Covalent Catalysis by Enzymes Leonard B

Total Page:16

File Type:pdf, Size:1020Kb

Covalent Catalysis by Enzymes Leonard B Covalent Catalysis by Enzymes Leonard B. Spector Covalent Catalysis by Enzymes With 61 Figures Springer-Verlag New York Heidelberg Berlin Dr. Leonard B. Spector The Rockefeller University York Avenue New York, New York 10021, USA Library of Congress Cataloging in Publication Data Spector, Leonard B. Covalent catalysis by enzymes. Bibliography: p. Includes index. 1. Enzymes. I. Title. QP601.S5623 574.19'25 81-23251 AACR2 © 1982 by Springer-Verlag New York, Inc. Softcover reprint of the hardcover 1st edition 1982 All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A. The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accord­ ingly be used freely by anyone. 9 8 765 432 1 ISBN-13:978-1-4612-5665-6 e-ISBN-13:978-1-4612-5663-2 DOl: 10.1007/978-1-4612-5663-2 To F. Lipmann and H. Bunche Preface Some years ago one of my students and I reported that the acetate kinase reaction is mediated by a phosphorylated form of the enzyme [R. S. Anthony and L. B. Spector, lBe 245, 6739 (1970)]. The reversible reaction between ATP and acetate to give acetyl phosphate and ADP had hitherto been thought to proceed by direct transfer of a phosphoryl group from A TP to acetate in a single-displacement reaction. But now it became clear that acetate kinase was one of that substantial number of enzymes whose mech­ anism is that of the double displacement. For some reason, I began to wonder about the possibility that all enzymes, like acetate kinase, are double­ displacement enzymes, and do their work by covalent catalysis. For one thing, I could not think of a single instance of an enzyme for which single­ displacement catalysis had been proved, and inquiries on this point among knowledgeable friends elicited the same negative response. Moreover, it was long known that the two other kinds of chemical catalysis~homo­ geneous and heterogeneous~occur through the intermediary formation of a covalent bond between catalyst and reactant. I began to feel confident that chemical catalysis by enzymes must happen the same way. But how could ')ne be sure? There seemed to me to be only one way: to search the literature for authentic cases of covalent catalysis by enzymes and to see if their number and chemical diversity are sufficiently large to warrant my confidence. The results of that literature search form the substance of this book. In Chapter 1, I set out the main reasons for believing in covalent catalysis by all enzymes. The next six chapters give the evidence for this belief, with examples of individual enzymes which seem to me to be pertinent or inter­ esting or both, and which illustrate the diverse forms which covalent catalysis takes among enzymes. The treatment given each enzyme is short and terse. viii Preface Inevitably, there is speculation on controversial subjects; but speculation and controversy are, after all, inseparable from an advancing science, and are often an impulse to new advances. Chapter 8 sums it all up. The reader who is in a hurry can acquaint himself with the main arguments by simply reading Chapters 1 and 8. To Drs. O. W. Griffith and E. B. Keller I am grateful for their many helpful comments. New York City L. B. S. February 1982 Contents Chapter 1 The Thesis 1 Nonenzymic Chemical Catalysis: Its Resemblance to Enzymic Catalysis 2 Enzymic Catalysis 8 Steric Inversion and Covalent Catalysis 10 Why Covalent Catalysis Is Favored Over Single- Displacement Catalysis 11 Is Covalent Catalysis a Means of Stabilizing Very Reactive (Hypothetical) Intermediates? 