for swine waste 77a 12. Influent BOD-COD relationship 98 13. Effluent BOD-COD relationship 99 14. Sample computer output from non-linear regression analysis; MLVSS constant 100 15. Sample computer output from non-linear regression analysis: detention time constant 101 16. Sample computer output from non-linear regression analysis: pooled data 102 vi ACKNOWLEDGMENTS I wish to express my appreciation to the following: Dr. Howard P. Johnson, major professor in charge of my graduate program for the majority of the time, for his guidance of my program of study; Dr. Thamon E. Hazen, major professor in the absence of Dr. Johnson at the conclusion of the research, for his advice and constructive review of the manuscript; minor professors Dr. E. Robert Baumann and Dr. Herbert T. David, and Dr. Clarence W. Bockhop and Dr. Don Kirkham, for reviewing the manuscript and serving on the examining committee. I am further indebted to the Federal Water Pollution Control Administration for the fellowship that provided personal financial support and the majority of the research expenses. Credit is also due to the U.S. Department of Health, Education, and Welfare, Public Health Service Research Grant EF 00410-03 (Iowa Agricultural Experiment Station Project 1433), Thamon E. Hazen, Principal Investigator. INTRODUCTION Mankind has long been aware of the attendant dangers of the disposal of human and other wastes. The religion of the ancient Persians, prior to Moses, prohibited the discharge of waste into rivers. Pollution problems have grown, and will continue to grow, as our technology and standard of living continue to improve and as population increases. Historically our approach to the problems of environmental pollution has been to apply the economically feasible control provided by existing technology. The current trend includes scientific study of the amount of pollution an environment can absorb without adversely affecting human health and welfare and the balance of nature. Assessment of the magnitude of the pollution problem on land and in the air and sea is difficult. But it has been estimated that the oxygen-demanding portion of domestic and industrial waste is increasing so much more rapidly than waste treatment efficiency that the oxygen demand of treated wastes will be great enough by 1980 to consume the oxygen content of the dry-weather flow of all twenty-two river basins in the United States (National Academy of Sciences—National Research Council, 1966, pp. 12-13). The increasing national interest in pollution control is demonstrated by the legislation and programs which provide grant funds for municipal sewage treatment plants: 2 1. Federal Water Pollution Control Act of 1956 (amended in 1961) 2. Public Works Acceleration Program in 1962 and 1963 3. Water Quality Act of 1965 In addition to providing grants, the Water Quality Act of 1965 requires the states to establish and enforce water quality standards for interstate waters, or the federal government will step in and set the standards. Other legislation in 1965 provided construction funds under four additional departments, among which is the Farmers Home Administration Act (Department of Agriculture). This act authorizes grants to nonprofit public agencies and corporations for constructing water supply and waste collection, treatment, and disposal systems in rural areas. The importance of research has also been emphasized in these acts under the Advanced Waste Treatment Research Program by adding new research laboratories and by obtaining the services of other federal, state, and local agencies and uni­ versities, Processes being investigated comprise adsorption, electrodialysis, foam separation, distillation, solvent extrac­ tion, emulsion separation, freezing, hydration, chemical oxidation, ion exchange, electrochemical degradation, and reverse osmosis. The first four processes look promising for large-scale use. 3 Nature of the Problem Farm animals contribute considerably more wastes than humans in some watersheds, and the excreta of farm animals may be a major source of water pollution. This problem will increase as the human population increases, because the animal population will also rise. The problem is intensified further by growing water demands. Disagreeable odors and the breeding of flies are associ­ ated with accumulations of animal manure. These characteris­ tics are particularly important in view of the frequent concentration of farm animals near the urban markets. Animal wastes are also a hazard to human health inasmuch as they may contain pathogens that are common to animals and man. At least one state requires that a permit be obtained for any animal-waste treatment facility that discharges to a water­ course (Illinois Department of Public Health, 1966). The advent of automation and confinement production has created a major