Genomic Insights Into Date Palm Origins

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Insights Into Date Palm Origins G C A T T A C G G C A T genes Review Genomic Insights into Date Palm Origins Muriel Gros-Balthazard 1,* , Khaled Michel Hazzouri 2 and Jonathan Mark Flowers 1,3 1 Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188, Abu Dhabi, UAE; [email protected] 2 Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), United Arab Emirates University, P.O. Box 15551, Al Ain, UAE; [email protected] 3 Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, NY 10003, USA * Correspondence: [email protected] Received: 16 September 2018; Accepted: 3 October 2018; Published: 17 October 2018 Abstract: With the development of next-generation sequencing technology, the amount of date palm (Phoenix dactylifera L.) genomic data has grown rapidly and yielded new insights into this species and its origins. Here, we review advances in understanding of the evolutionary history of the date palm, with a particular emphasis on what has been learned from the analysis of genomic data. We first record current genomic resources available for date palm including genome assemblies and resequencing data. We discuss new insights into its domestication and diversification history based on these improved genomic resources. We further report recent discoveries such as the existence of wild ancestral populations in remote locations of Oman and high differentiation between African and Middle Eastern populations. While genomic data are consistent with the view that domestication took place in the Gulf region, they suggest that the process was more complex involving multiple gene pools and possibly a secondary domestication. Many questions remain unanswered, especially regarding the genetic architecture of domestication and diversification. We provide a road map to future studies that will further clarify the domestication history of this iconic crop. Keywords: Phoenix dactylifera; domestication; next-generation sequencing; population genetics Highlights • A large amount of genomic data has been generated for the date palm in the past few years. • This review records these data and re-evaluates questions about date palm domestication origins and diffusion in light of genomic data • Remaining questions are highlighted, and the future perspective of the field discussed. 1. Introduction Plant domestication accompanying the development of agriculture is a significant step in human history. The understanding of the origins of crops is an important area of research involving scientists from many disciplines such as archaeology, anthropology, and, more recently, genetics and genomics. The main questions relate to where and when the plant was domesticated and what progenitor populations were involved. The molecular and phenotypic changes associated with domestication are also of prime interest. With the advent of next-generation sequencing (NGS) technologies, new advances have been made at an unprecedented pace. The availability of whole genome sequence data has indeed led to answers to many questions related to crop evolution. Such answers include a refinement of geographic origins (e.g., in African rice [1]) and the identification of genes controlling agronomically important traits (e.g., in maize [2]). This progress contributes to the awareness of human Genes 2018, 9, 502; doi:10.3390/genes9100502 www.mdpi.com/journal/genes Genes 2018, 9, 502 2 of 14 Genes 2018, 9, x FOR PEER REVIEW 2 of 14 awarenesshistory and of provides human history clues to and breeders provides who clues are developingto breeders tomorrow’swho are developing crops in thetomorrow’s context of crops global in thechange context [3,4 ].of global change [3,4]. The datedate palmpalm is is an an iconic iconic crop crop of hotof hot and and arid ar regionsid regions of North of North Africa Africa and the and Middle the East,Middle Figure East,1. FigureIt is a member 1. It ofis genusa memberPhoenix ofwhich genus consists Phoenix of 14 which perennial consists and dioecious of 14 monocotyledonousperennial and dioecious species monocotyledonousin the Arecaceae family species [5]. in the Arecaceae family [5]. FigureFigure 1. DistributionDistribution of of the the date date palm palm and Phoenix speciesspecies in Europe, Africa and Western Asia [[5,6].5,6]. The namesakenamesake fruitfruit of of the the date date palm palm can can be eatenbe ea freshten fresh or dried or dried or transformed or transformed into a largeinto a variety large varietyof products of products such as such syrup as or syrup paste. or The paste. sweet The fruit sweet has fruit played has a played prominent a prominent role in nomadic role in nomadic societies societiesof desert of regions desert and regions is firmly and is rooted firmly in rooted Arabic in culture. Arabic Eachculture. year, Each more year, than more eight than million eighttons million are producedtons are produced worldwide worldwide and this and number this isnumber constantly is constantly growing growing owing to owing large scaleto large efforts scale to efforts increase to increasethe numbers the numbers of fruit-producing of fruit-producing trees [7]. Thetrees date [7]. palm The isdate also palm a key is speciesalso a ofkey oasian species agrosystems of oasian agrosystemsas virtually every as virtually part of every the plant part finds of the a particularplant finds use a particular in daily life use [5 ]:in thedaily stipe life (or [5]: trunk) the stipe is used (or trunk)for construction, is used for theconstruction, leaves for the basketry, leaves andfor basket