Assay of the Prostate Cancer Biomarker A-Methylacyl Coenzyme a Racemase (AMACR)

Total Page:16

File Type:pdf, Size:1020Kb

Assay of the Prostate Cancer Biomarker A-Methylacyl Coenzyme a Racemase (AMACR) Assay of the Prostate Cancer Biomarker a-Methylacyl Coenzyme A Racemase (AMACR) by Dahmane Ouazia Submitted in partial fulfillment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia June 2008 © Copyright by Dahmane Ouazia, 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-43994-4 Our file Notre reference ISBN: 978-0-494-43994-4 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author's permission. In compliance with the Canadian Conformement a la loi canadienne Privacy Act some supporting sur la protection de la vie privee, forms may have been removed quelques formulaires secondaires from this thesis. ont ete enleves de cette these. While these forms may be included Bien que ces formulaires in the document page count, aient inclus dans la pagination, their removal does not represent il n'y aura aucun contenu manquant. any loss of content from the thesis. Canada DALHOUSIE UNIVERSITY To comply with the Canadian Privacy Act the National Library of Canada has requested that the following pages be removed from this copy of the thesis: Preliminary Pages Examiners Signature Page (pii) Dalhousie Library Copyright Agreement (piii) Appendices Copyright Releases (if applicable) Dedication Page This thesis is dedicated to my brother Dr. Boualem Ouazia to whom I owe the privilege of being a Canadian citizen. Table of Contents List of Tables viii List of Figures ix List of Schemes xi Abstract xii List of Abbreviations and Symbols Used xiii Acknowledgments xv Chapter 1 Introduction 1 1.1 Overview 1 1.2AMACR 1 1.3 AMACR Catalysis 4 1.4 Role of AMACR in Metabolism 14 1.5 AMACR and Prostate Cancer 15 1.6 Current AMACR Assays 17 1.7 Direct Racemase Assays 21 Chapter 2 Materials and Methods 22 2.1 General 22 2.2 Resolution of (jR)-Ibuprofen 22 2.3 Ibuprofenoyl-CoA 23 2.4 Ibuprofenoyl-CoA Quantification 24 2.5 His6-tagged Rat AMACR Expression and Purification 25 2.6 Glutathione-S-transferase (GST)-tagged Rat AMACR Expression and Purification 26 v 2.7 His6-tagged TBmcr Expression and Purification 27 2.8 Enzyme Assay 28 Chapter 3 Results 30 3.1 Expression and Purification of Recombinant AMACR 30 3.1.1 His6-rat AMACR 30 3.1.2 GST-rat AMACR 30 3.1.3 His6-TBmcr 32 3.2 Characterization of Ibuprofenoyl-CoA 34 3.2.1 Ibuprofenoyl-CoA Quantification 34 3.2.2 UV Spectra 36 3.2.3 CD Spectra 39 3.3 Calculation of Velocities from CD Data 43 3.4 Assay Development 44 3.4.1 Monitoring the TBmcr-catalyzed Reaction in Both Directions 44 3.4.2 Effect of Octyl-p-D-glucopyranoside 46 3.4.3 Effect of Enzyme Concentration 46 3.4.4 Dependence of the Initial Velocity on Substrate Concentration 50 Chapter 4 Discussion 55 4.1 Enzyme Expression and Purification 55 4.2 Quantification of the Ibuprofenoyl-CoA Substrates 58 4.3 Circular Dichroism of the Ibuprofenoyl-CoA Substrates 60 4.4 AMACR Assay 60 VI Chapter 5 Future Work Chapter 6 Conclusion Appendix Bibliography vn List of Tables Table 3.1: Kinetic parameters of the TBmcr-catalyzed epimerization of ibuprofenoyl-CoA in both directions using His6-TBmcr and tag-free TBmcr 53 vin List of Figures Figure 1.1: Amino acid sequence alignments of the regions containing the catalytic residues in TBmcr and, rat and human AMACR 6 Figure 1.2: Overall view of the X-ray crystal structure of the unliganded form of TBmcr 12 Figure 1.3: View of the TBmcr active site from the X-ray crystal structure of the TBmcr-(25, 2i?)-ibuprofenoyl-CoA complex 13 Figure 3.1: SDS (10 %)-PAGE gel of the metal ion affinity chromatography purification fractions of His6-rat AMACR in BL21 (DE3) cells 31 Figure 3.2: SDS (10 %)-PAGE gel of affinity chromatography purification fractions of GST-rat AMACR in BL21 (DE3) cells 33 Figure 3.3: SDS (12 %)-PAGE gel of purified TBmcr 35 Figure 3.4: Linearity between the peak area and (5)-ibuprofen concentration shown as an HPLC chromatogram (A) and as a standard curve (B) 37 Figure 3.5: HPLC chromatograms showing the products of alkaline hydrolysis of (25)-ibuprofenoyl-CoA 38 Figure 3.6: UV spectra of (25)- and (2i?)