problem for the American farmer in the dis­ posal of farm animal wastes, because of the increased animal concentration. And the modest amount of research on the animal waste problem has not yet produced a single method that is generally satisfactory for both the treatment and disposal of animal manure from confinement production systems. The specific waste considered herein is that from swine. It is likely that eventually the majority of hogs in this 4 country will be raised in large confinement systems. One example of such a system is beginning operation near Alta, Iowa. Within five years, the expectation is that nearly 100,000 hogs will be finished annually (Patrick, 1966). Some impression of the magnitude of the swine waste disposal problem can be given by comparing the wastes left by man and animals. The 1960 population of the United States was about 179 million and the Iowa population was about 2.8 million (United States Department of Commerce, 1961, pp. X and 1-25). In 1960 about 88 million hogs were raised in the United States and about 19 million hogs were raised in Iowa (United States Department
Recommended publications
  • Sequencing Batch Reactors: Principles, Design/Operation and Case Studies - S
    WATER AND WASTEWATER TREATMENT TECHNOLOGIES - Sequencing Batch Reactors: Principles, Design/Operation and Case Studies - S. Vigneswaran, M. Sundaravadivel, D. S. Chaudhary SEQUENCING BATCH REACTORS: PRINCIPLES, DESIGN/OPERATION AND CASE STUDIES S. Vigneswaran, M. Sundaravadivel, and D. S. Chaudhary Faculty of Engineering and Information Technology, School of Civil and Environmental Engineering and Information Technology, University of Technology Sydney, Australia Keywords: Activated sludge process, return activated sludge, sludge settling, wastewater treatment, Contents 1. Background 2. The SBR technology for wastewater treatment 3. Physical description of the SBR system 3.1 FILL Phase 3.2 REACT Phase 3.3 SETTLE Phase 3.4 DRAW or DECANT Phase 3.5 IDLE Phase 4. Components and configuration of SBR system 5. Control of biological reactions through operating strategies 6. Design of SBR reactor 7. Costs of SBR 8. Case studies 8.1 Quakers Hill STP 8.2 SBR for Nutrient Removal at Bathhurst Sewage Treatment Plant 8.3 St Marys Sewage Treatment plant 8.4 A Small Cheese-Making Dairy in France 8.5 A Full-scale Sequencing Batch Reactor System for Swine Wastewater Treatment, Lo and Liao (2007) 8.6 Sequencing Batch Reactor for Biological Treatment of Grey Water, Lamin et al. (2007) 8.7 SBR Processes in Wastewater Plants, Larrea et al (2007) 9. Conclusion GlossaryUNESCO – EOLSS Bibliography Biographical Sketches SAMPLE CHAPTERS Summary Sequencing batch reactor (SBR) is a fill-and-draw activated sludge treatment system. Although the processes involved in SBR are identical to the conventional activated sludge process, SBR is compact and time oriented system, and all the processes are carried out sequentially in the same tank.
    [Show full text]
  • Troubleshooting Activated Sludge Processes Introduction
    Troubleshooting Activated Sludge Processes Introduction Excess Foam High Effluent Suspended Solids High Effluent Soluble BOD or Ammonia Low effluent pH Introduction Review of the literature shows that the activated sludge process has experienced operational problems since its inception. Although they did not experience settling problems with their activated sludge, Ardern and Lockett (Ardern and Lockett, 1914a) did note increased turbidity and reduced nitrification with reduced temperatures. By the early 1920s continuous-flow systems were having to deal with the scourge of activated sludge, bulking (Ardem and Lockett, 1914b, Martin 1927) and effluent suspended solids problems. Martin (1927) also describes effluent quality problems due to toxic and/or high-organic- strength industrial wastes. Oxygen demanding materials would bleedthrough the process. More recently, Jenkins, Richard and Daigger (1993) discussed severe foaming problems in activated sludge systems. Experience shows that controlling the activated sludge process is still difficult for many plants in the United States. However, improved process control can be obtained by systematically looking at the problems and their potential causes. Once the cause is defined, control actions can be initiated to eliminate the problem. Problems associated with the activated sludge process can usually be related to four conditions (Schuyler, 1995). Any of these can occur by themselves or with any of the other conditions. The first is foam. So much foam can accumulate that it becomes a safety problem by spilling out onto walkways. It becomes a regulatory problem as it spills from clarifier surfaces into the effluent. The second, high effluent suspended solids, can be caused by many things. It is the most common problem found in activated sludge systems.