morery, importantly, and more importantly, the date palm the provides date palm a favorable provides amicroclimate favorable microclimate for the culture for of the other culture crops of in other an otherwise crops in an very otherwise harsh environment very harsh [environment8]. In cultivation, [8]. Inthis cultivation, species is reproducedthis species throughis reproduced a mixed through clonal-sexual a mixed system clonal-sexual although system clonal although propagation clonal is preferredpropagation in most is preferred circumstances in most to maintaincircumstances fruit quality to maintain [9]. Approximately fruit quality 3000[9]. Approximately cultivars are believed 3,000 cultivarsto exist [10 are], howeverbelieved thisto exist number [10], is however extremely this difficult number to assess.is extremely Indeed, difficult cultivars to areassess. supposedly Indeed, cultivarsclones bearing are supposedly the same clones name, bearing but cases the of same homonymy name, but have cases been of reportedhomonymy (e.g., have in been Morocco reported [11]) (e.g.,and, conversely,in Morocco individuals[11]) and, conversely, bearing the individuals same name bearing without the being same clonesname without have been being identified clones have (e.g., beenin Egypt identified [12]), making (e.g., in itEgypt difficult [12]), to making count and it difficult inventory to datecount palm and cultivars.inventory date palm cultivars. The history of domestication and diversificat diversificationion of the date palm has remained a puzzling question despitedespite decadesdecades ofof research research from from different differen disciplines.t disciplines. The The identity identity of itsof wildits wild progenitor progenitor has haslong long been been unknown unknown and hasand hampered has hampered research research into its into origins its origins [13]. The [13]. first The archaeological first archaeological records recordsof exploitation of exploitation and consumption and consumption of dates areof fromdates theare 6thfrom millennium the 6th millennium BCE [8]. There BCE is [8]. evidence There ofis evidencecultivation of incultivation the Gulf regionin the Gulf since region the late since 4th/early the late 3rd 4th/early millennium 3rd mill BCEennium while BCE seeming while to seeming appear tolater appear in Africa, later although in Africa, this shouldalthough be confirmedthis should by be further confirmed studies by [8]. further Many developmentsstudies [8]. Many in the developmentsunderstanding in of the the understanding date palm domestication of the date history palm domestication have been made history in the have past been decade made based in the on pastgenetics decade and based later genomics on genetics as the an genomed later genomics sequence becameas the genome available sequence and resequencing became available studies haveand resequencing studies have been carried out. In this paper, we review the genomic data available for Genes 2018, 9, 502 3 of 14 been carried out. In this paper, we review the genomic data available for the date palm and highlight the recent progresses made from this data on the question of origins. Further, we report the still remaining questions and propose a guideline to elucidate them. 2. High-Throughput Sequencing of Date Palms Next-generation sequencing refers to the numerous high-throughput alternatives to Sanger sequencing—the favorite sequencing method used since 1977—that were developed within the last decade and remain under active development [14]. These methods, and so-called 3rd generation technologies [15], enable the generation of genome assemblies (i.e., the haploid genome sequence of an organism) through de novo sequencing. Further resequencing studies allow the characterization of variation (e.g., single nucleotide polymorphisms (SNPs)) among individuals, populations, and species on a genome-wide scale. Although whole-genome resequencing is
Recommended publications
  • Phoenix Sylvestris, Wild Date Palm1 Robert J
    FOR 246 Phoenix sylvestris, Wild Date Palm1 Robert J. Northrop, Michael G. Andreu, Melissa H. Friedman, Mary McKenzie, and Heather V. Quintana2 Family Description Arecaceae, palm family. This palm is native to India and southern portions of Pakistan. In both countries, it occurs in areas where there Genus is sparse vegetation mainly composed of scrub species and along flat lands where monsoons occur. Though slow Phoenix is the Latin term for the Greek word that means growing, it can reach heights of up to 50 feet and grows well “date palm.” in areas of the United States where temperatures do not fall below 15°F. Leaves are pinnately compound and blue-green, Species and they can grow to 10 feet in length. Leaflets can reach The species name sylvestris translates from the Latin term approximately 18 inches long and grow opposite to one for “of the forest.” another on the rachis in such a way that the entire leaf looks flat. The petiole, or stem that attaches the leaf to the trunk, is 3 feet long and armed with spines. Young trunks bear Common Names triangular shaped leaf scars (the place where leaves once Wild Date Palm, Toddy Palm, Sugar Date attached to the trunk) that become more diamond-shaped Palm, Silver Date Palm with age. On older trees, aerial roots tend to be present This palm produces edible fruits but it is generally called at the base of the trunk. Yellow inflorescences can reach “wild date palm” to distinguish it from the closely related lengths of 3 feet, are heavily branched, bear small white Phoenix dactylifera, which is known as “date palm” and is blossoms, and grow among the leaves.