15 Enzymes as Phase Transfer Catalysts and Energy Transducers 20 A Definition of Catalysis 21 Enzymes as Transferases 22 Chapter 2 Oxidoreductases 23 Flavoenzymes 23 NAD Enzymes 33 Copper Enzymes 39 Copper-Heme Enzymes 42 Heme Enzymes 43 Disulfide Enzymes 46 Summary 48 x Contents Chapter 3 Transferases 60 Methionine Synthase [EC 2.1.1.13] 61 N-Methylglutamate Synthase [EC 2.1.1.21] 62 Serine Hydroxymethyltransferase [EC 2.1.2.1] 63 Transcarboxylase [EC 2.1.3.1] 65 Glycine Amidinotransferase [EC 2.1.4.1 ] 68 Transketolase [EC 2.2.1.1] 69 Transaldolase [EC 2.2.1.2] 72 Arylamine Acetyltransferase [EC 2.3.1.5] 74 Acetyl-CoA Acetyltransferase [EC 2.3.1.9] 75 [Acyl-Carrier-Protein] Malonyltransferase fEC 2.3.1.39] 76 Transglutaminase [EC 2.3.2.13] 77 Sucrose Phosphorylase [EC 2.4.1.7] 78 Adenine Phosphoribosyltransferase [EC 2.4.2.7] 80 Thiaminase [EC 2.5.1.2] 83 Aspartate Aminotransferase [EC 2.6.1.1] 84 Hexokinase [EC 2.7.1.1 ] 87 Pyruvate Kinase [EC 2.7.1.40] 91 Acetate Kinase [EC 2.7.2.1] 92 Phosphoglycerate Kinase [EC 2.7.2.3] 96 Nucleosidediphosphate Kinase [EC 2.7.4.6] 98 Phosphoglucomutase [EC 2.7.5.1] 99 Galactose-I-Phosphate Uridylyltransferase [EC 2.7.7.10] 100 Pyruvate, Orthophosphate Dikinase [EC 2.7.9.1] 102 Rhodanese [EC 2.8.1.1] 103 3-Ketoacid CoA-Transferase [EC 2.8.3.5] 104 Chapter 4 Hydrolases 114 Carboxylesterase [EC 3.1.1.1] 115 Alkaline Phosphatase [EC 3.1.3.1] 117 Acid Phosphatase [EC 3.1.3.2] 120 Glucose-6-Phosphatase [EC 3.1.3.9] 121 5'-Nucleotide Phosphodiesterase [EC 3.1.4.1] 122 Arylsulfatase [EC 3.1.6.1] 123 /J-Galactosidase [EC 3.2.1.23] 124 NADase [EC 3.2.2.5] 127 Carboxypeptidase A [EC 3.4.17.1] 128 Chymotrypsin [EC 3.4.21.1J 131 Papain [EC 3.4.22.2] 135 Pepsin [EC 3.4.23.1 J 137 Contents Xl Glutaminase [EC 3.5.l.2J 142 Inorganic Pyrophosphatase [EC 3.6.1.1 J 143 Adenosine Triphosphatase [EC 3.6.1.3J 144 Chapter 5 Lyases 155 Pyruvate Decarboxylase [EC 4.1.1.1 J 155 Acetoacetate Decarboxylase [EC 4.1.1.4J 157 Glutamate Decarboxylase [EC 4.1.1.15J 158 Histidine Decarboxylase [EC 4.1.1.22J 160 Phosphoenolpyruvate Carboxykinase [EC 4.1.1.32J 162 Fructose Diphosphate Aldolase [EC 4.1.2.13] 163 3-Hydroxy-3-Methylglutaryl-Coenzyme A Synthase [EC 4.l.3.5J 166 Citrate Lyase [EC 4.l.3.6J 167 ATP Citrate Lyase [EC 4.1.3.8J 168 Tryptophanase [EC 4.l.99.1J 170 Carbonic Anhydrase [EC 4.2.1.1 J 172 Dehydroquinase [EC 4.2.1.10J 174 Enolase [EC 4.2.1.11 J 175 Propanediol Dehydrase [EC 4.2.1.28] 177 Phenylalanine Ammonia-Lyase [EC 4.3.l.5J 179 Chapter 6 Isomerases 186 Alanine Racemase [EC 5.1.1.1 J 186 Proline Racemase [EC 5.1.1.4] 188 Phenylalanine Racemase [EC 5.1.1.11 J 190 Mandelate Racemase [EC 5.l.2.2] 192 Uridine Diphosphoglucose Epimerase [EC 5.1.3.2] 194 Triosephosphate Isomerase [EC 5.3.1.1] 195 Steroid Ll-Isomerase [Ee 5.3.3.1] 196 Phosphoglycerate Mutase [EC 5.4.2.1] 197 DNA Topoisomerase [EC 5.4.2.-] 198 D-a-Lysine Mutase [EC 5.4.3.4] 199 Chapter 7 Ligases 202 Tryptophanyl-tRNA Synthetase [EC 6.1.1.2] 203 Phenylalanyl-tRNA Synthetase [EC 6.1.1.20] 205 Carnosine Synthetase [EC 6.3.2.11] 207 Acetyl-CoA Synthetase [EC 6.2.1.1] 208 Xll Contents Succinyl-CoA Synthetase [EC 6.2.1.5] 209 Long-Chain Fatty Acyl-CoA Synthetase [EC 6.2.1.3] 212 Pyruvate Carboxylate [EC 6.4.1.1] 215 DNA Ligase (NAD) [EC 6.5.1.2] 217 Chapter 8 Summary 223 Key to Numbering and Classification of Enzymes 227 Index 237 .