    [Show full text]
  • Guide for Owners of Package Extended Aeration Sewage Treatment Plants
    State of Ohio Environmental Protection Agency OPERATION AND MAINTENANCE GUIDE FOR OWNERS OF PACKAGE EXTENDED AERATION SEWAGE TREATMENT PLANTS Division of Surface Water 2000 TABLE OF CONTENTS I. UNDERSTANDING YOUR EXTENDED AERATION...................................................................................................2 SEWAGE DISPOSAL SYSTEM II. INSTALLATION.............................................................................................................................................................3-4 III. INITIAL OPERATION - START-UP.................................................................................................................................5 IV. PLANT MAINTENANCE PROCEDURE....................................................................................................................6-10 VISUAL CHECK LIST AERATION TANK.....................................................................................................................8 VISUAL CHECK LIST SETTLING TANK.......................................................................................................................9 MONTHLY OPERATION AND MAINTENANCE RECORD......................................................................................10 V. SAFETY............................................................................................................................................................................11 VI. SPECIAL PROCEDURES FOLLOWING PLANT SHUTDOWN..................................................................................11
    [Show full text]
  • Phosphorus Removal in Extended Aeration Systems by Chemical Precipitation
    July 1977 Report No. Env. E. 56-77-2 Phosphorus Removal in Extended Aeration Systems by Chemical Precipitation C. James AAartel Francis A. DiGiano Robert E. Pariseau Report to the Division of Water Pollution Control Massachusetts Water Resources Commission Department of Environmental Quality Engineering Contract Number 76-10(1) ENVIRONMENTAL ENGINEERING DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MASSACHUSETTS AMHERST, MASSACHUSETTS PHOSPHORUS REMOVAL IN EXTENDED AERATION SYSTEMS BY CHEMICAL PRECIPITATION By C. James Martel Research Associate Francis A. DiGiano Associate Professor of Civil Engineering Robert E. Pariseau Research Chemist Division of Water Pollution Control Massachusetts Water Resources Commission Department of Environmental Quality Engineering Contract Number MDWPC 76-10(1) Environmental Engineering Program Department of Civil Engineering University of Massachusetts Amherst, Massachusetts 01003 PREFACE This report represents the combined results of many studies on phosphorus removal in extended aeration systems conducted at the University of Massachusetts Wastewater Pilot Plant by Environmental Engineering Program graduate students. Robert M. Burke (12) conducted the first study with alum and concluded that there was insufficient alkalinity in Amherst wastewater to ensure pH values compatible with biological treatment. Alan J. Roy (13) examined the effect of alum addition on sludge accumulation and determined that a dosage of 200 mg/£ would triple the sludge accumulation rate. Raymond A. Noga (8) tried a lower alum dose (100 rng/n) but pH was still depressed and sludge production again tripled. Finally, a study was conducted inhouse by Mr. C. James Martel, Research Associate, and Robert E. Pariseau, Research Chemist, during which lime was added for pH control. Most of the data on alum addition presented in this report is the result of this latter study.
    [Show full text]
  • Wastewater Systems
    Wastewater Systems Wastewater Systems 4100 Idela Ave. McAllen, Tx. 78503 Phone: (956)681-1750 Fax: (956)681-1767 Web: https://mcallenpublicutility.com/departments/wastewater-systems/ Table of Contents Welcome ............................................................................................1 Biological Nutrient Removal (BNR) ....................................................2 Reclaimed Water Extended Aeration ............................................................................3 Reclaimed water, which can also be called reuse water or recycle water, is converting wastewater into water that can be reused for Wastewater Collection .......................................................................4 landscaping, industry, fire protection, construction (soil compaction and Reclaimed Water ..............................................................................5 dust control), etc., but where reclaimed water’s true benefit arises for a city is conserving water. With the Rio Grande Valley prone to droughts; McAllen Public Utility (MPU) has always been a leader in the conservation of water and is the first Valley city to create a residential reclaimed water irrigation program to conserve potable water. MPU is the first city south of San Antonio to provided reclaimed water to a residential subdivision to irrigate their lawns; furthermore, MPU is already saving over 1.0 billion gallons of water per year distributing reclaim water too Calpine energy. Calpine energy uses reclaimed water for their electrical plant in their cooling towers. There are two types of reclaimed water: Type I and Type II. Type I is superior than Type II, and Type I is used for the above mentioned. Reclaimed water is regulated by Texas Commission of Environmental Quality (TCEQ) and our WWTPs must meet strict regulations to produce this water. Many other cities use reclaimed water such as: San Antonio uses reclaimed water to augment stream flow in the San Antonio River along the famous River Walk.