    [Show full text]
  • Plant Common Name Scientific Name Description of Plant Picture of Plant
    Plant common name Description of Plant Picture of Plant Scientific name Strangler Fig The Strangler Fig begins life as a small vine-like plant Ficus thonningii that climbs the nearest large tree and then thickens, produces a branching set of buttressing aerial roots, and strangles its host tree. An easy way to tell the difference between Strangle Figs and other common figs is that the bottom half of the Strangler is gnarled and twisted where it used to be attached to its host, the upper half smooth. A common tree on kopjes and along rivers in Serengeti; two massive Fig trees near Serengeti; the "Tree Where Man was Born" in southern Loliondo, and the "Ancestor Tree" near Endulin, in Ngorongoro are significant for the local Maasai peoples. Wild Date Palm Palms are monocotyledons, the veins in their leaves Phoenix reclinata are parallel and unbranched, and are thus relatives of grasses, lilies, bananas and orchids. The wild Date Palm is the most common of the native palm trees, occurring along rivers and in swamps. The fruits are edible, though horrible tasting, while the thick, sugary sap is made into Palm wine. The tree offers a pleasant, softly rustling, fragrant-smelling shade; the sort of shade you will need to rest in if you try the wine. Candelabra The Candelabra tree is a common tree in the western Euphorbia and Northern parts of Serengeti. Like all Euphorbias, Euphorbia the Candelabra breaks easily and is full of white, candelabrum extremely toxic latex. One drop of this latex can blind or burn the skin.
    [Show full text]
  • PALM-IST: Pathway Assembly from Literature Mining
    www.nature.com/scientificreports OPEN PALM-IST: Pathway Assembly from Literature Mining - an Information Search Tool Received: 06 September 2014 Accepted: 18 February 2015 Sapan Mandloi & Saikat Chakrabarti Published: 19 May 2015 Manual curation of biomedical literature has become extremely tedious process due to its exponential growth in recent years. To extract meaningful information from such large and unstructured text, newer and more efficient mining tool is required. Here, we introduce PALM-IST, a computational platform that not only allows users to explore biomedical abstracts using keyword based text mining but also extracts biological entity (e.g., gene/protein, drug, disease, biological processes, cellular component, etc.) information from the extracted text and subsequently mines various databases to provide their comprehensive inter-relation (e.g., interaction, expression, etc.). PALM-IST constructs protein interaction network and pathway information data relevant to the text search using multiple data mining tools and assembles them to create a meta-interaction network. It also analyzes scientific collaboration by extraction and creation of “co-authorship network,” for a given search context. Hence, this useful combination of literature and data mining provided in PALM- IST can be used to extract novel protein-protein interaction (PPI), to generate meta-pathways and further to identify key crosstalk and bottleneck proteins. PALM-IST is available at www.hpppi.iicb. res.in/ctm. Biomedical research has shifted from studying individual gene and protein to complete biological sys- tem. In today’s age of “big data biology” embraced with overwhelming amount of publication records and of high-throughput data, automated and efficient text and data mining platforms are absolutely essential to access and present biological information into more computable and comprehensible form1–3.