Recommended publications
  • Dr. Martin St. Maurice's Publications
    Dr. Martin St. Maurice’s Publications 2013 Lin, Y., and St. Maurice, M. 2013. The structure of allophanate hydrolase from Granulibacter bethesdensis provides insights into substrate specificity in the amidase signature family. Biochemistry. 52: 690-700. 2012 Waldrop, G.L., Holden, H.M., and St. Maurice, M. 2012. The enzymes of biotin dependent CO2 metabolism: What structures reveal about their reaction mechanisms. Protein Science 21(11):1597-1619. Adina-Zada, A., Sereeruk, C., Jitrapakdee, S., Zeczycki, T.N., St. Maurice, M., Cleland, W.W., Wallace, J.C., and Attwood, P.V. 2012. Roles of Arg427 and Arg472 in the binding and allosteric effects of acetyl CoA in pyruvate carboxylase. Biochemistry 51(41): 1597-1619. 2011 Adina-Zada, A., Hazra, R., Sereeruk, C., Jitrapakdee, S., Zeczycki, T.N., St. Maurice, M., Cleland, W.W., Wallace, J.C., and Attwood, P.V. 2011. Probing the allosteric activation of pyruvate carboxylase using 2′,3′-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate as a fluorescent mimic of the allosteric activator acetyl CoA. Arch. Biochem. Biophys. 117-126. Zeczycki, T.N., Menefee, A.L., Jitrapakdee, S., Wallace, J.C., Attwood, P.V., St. Maurice, M. and Cleland, W.W. 2011. Activation and inhibition of pyruvate carboxylase from Rhizobium etli. Biochemistry. 9694-9707. Lietzan, A.D., Menefee, A.L., Zeczycki, T.N., Kumar, S., Attwood, P.V., Wallace, J.C., Cleland, W.W. and St. Maurice, M. 2011. Interaction between the biotin carrier domain and the biotin carboxylase domain in the structure of Rhizobium etli pyruvate carboxylase. Biochemistry. 9708-9723. Zeczycki, T.N., Menefee, A.L., Adina-Zada, A., Surinya, K.H., Wallace, J.C., Attwood, P.V., St.