    [Show full text]
  • More Than You Ever Wanted to Know About Your Aeration Septic System
    More than you wanted to know about your Oldham brand Aeration Sewage Treatment System! Oldham brand aeration sewage treatment systems have an initial break-in period of six-to-eight weeks, during which time bacteria establish themselves in the unit. The development of these biological colonies occur naturally with the addition of sanitary wastes, so we recommend you use all your plumbing facilities in a normal manner from initial start-up. You may notice a septic odor during this initial break in period, this should clear up within 2-3 weeks. You may also notice a tendency for the unit to foam from laundry wastes during this period. This is normal and it should cease by the sixth week. You can help by using only moderate amounts of low-sudsing biodegradable detergents. An Oldham brand aeration sewage treatment system, operating properly and well maintained will NOT smell bad. The smell should be similar to what it smells like after a farmer plows their field, a kind of musty-earthy smell. The color in the aeration chamber should be chocolate brown. If a system smells bad, it is probably not operating long enough (or not at all). See below for how long it should run. Sewage treatment is a multi-stage process to renovate wastewater before it reenters a body of water. The goal is to reduce or remove organic matter, solids, nutrients, disease-causing organisms and other pollutants from wastewater. Suggested Detergents, Bleaches & Toilet Paper for use in an Oldham Aeration Septic System Detergents (for non HE machines) Bleaches Cleaning products: Recommend using non- All HE detergents are acceptable (only use powdered) chlorine, non-ammonia, non-antibacterial, non- Should be concentrated, powdered, low- Biz toxic and bio-degradable.
    [Show full text]
  • Individual Home Wastewater Characterization and Treatment
    INDIVIDUAL HOME WASTEWATER CHARACTERIZATION AND TREATMENT Edwin R. Bennett and K. Daniel Linstedt Completion Report No. 66 INDIVIDUAL HDME WASTEWATER CHARACTERIZATION AND TREATMENT Completion Report OWRT Project No. A-021-COLO July 1975 by Edwin R. Bennett and K. Daniel Linstedt Department of Civil and Environmental Engineering University of Colorado Boulder, Colorado submitted to Office of Water Research and Technology U. S. Department of the Interior Washington, D. C. The work upon which this report is based was supported by funds provided by the U. S. Department of the Interior, Office of Water Research and Technology, as authorized by the Water Resources Research Act of 1964, and pursuant to Grant Agreement Nos. 14-31-0001-3806, 14-31-0001-4006, and 14-31-0001-5006. Colorado Water Resources Research Institute Colorado State University Fort Collins. Colorado 80523 Norman A. Evans, Director TABLE OF CONTENTS Page Chapter I. Introduction 1 Chapter II. Water Use in the Home 6 Comparison with Published Data ". 23 Discussion ...... .. 26 Chapter III. Wastewater Po11utiona1 Strength Characteristics 28 Work of Other Researchers. 37 Summary. ... 43 Chapter IV. Individual Home Treatment Systems 45 Septic Tanks . 45 Discussion 60 Aerobic Treatment Units 61 Evapo-Transpiration Systems 67 Water Saving Appliances and In-Home Reuse. 74 Cost Considerations.•.......• 78 Chapter V. Recycling Potential of Home Wastewater Streams. 81 Experimental Procedures and Results. 85 Phase 1. 86 Phase 2. 91 Results 98 Biological Oxidation . 98 Dual Media Filtration .101 Carbon Adsorption. .. .109 Work of Other Researchers .119 Discussion ... .126 Chapter VI. Summary .132 References . .134 LIST OF TABLES Page 1. Composition of Families in Homes Studied 6 2.