    [Show full text]
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • Identification of Long-Lived Synaptic Proteins by Proteomic Analysis Of
    Identification of long-lived synaptic proteins by PNAS PLUS proteomic analysis of synaptosome protein turnover Seok Heoa,1, Graham H. Dieringa,1, Chan Hyun Nab,c,d,e,1, Raja Sekhar Nirujogib,c, Julia L. Bachmana, Akhilesh Pandeyb,c,f,g,h, and Richard L. Huganira,i,2 aSolomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205; bDepartment of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205; cMcKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; dDepartment of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; eInstitute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; fDepartment of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; gDepartment of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; hManipal Academy of Higher Education, Manipal 576104, Karnataka, India; and iKavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205 Contributed by Richard L. Huganir, February 28, 2018 (sent for review December 4, 2017; reviewed by Stephen J. Moss and Angus C. Nairn) Memory formation is believed to result from changes in synapse the eye and cartilage, respectively, last for decades. Components strength and structure. While memories may persist for the lifetime of the nuclear pore complex of nondividing cells and some his- of an organism, the proteins and lipids that make up synapses tones have also been shown to last for years (12–15). The ex- undergo constant turnover with lifetimes from minutes to days. The treme stability of some of these proteins is obviously critical for molecular basis for memory maintenance may rely on a subset of the structural integrity of relatively metabolically inactive regions long-lived proteins (LLPs).
    [Show full text]
  • A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
    MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion.
    [Show full text]
  • Arizona Landscape Palms
    Cooperative Extension ARIZONA LANDSCAPE PALMS ELIZABETH D AVISON Department of Plant Sciences JOHN BEGEMAN Pima County Cooperative Extension AZ1021 • 12/2000 Issued in furtherance of Cooperative Extension work acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, James A. Christenson, Director, Cooperative Extension, College of Agriculture and Life Sciences, The University of Arizona. The University of Arizona College of Agriculture and Life Sciences is an equal opportunity employer authorized to provide research, educational information and other services to individuals and institutions that function without regard to sex, race, religion, color, national origin, age, Vietnam Era Veteran's status, or disability. Contents Landscape Use ......................................... 3 Adaptation ................................................ 3 Planting Palms ......................................... 3 Care of Established Palms...................... 5 Diseases and Insect Pests ....................... 6 Palms for Arizona .................................... 6 Feather Palms ........................................... 8 Fan Palms................................................ 12 Palm-like Plants ..................................... 16 This information has been reviewed by university faculty. ag.arizona.edu/pubs/garden/az1121.pdf 2 The luxuriant tropical appearance and stately Adaptation silhouette of palms add much to the Arizona landscape. Palms generally can be grown below the 4000 ft level Few other plants are as striking in low and mid elevation in Arizona. However, microclimate may make the gardens. Although winter frosts and low humidity limit difference between success and failure in a given location. the choices somewhat, a good number of palms are Frost pockets, where nighttime cold air tends to collect, available, ranging from the dwarf Mediterranean Fan should be avoided, especially for the tender species. Palms palm to the massive Canary Island Date palm.
    [Show full text]
  • Landscaper's Guide Working with Palms In
    Landscaper’s Guide Landscapers & Working with Nurseries Palms in the Purchasing restricted Palms outside of the quarantine Coachella Valley area and transporting into the protected area is prohibited by law. If you are caught, expect the following actions against you— ♦ Civil Administrative ♦ Criminal ♦ Civil Action Penalties will be imposed on violators. Riverside County PROOF OF PURCHASE MANDATORY Agricultural Commissioner Headquarters & District Office Plant materials found in 4080 Lemon Street, Room 19, Basement P.O. Box 1089, Riverside, CA 95202-1089 violation of the Quarantine Office: (951) 955-3045 law shall be removed at the Facsimile: (951) 955-3012 owner’s expense. Civil fines Indio District Office and Jail time may apply to Office: (760) 863-8291 each violation. Facsimile: (760) 863-7702 California Date Commission P.O. Box 1736 Indio, Ca 92202 Office: (760) 347-4510 Facsimile: (760) 347-6374 Email: [email protected] Website: www.DatesAreGreat.com 04/08 Susceptible Palms Infectious to palm frond; discoloration of leaves on one side of a palm frond and branches. Date Palm Disease the Date Palm, Phoenix dactylifera The disease can be carried on: InteriorInterior QuarantineQuarantine Not Allowable for Transporting and ⇒ Seeds Planting into a Protected Area ⇒ Plants Adopted by the California Department ⇒ Saws Canary Island Date Palm, Phoenix canariensis of Food and Agriculture in 1980, this ⇒ Knives and other tools used quarantine was established to protect “This palm is a known carrier of fusarium wilt for trimming or pruning date fungus infectious to the Senegal Date Palm, P. the California Date industry from palms reclinata and Date Palm P. dactylifera” Fusarium oxysporum, a soil-borne These precautionary measures should be taken Clump Palm (Senegal Date Palm), Phoenix reclinata fungus spread with the Canary Island to prevent the disease from spreading when working on palm trees in the Coachella Valley.