    [Show full text]
  • Table 2: Clostridium Difficile 630 Proteins Differentially Expressed in Response to Heat Stress
    Table 2: Clostridium difficile 630 proteins differentially expressed in response to heat stress. Locus Gene name Description Total Heat Control : peptides stress : Control Control fold fold change change Transport/binding proteins and lipoproteins phosphoenolpyruvate-protein CD2755 ptsI 15 1.644 1.142 phosphotransferase CD2756 ptsH PTS system, phosphocarrier protein 4 0.658 1.198 CD3043 putative exported protein 6 0.229 0.689 ABC transporter, substrate-binding CD0873 15 0.521 1.071 lipoprotein Membrane bioenergetics (electron transport chain and ATP synthase) CD0825 rbr rubrerythrin 4 1.781 1.035 putative anaerobic nitric oxide reductase CD1157 norV 4 1.848 1.016 flavorubredoxin CD1474 putative ruberythrin 14 1.540 1.085 putative iron-only hydrogenase,electron- CD3405 hymA 4 1.681 1.077 transferring subunit putative iron-only hydrogenase,electron- CD3406 hymB 4 1.870 0.923 transferring subunit putative iron-only hydrogenase, catalytic CD3407 hymC 10 1.891 1.051 subunit Mobility and chemotaxis CD0239 fliC flagellin subunit 16 0.559 1.084 Protein secretion CD0143 secA1 preprotein translocase SecA subunit 4 0.690 1.008 Specific pathways putative oxidoreductase, thiamine diP-binding CD0116 13 1.628 1.121 subunit putative oxidoreductase, acetyl-CoA synthase CD0174 4 2.687 1.055 subunit CD0790 putative NUDIX-family hydrolase 8 1.491 1.32 inosine-uridine preferring nucleoside CD1682 iunH 4 0.518 0.984 hydrolase CD2181 putative aromatic compounds hydrolase 7 0372 0.909 CD2342 sucD succinate-semialdehyde dehydrogenase 6 0.651 0.906 Metabolism
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000725805Cyc: Streptomyces xanthophaeus Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • K. ENZYME KINETICS and CATALYSIS Basic Kinetics
    K. ENZYME KINETICS AND CATALYSIS Biochemical reactions are too slow to support life at room temperature. Whether it is the synthesis of proteins, the metabolism of sugars or the oxidation of fatty acids, all of it proceeds on a time scale unsuitable for life. Moreover, many reactions that are undesirable proceed on a comparable timescale, making it even more difficult to coordinate the necessary chemistry to support life. How useful would it be to have polynucleotides degrading faster than they are synthesized? The basic reactions associated with the synthesis and degradation of essential polymers, and with the metabolism of nutrients all require massive rate accelerations to be of any service to the cell. By specifically accelerating those reactions of interest without accidentally accelerating undesired reactions, as would happen by simply heating the pot, biochemical catalysts shape chemistry in such a way as to permit every biological process required for survival and propagation. Basic Kinetics Reaction Rates The rate of a reaction is defined as the instantaneous rate of change in the concentration of a starting material (“substrate” in biochemical nomenclature – abbreviated “S”) or a product with respect to time. By definition, reaction rates are always positive, which leads to the following definition of reaction rate, abbreviated v (for velocity) in most of the biochemical literature. S → P (eq. K.1) d[P] d[S] v = = − (eq. K.2) dt dt Because these are instantaneous rates of change, they can be obtained as tangents to curves that plot [P] or [S] vs. time. Typically, one takes the initial rate (Figure K.1) – as close to the point of € initiation of the reaction as possible, since the reaction components are well-defined at that moment.
    [Show full text]
  • Bacterial Selenoproteins: a Role in Pathogenesis and Targets for Antimicrobial Development
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 Bacterial Selenoproteins: A Role In Pathogenesis And Targets For Antimicrobial Development Sarah Rosario University of Central Florida Part of the Medical Sciences Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Rosario, Sarah, "Bacterial Selenoproteins: A Role In Pathogenesis And Targets For Antimicrobial Development" (2009). Electronic Theses and Dissertations, 2004-2019. 3822. https://stars.library.ucf.edu/etd/3822 BACTERIAL SELENOPROTEINS: A ROLE IN PATHOGENESIS AND TARGETS FOR ANTIMICROBIAL DEVELOPMENT. by SARAH E. ROSARIO B.S. Florida State University, 2000 M.P.H. University of South Florida, 2002 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: William T. Self © 2009 Sarah E. Rosario ii ABSTRACT Selenoproteins are unique proteins in which selenocysteine is inserted into the polypeptide chain by highly specialized translational machinery. They exist within all three kingdoms of life. The functions of these proteins in biology are still being defined. In particular, the importance of selenoproteins in pathogenic microorganisms has received little attention. We first established that a nosocomial pathogen, Clostridium difficile, utilizes a selenoenzyme dependent pathway for energy metabolism.