    [Show full text]
  • The Activated Sludge Process Part 1 Revised July 2014
    Wastewater Treatment Plant Operator Certification Training Module 15: The Activated Sludge Process Part 1 Revised July 2014 This course includes content developed by the Pennsylvania Department of Environmental Protection (Pa. DEP) in cooperation with the following contractors, subcontractors, or grantees: The Pennsylvania State Association of Township Supervisors (PSATS) Gannett Fleming, Inc. Dering Consulting Group Penn State Harrisburg Environmental Training Center MODULE 15: THE ACTIVATED SLUDGE PROCESS - PART 1 Topical Outline Unit 1 – General Description of the Activated Sludge Process I. Definitions A. Activated Sludge B. Activated Sludge Process II. The Activated Sludge Process Description A. Organisms B. Secondary Clarification C. Activated Sludge Process Control III. Activated Sludge Plants A. Types of Plants B. Factors that Upset Plant Operation IV. Unit Review V. References Unit 2 – Aeration I. Purpose of Aeration II. Aeration Methods A. Mechanical B. Diffused III. Aeration Systems A. Mechanical Aeration Systems B. Diffused Aeration Systems Bureau of Safe Drinking Water, Department of Environmental Protection Wastewater Treatment Plant Operator Training i MODULE 15: THE ACTIVATED SLUDGE PROCESS - PART 1 IV. Safety Procedures A. Aeration Tanks and Clarifiers B. Surface Aerators C. Air Filters D. Blowers E. Air Distribution System F. Air Headers and Diffusers V. Review VI. References Unit 3 – New Plant Start-Up Procedures I. Purpose of Plant and Equipment Review A. Document Familiarization B. Equipment Familiarization II. Equipment and Structures Check A. Flow Control Gates and Valves B. Piping and Channels C. Weirs D. Froth Control System E. Air System F. Secondary Clarifier III. Process Start-Up A. Process Units B. Process Control IV. Unit Review V.
    [Show full text]
  • Extended Aeration Treatment System
    Extended Aeration Treatment System – Low-loaded activated sludge technology – High oxygen transfer efficiency delivery system – Exceptional mixing energy from controlled aeration chain movement – Simple system construction – Low biosolids production Extended sludge age biological technology The Biolac® system is an innovative activated sludge process using extended retention of biological solids to create an extremely stable, easily operated system. The capabilities of this unique technology far exceed ordinary extended aeration treatment. The Biolac® process maximizes the stability of the operating environment and provides high-efficiency treatment. The design ensures the lowest-cost construction and guarantees operational simplicity. Over 800 Biolac® systems are installed throughout North America treating municipal wastewater and many types of industrial wastewater. The Biolac® system utilizes a long sludge age design. Sludge age, also known as SRT (Solids Retention Time) or MCRT (Mean Cell Residence Time), defines the operating characteristics of any aerobic biological treatment system. A longer sludge age dramatically lowers effluent BOD and ammonia levels, especially Conventional extended aeration, batch reactors and oxidation ditches Biolac System in colder climates. The Biolac® long sludge age process produces Treatment BOD levels of less than 10 mg/L and complete nitrification (less efciency (BOD and than 1 mg/L ammonia).Minor modifications to the system will NH3 removal) Process extend its capabilities to denitrification and biological phosphorus stability removal. While most extended aeration systems reach their maximum mixing capability at sludge ages of approximately 15-25 days, the Biolac® system efficiently and uniformly mixes the aeration volumes associated with a 30-70 day sludge age. Sludge production Operator The large quantity of biomass treats widely fluctuating loads with attention very few operational changes.