    [Show full text]
  • Hybridization in the Genus Phoenix: a Review
    Emir. J. Food Agric. 2013. 25 (11): 831-842 doi: 10.9755/ejfa.v25i11.16660 http://www.ejfa.info/ REVIEW ARTICLE Hybridization in the genus Phoenix: A review Muriel Gros-Balthazard* University of Fribourg, Department of Biology, Biochemistry, Chemin du Musée 10, 1700 Fribourg, Switzerland Abstract The genus Phoenix is composed of 14 species naturally distributed in the Old World. This genus comprises the date palm, Phoenix dactylifera L., cultivated for its fruits, the dates, while other species are grown for food, ornament and religious purposes. Phoenix species were, for these reasons, spread out of their natural distribution area. It is therefore common to find species not naturally sympatric, growing together, in cultivation or in the wild. Phoenix species are interfertile and crossing distinct species leads to fertile hybrid offspring (interspecific hybridization). The introduction of a species in the wild generates gene flows leading to the creation of new hybrids and has conservation implications. In cultivation, such crossings may be spontaneous or are the result of artificial pollination, as several reasons impel doing so. Crossing gives rise to beautiful hybrids and is also useful for the conservation of old palm groves threatened by pests. Moreover, artificial pollination of date palms using another Phoenix species can be of interest given the metaxenic pollen effects. In addition, this process may have some potential benefits in date palm improvements, by the creation of hybrid cultivars. Thus, an increasing need of hybrid detection and characterization exists, particularly as morphology alone is not sufficient for this task. Besides new methods such as traditional and geometric morphometrics that may bring new clues, the advent of genetic and molecular markers helps to detect hybrids, especially based on the combination of nuclear and chloroplastic data.
    [Show full text]
  • Maquetación 1
    Rev. Acad. Canar. Cienc., Vol. XXVII, 357-410 (diciembre de 2015) The botany of the three voyages of Captain James Cook in Macaronesia: an introduction Francisco-Ortega 1,2 *, J., Santos-Guerra 3, A., Romeiras 4,5 , M. M. , Carine 6, M. A. , Sánchez-Pinto 7, L. & Duarte 4,8 *, M. C. 1 International Center for Tropical Botany, Latin American and Caribbean Center Department of Biological Sciences Florida International University, University Park, Miami, Florida, U.S.A. 2 Kushlan Tropical Science Institute, Fairchild Tropical Botanic Garden 10901 Old Cutler Road, Coral Gables, Florida , U.S.A. 3 Calle Guaidil 16, Urbanización Tamarco, Tegueste, Tenerife, Spain 4 Tropical Research Institute (IICT), Faculty of Sciences, University of Lisbon, Campo Grande, Portugal 5 Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences University of Lisbon, Campo Grande, Portugal 6 Plants Division, Department of Life Sciences, Natural History Museum Cromwell Road, London, United Kingdom 7 Museo de la Naturaleza y el Hombre, Calle Fuente Morales 2, Santa Cruz de Tenerife, Spain 8 Centre in Biodiversity and Genetic Resources (CIBIO/InBIO), University of Porto Campus Agrário de Vairão, Vairão, Portugal * Corresponding authors: [email protected]; [email protected] ABSTRACT The British naval captain James Cook (1728-1779) was one of the most important figures in the history of scientific exploration. During the 18 th century he was the only ex - plorer to call on the four Macaronesian archipelagos. His first two visits were part of voy - ages that circumnavigated the globe and included celebrated naturalists, notably Sir Joseph Banks (1743-1820) and Daniel Solander (1733-1782) (first voyage) and Johann Reinhold Forster (1729-1798) and his son George Forster (1754-1794) (second voyage).