    [Show full text]
  • Designed Mono- and Di-Covalent Inhibitors Trap Modeled Functional Motions for Trypanosoma Cruzi Proline Racemase in Crystallography
    RESEARCH ARTICLE Designed mono- and di-covalent inhibitors trap modeled functional motions for Trypanosoma cruzi proline racemase in crystallography 1¤a 2¤b 2 Patricia de Aguiar Amaral , Delphine Autheman , Guilherme Dias de MeloID , 1 1 2¤c 2¤d Nicolas Gouault , Jean-FrancËois Cupif , Sophie GoyardID , Patricia Dutra , 2 2 3 4 4 Nicolas Coatnoan , Alain Cosson , Damien Monet , Frederick Saul , Ahmed HaouzID , 1 3 2¤e a1111111111 Philippe Uriac *, Arnaud Blondel *, Paola MinoprioID * a1111111111 a1111111111 1 Universite de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France, 2 Institut Pasteur, Laboratoire des Processus Infectieux à TrypanosomatideÂs, a1111111111 DeÂpartement Infection et EpideÂmiologie, Paris, France, 3 Institut Pasteur, Unite de Bioinformatique a1111111111 Structurale, DeÂpartement de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France, 4 Institut Pasteur, Plateforme de Cristallographie, DeÂpartement de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France ¤a Current address: LaPlaM/PPGCA, Universidade do Extremo Sul Catarinense, CriciuÂmaÐSC, Brazil ¤b Current address: Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Wellcome Trust OPEN ACCESS Genome Campus, Cambridge, United Kingdom Citation: Amaral PdA, Autheman D, de Melo GD, ¤c Current address: Institut Pasteur, Centre d'Innovation et Recherche Technologique, Paris, France Gouault N, Cupif J-F, Goyard S, et al. (2018) ¤d Current address: LaboratoÂrio de BioquõÂmica de ProtozoaÂrios e Imunofisiologia do ExercõÂcio, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio Designed mono- and di-covalent inhibitors trap de Janeiro, Brazil modeled functional motions for Trypanosoma cruzi ¤e Current address: Trypanosomatids Infectious Processes Laboratory, Scientific Platform Pasteur-USP, proline racemase in crystallography.
    [Show full text]
  • Discovery of a Novel Amino Acid Racemase Through Exploration of Natural Variation in Arabidopsis Thaliana
    Discovery of a novel amino acid racemase through exploration of natural variation in Arabidopsis thaliana Renee C. Straucha,b, Elisabeth Svedinc, Brian Dilkesc, Clint Chappled, and Xu Lia,b,1 aPlants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081; bDepartment of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695; cDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; and dDepartment of Biochemistry, Purdue University, West Lafayette, IN 47907 Edited by Justin O. Borevitz, Australian National University, Canberra, ACT, Australia, and accepted by the Editorial Board August 1, 2015 (received for review February 16, 2015) Plants produce diverse low-molecular-weight compounds via spe- contribution to the variation in at least three-fourths of detected cialized metabolism. Discovery of the pathways underlying produc- mass peaks (8). tion of these metabolites is an important challenge for harnessing Here we describe an integrated transdisciplinary platform, the huge chemical diversity and catalytic potential in the plant king- combining metabolomics, genetics, and genomics, to exploit the dom for human uses, but this effort is often encumbered by the biochemical and genetic diversity of natural accessions of the necessity to initially identify compounds of interest or purify a cata- model plant A. thaliana to uncover associations between genes lyst involved in their synthesis. As an alternative approach, we have and metabolites. Using this platform, we linked a differentially performed untargeted metabolite profiling and genome-wide asso- accumulating metabolite, identified through chemical analysis as ciation analysis on 440 natural accessions of Arabidopsis thaliana. N-malonyl-D-allo-isoleucine (NMD-Ile), to a previously unchar- This approach allowed us to establish genetic linkages between acterized gene identified as an amino acid racemase through metabolites and genes.