    [Show full text]
  • Membrane Bioreactor Vs. Extended Aeration Treatment Pilot Study – Effluent and Groundwater Quality
    Membrane Bioreactor vs. Extended Aeration Treatment Pilot Study – Effluent and Groundwater Quality Presenter Leslie Dumas September 15, 2009 Innovative Solutions for Water and the Environment Acknowledgements Thanks to: Colin Moy, REA., East Bay Municipal Utility District [EBMUD] – Project Manager Eileen Fanelli, P.G., East Bay Municipal Utility District/Presidio Trust – Project Manager David W. Smith, Ph.D., Merritt Smith Consulting – Principal Investigator Background • WateReuse Foundation Project WRF-04-016 • Project Title: Development of Regulatory Protocol for Incidental Environmental Reuse of Title 22 Recycled Water . Issued August 2005 to EBMUD with RMC Water & Environment . EBMUD’s ‘upcountry’ wastewater systems needs: • Upgrading systems to meet evolving regulatory requirements • Beneficial reuse of treated effluent • Use of small MBR treatment systems The Pardee Site Key Challenges to Recycling in California • Regulatory Compliance - Resolution #68-16 Antidegradation Policy • Cost-Benefit for Small Systems . Higher capital cost to implement MBR treatment . Little to no reduction in longer-term operating costs . Permitting costs increase overall capital costs Study Goals • Recognize baseline assumptions on meeting CCR Title 22 standards for unrestricted use • Provide a standardized process (Framework) for evaluating recycled water projects • Utilize established and industry-accepted tools and practices for assessment A Two-Part Study Approach was Used • Develop a Framework (standardized process) • Conduct a Pilot Test Pilot Study
    [Show full text]
  • Assessment of Extended Aeration Sludge Process in Jahra Wastewater Treatment Plant-Kuwait
    International Journal of Environmental Science and Development, Vol. 10, No. 2, February 2019 Assessment of Extended Aeration Sludge Process in Jahra Wastewater Treatment Plant-Kuwait Saud B. Al-Shammari and A. Shahalam from the biological process. The treated effluents of all three Abstract—This study evaluates and analyzes the performance plants are used for irrigation purposes. The aim of this study and the efficiency of extended aeration sludge process (EASP) is to evaluate the treatment efficiency and the effluent quality utilized in Jahra conventional wastewater treatment plant in of the extended aeration sludge system in Jahra wastewater Kuwait. The performance evaluation will help for the better treatment plant. understanding of design and operating difficulties of Jahra wastewater treatment plant. For this purpose, weekly samples from Jahra raw wastewater line, aerator effluent stream and clarifier effluent line were collected and analyzed for important II. BACKGROUND wastewater quality parameters. The performance evaluation was done based on removal efficiency of Biochemical Oxygen A. Extended Aeration Sludge Process Demand (BOD), Chemical Oxygen Demand (COD), Total The extended aeration sludge process (EASP), which is a Suspended Solids (TSS), Total Nitrogen (TN) and Total Phosphorus (TP). The results indicated that a significant modification of the conventional activated sludge process is reduction in TSS, BOD, COD was observed in EASP effluent. widely used to treat domestic wastewater. EASP is designed The results show that the average removal efficiencies of the to provide an aeration period much longer than the system for TSS, BOD, COD were 86%, 85% and 81%, conventional activated sludge process (generally 18-24 hours) respectively.
    [Show full text]
  • Innovative Approach on Aerobic Activated Sludge Process Towards More Sustainable Wastewater Treatment †
    Proceedings Innovative Approach on Aerobic Activated Sludge Process towards more Sustainable Wastewater Treatment † Georgios Samiotis *, Dimitrios Tzelios, Eleni Trikoilidou, Alexandros Koutelias and Elisavet Amanatidou Environmental Engineering and Pollution Control Department, Western Macedonia University of Applied Sciences, 50100 Kozani, Greece; [email protected] (D.T.); [email protected] (E.T.); [email protected] (A.K.); [email protected] (E.A.) * Correspondence: [email protected]; Tel.: +30‐24‐6106‐8012 † Presented at the 3rd EWaS International Conference on “Insights on the Water‐Energy‐Food Nexus”, Lefkada Island, Greece, 27–30 June 2018. Published: 28 August 2018 Abstract: This work presents an innovative approach on aerobic activated sludge (AS) wastewater treatment plants’ (WWTP) design and operation towards more efficient wastewater treatment, minimization of sludge accumulation and significant reduction of excess sludge, with relatively low specific energy consumption. This approach, which is called complete solids retention activated sludge (CRAS) process, was applied on a slaughterhouse’s WWTP and on a fruit processing industry’s WWTP, characterized by high organic and volumetric load respectively, as well as on a municipal WWTP located in Paralimni, Cyprus. The results showed without using sophisticated technologies and processes a more sustainable WWTP operation can be achieved. Keywords: industrial and municipal wastewater; efficient wastewater treatment; complete solids retention; waste sludge minimization; energy conservation 1. Introduction Activated sludge (AS) wastewater treatment plants (WWTPs) offer high treatment efficiency but with a significant cost that renders them, in many cases, far from sustainable technological applications. This cost can be translated to (a) operating cost (waste sludge management, energy consumption, equipment maintenance, operating staff cost), (b) environmental cost (impacts on air, soil, water, flora, fauna and human health) and (c) social issues.
    [Show full text]