    [Show full text]
  • Socio-Economics of Mangrove Ecosystem in South-Eastern Ayeyarwady Delta Area of Myanmar ©2019 Myint 227
    Journal of Aquaculture & Marine Biology Research Article Open Access Socio-economics of mangrove ecosystem in South- eastern Ayeyarwady Delta area of Myanmar Abstract Volume 8 Issue 6 - 2019 Coastal communities are dependent on the resources available in mangrove ecosystems. Kyi Kyi Myint The loss of these ecosystems would mean local, national and global welfare losses. Healthy Department of Botany, University of Magway, Myanmar mangrove ecosystems were related with integrated ecological and economical processes by local people. In the present study, uses of mangroves, products and the fishery status of Correspondence: Kyi Kyi Myint, Associate Professor, local areas have been studied. The mangrove forests from the study areas provide charcoal, Department of Botany, Magway University, Myanmar, firewood, food and some medicinal plants for local people. To assess the economic value of Email the regions, the local people from three villages who lived in and near the mangrove forest were questioned and documented. The households studied were categorized into three Received: November 14, 2019 | Published: December 03, groups such as poor, middle and rich class and then their monthly income and kinds of jobs 2019 studied. The products and works based on mangrove forest and water ways of study areas were the production of Nipa thatches, dried fishes, dried shrimp, nga-pi, pickled shrimp, shrimp sauce and charcoals. Keywords: Ayeyarwady delta, Nipa thatches, nga-pi, pickled shrimp Introduction the two conflicting demands on mangrove lands. Apportioning of the mangrove land resource to these two major uses under the concept Mangrove forests were crucial of significance for local people, of sustainable management of the ecosystem needs further research providing food, shelter and, medicinal and other uses.
    [Show full text]
  • Transcriptome Sequencing and De Novo Assembly in Arecanut, Areca
    Biotechnology Reports 17 (2018) 63–69 Contents lists available at ScienceDirect Biotechnology Reports journal homepage: www.elsevier.com/locate/btre Transcriptome sequencing and de novo assembly in arecanut, Areca catechu T L elucidates the secondary metabolite pathway genes ⁎ Ramaswamy Manimekalaia, , Smita Nairb, A. Naganeeswaranb, Anitha Karunb, Suresh Malhotrac, V. Hubbalid a Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, 641 007, Tamil Nadu, India b Central Plantation Crops Research institute, Indian Council of Agricultural Research (ICAR), Kudlu P.O., Kasaragod 671 124, Kerala, India c Indian Council of Agricultural Research (ICAR), KAB II, New Delhi, India d Directorate of Arecanut and Cocoa Development, Kera Bhavan, Kochi, India ARTICLE INFO ABSTRACT Keywords: Areca catechu L. belongs to the Arecaceae family which comprises many economically important palms. The De novo assembly palm is a source of alkaloids and carotenoids. The lack of ample genetic information in public databases has been Areca genome a constraint for the genetic improvement of arecanut. To gain molecular insight into the palm, high throughput Flavonoids RNA sequencing and de novo assembly of arecanut leaf transcriptome was undertaken in the present study. A Carotenoids total 56,321,907 paired end reads of 101 bp length consisting of 11.343 Gb nucleotides were generated. De novo assembly resulted in 48,783 good quality transcripts, of which 67% of transcripts could be annotated against NCBI non – redundant database. The Gene Ontology (GO) analysis with UniProt database identified 9222 bio- logical process, 11268 molecular function and 7574 cellular components GO terms. Large scale expression profiling through Fragments per Kilobase per Million mapped reads (FPKM) showed major genes involved in different metabolic pathways of the plant.
    [Show full text]