    [Show full text]
  • NIH Public Access Author Manuscript Curr Opin Chem Biol
    NIH Public Access Author Manuscript Curr Opin Chem Biol. Author manuscript; available in PMC 2010 October 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Curr Opin Chem Biol. 2009 October ; 13(4): 468±476. doi:10.1016/j.cbpa.2009.06.023. Pyridoxal 5'-Phosphate: Electrophilic Catalyst Extraordinaire John P. Richard†,*, Tina L. Amyes†, Juan Crugeiras#, and Ana Rios# †Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA. #Departamento de Química Física, Facultad de Química, Universidad de Santiago, 15782 Santiago de Compostela, Spain. Abstract Studies of nonenzymatic electrophilic catalysis of carbon deprotonation of glycine show that pyridoxal 5'-phosphate (PLP) strongly enhances the carbon acidity of α-amino acids, but that this is not the overriding mechanistic imperative for cofactor catalysis. Although the fully protonated PLP-glycine iminium ion adduct exhibits an extraordinary low α-imino carbon acidity (pKa = 6), the more weakly acidic zwitterionic iminium ion adduct (pKa = 17) is selected for use in enzymatic reactions. The similar α-imino carbon acidities of the iminium ion adducts of glycine with 5'- deoxypyridoxal and with phenylglyoxylate shows that the cofactor pyridine nitrogen plays a relatively minor role in carbanion stabilization. The 5'-phosphodianion group of PLP likely plays an important role in catalysis by providing up to 12 kcal/mol of binding energy that may be utilized for transition state stabilization. Introduction Scientists prize the rush of adrenalin that comes with making an original discovery, or with bringing order to seemingly disconnected experimental observations. Snell and Braunstein must have received tremendous satisfaction from their independent discovery, more than sixty years ago, that heating pyridoxal 5'-phosphate (PLP) with an amino acid yields the products of transamination of the amino acid [1].
    [Show full text]
  • SI Appendix Index 1
    SI Appendix Index Calculating chemical attributes using EC-BLAST ................................................................................ 2 Chemical attributes in isomerase reactions ............................................................................................ 3 Bond changes …..................................................................................................................................... 3 Reaction centres …................................................................................................................................. 5 Substrates and products …..................................................................................................................... 6 Comparative analysis …........................................................................................................................ 7 Racemases and epimerases (EC 5.1) ….................................................................................................. 7 Intramolecular oxidoreductases (EC 5.3) …........................................................................................... 8 Intramolecular transferases (EC 5.4) ….................................................................................................. 9 Supporting references …....................................................................................................................... 10 Fig. S1. Overview …............................................................................................................................
    [Show full text]
  • Supporting Information for Proteomics DOI 10.1002/Pmic.200600987
    Supporting Information for Proteomics DOI 10.1002/pmic.200600987 Lars Whlbrand, Birte Kallerhoff, Daniela Lange, Peter Hufnagel, Jrgen Thiermann, Richard Reinhardt and Ralf Rabus Functional proteomic view of metabolic regulation in “Aromatoleum aromaticum” strain EbN1 ª 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com Content 1. General proteome features Page Experimental outline of the presented study with “Aromatoleum aromaticum” 1-2 strain EbN1 (Fig. 1.1.) Spot pattern comparison of differently visualized 2DE gels (Fig. 1.2.) 1-3 Principle component analysis of the proteins for each analyzed 2D DIGE gel 1-4 of all main physiological groups (Fig. 1.3.) Fold changes in protein abundance of all identified proteins (Fig 1-5 Number of regulated as well as not regulated protein spots on the 2DE gels 1-6 and their share of total protein (Table 1.1.) Mean average ratio of not regulated protein spots of the three main 1-7 physiological groups (Table 1.2.) Mean average ratios of not regulated proteins, identified in all three main 1-8 physiological groups (Table 1.3.) Proteins identified in this study (Table 1.4.) 1-9 2. Cellular functions* 2.1. DNA replication, recombination and repair 2-2 2.1.1. DNA replication 2-2 2.2. Transcription 2-4 2.2.1. DNA-dependent RNA polymerase and sigma factors 2-5 2.2.2. Factors affecting RNA polymerase 2-5 2.2.3. Classes of transcriptional regulators 2-5 2.3. Translation 2-6 2.3.1. tRNA synthesis 2-6 2.3.2. tRNA/rRNA modification 2-7 2.3.3.
    [Show full text]
  • Proline Racemases: Insights Into Trypanosoma Cruzi Peptides Containing D-Proline
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 104(Suppl. I): 295-300, 2009 295 Proline racemases: insights into Trypanosoma cruzi peptides containing D-proline Nicolas Coatnoan, Armand Berneman, Nathalie Chamond, Paola Minoprio/+ Institut Pasteur, Laboratoire d’Immunobiologie des Infections à Trypanosoma, Département d’Immunologie, 25 Rue du Dr. Roux, 75724 Paris, Cedex 15, France Trypanosoma cruzi proline racemases (TcPRAC) are homodimeric enzymes that interconvert the L and D- enantiomers of proline. At least two paralogous copies of proline racemase (PR) genes are present per parasite haploid genome and they are differentially expressed during T. cruzi development. Non-infective epimastigote forms that overexpress PR genes differentiate more readily into metacyclic infective forms that are more invasive to host cells, indicating that PR participates in mechanisms of virulence acquisition. Using a combination of biochemi- cal and enzymatic methods, we show here that, in addition to free D-amino acids, non-infective epimastigote and infective metacyclic parasite extracts possess peptides composed notably of D-proline. The relative contribution of TcPRAC to D-proline availability and its further assembly into peptides was estimated through the use of wild-type parasites and parasites over-expressing TcPRAC genes. Our data suggest that D-proline-bearing peptides, similarly to the mucopeptide layer of bacterial cell walls, may be of benefit to T. cruzi by providing resistance against host proteolytic mechanisms. Key words: proline racemase - TcPRAC - D-proline The role of D-amino acids (D-AA) in physiopatho- D-AAs to provide an envelope composed of peptidogly- logical processes has occupied the attention of several cans, teichoic acid, polysaccharides and proteins (Mar- groups for many years.
    [Show full text]
  • Oup Proeng Gzy011 135..145 ++
    Protein Engineering, Design & Selection, 2018, vol. 31 no. 4, pp. 135–145 doi: 10.1093/protein/gzy011 Advance Access Publication Date: 30 May 2018 Original Article Original Article A platform for chemical modification of mandelate racemase: characterization of the C92S/C264S and γ-thialysine 166 variants Downloaded from https://academic.oup.com/peds/article/31/4/135/5025590 by guest on 30 September 2021 Mitesh Nagar1, Himank Kumar1, and Stephen L. Bearne1,2,* 1Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 4R2, and 2Department of Chemistry, Dalhousie University, Halifax, NS, Canada B3H 4R2 *To whom correspondence should be addressed. E-mail: [email protected] Edited by Miroslaw Cygler Received 7 February 2018; Revised 28 April 2018; Editorial Decision 30 April 2018; Accepted 3 May 2018 Abstract Mandelate racemase (MR) serves as a paradigm for our understanding of enzyme-catalyzed deprotona- tion of a carbon acid substrate. To facilitate structure–function studies on MR using non-natural amino acid substitutions, we engineered the Cys92Ser/Cys264Ser variant (dmMR) as a platform for introdu- cingCysresiduesatspecific locations for subsequent covalent modification. While the highly reactive thiol of Cys furnishes a site for chemical modification, site-specificity requires that other Cys residues be non-reactive or replaced by a non-reactive amino acid, especially if chemical modification is con- ducted under denaturing conditions. The catalytic efficiency of dmMR is reduced only ~2-fold relative to wild-type MR, making dmMR a viable platform for the site-specificintroductionofCys.Asan example, the inactive Lys166Cys variant of dmMR was treated with ethylenimine under denaturing con- ditions to replace the Brønsted acid-base catalyst Lys 166 with the non-natural amino acid γ-thialysine.
    [Show full text]