-ibuprofenoyl-CoA between 220 nm and 320 nm 40 Figure 3.7: CD spectra of (25)- (•), (2R)- (•), and (2S, 2#)-ibuprofenoyl-CoA (A) between 220 nm and 320 nm 41 Figure 3.8: Progress curve of the His6-TBmcr-catalyzed reaction using (25)- and (2i?)-ibuprofenoyl-CoA 45 Figure 3.9: Effect of octyl-P-D-glucopyranoside on the TBmcr-catalyzed reaction using (2i?)-ibuprofenoyl-CoA as the substrate 47 Figure 3.10 Effect of high octyl-P-D-glucopyranoside concentrations on the TBmcr-catalyzed reaction using (2i?)-ibuprofenoyl-CoA as the substrate 48 Figure 3.11: The effect of enzyme concentration on the tag-free TBmcr-catalyzed reaction at high and low concentrations of (2i?)-ibuprofenoyl-CoA 49 Figure 3.12: Representative Michaelis-Menten plots for Hisg-TBmcr 51 IX Figure 3.13: Representative Michaelis-Menten plots for tag-free TBmcr 52 Figure 4.1: Hydrophobicity profile of the TBmcr dimer 63 Figure 4.2: Upwardly-curving dependence of initial velocity on enzyme concentration 66 x List of Schemes Scheme 1.1: Typical substrates of AMACR 2 Scheme 1.2: Metabolism of branched-chain fatty acids 3 Scheme 1.3: Mechanism of the AMACR-catalyzed reaction 5 Scheme 1.4: The role of AMACR in the synthesis of the bile acid glycocholic acid 7 Scheme 1.5: Mechanisms of 1,1-proton transfer in a racemization reaction: (A) one- base mechanism and (B) two-base mechanism 9 Scheme 1.6: (2R)- and (25)-Ibuprofenoyl-CoA derivitization for HPLC-based assay 19 Scheme 1.7: (2R)- and (25)-Methylmyristoyl-CoA derivitization for GLC-based assay 20 Scheme 5.1: Potential reversible AMACR inhibitors 72 Scheme 5.2: Competitive inhibitors of AMACR 74 Scheme 5.3 Potential irreversible AMACR inhibitors 75 XI Abstract a-Methylacyl-CoA racemase (AMACR) catalyzes the epimerization of the (2i?)- and (25)-methyl branched coenzyme A thioesters. AMACR is over-expressed in prostate carcinoma cells and not in benign and normal prostate cells and is a recognized biomarker for prostate cancer and a target for the development of therapeutic agents directed against the disease. A continuous circular dichroism-based assay has been developed using (2R)- or (2S)-ibuprofenoyl-CoA as substrates. The open reading frame encoding AMACR from Mycobacterium tuberculosis (TBmcr) was sub-cloned into a pET15b vector, overexpressed, and purified using metal ion affinity chromatography. The assay showed that TBmcr catalyzes the complete epimerization of (25)-and (2R)- ibuprofenoyl-CoA. The kinetic parameters for both directions of the AMACR-catalyzed reaction were obtained using both the (His)6-tagged and untagged forms of TBmcr. Both enzyme forms exhibited a greater affinity (l/Km) for (2i?)-ibuprofenoyl-CoA than the (2S)-thioster, but a greater turnover number (^at)iWith (25)-ibuprofenoyl-CoA. Overall, both enzymes exhibited a similar catalytic efficiency {kcJK^) with both substrates. The presence of the His6-tag leads to a 22% and-47% decrease in catalytic efficiency of TBmcr with the (25)- and (2i?)-thioesters, respectively. This assay offers a novel, economical, and efficient alternative method to the existing radioactivity-based assay in assessing AMACR activity and for studying the inhibitory activity of small molecules targeting AMACR. xn List of Abbreviations and Symbols Used AMACR alpha-methylacyl coenzyme A racemase (EC 5.1.99.4) BPH benign prostatic hypertrophy BuOH butanol CD circular dichroism cmc critical micelle concentration CoA coenzyme A DAG diacylglycerol DKG diacylglycerol kinase (EC 2.7.1.107) GLC gas liquid chromatography GST glutathione-S-transferase HEPES 4-(2-hydroxyethyl)piperazine-l-ethanesulfonic acid His6 hexahistidine HPLC high performance liquid chromatography IHC immunohistochemistry IPTG isopropyl-(3-D-thiogalactopyranoside MBP maltose-binding protein MeCN acetonitrile mp melting point OG octyl-P-D-glucopyranoside ORD optical rotatory dispersion ORF open reading frame PBS phosphate buffered saline xm PCR polymerase chain reaction PSA prostate-specific antigen R/ retention factor RT reverse transcriptase SDS-PAGE sodium dodecyl sulfate-polyacrylarriide gel electrophoresis SPE solid phase extraction TBmcr AMACR from Mycobacterium tuberculosis THCA-CoA trihydroxycoprostanoyl-CoA THF tetrahydrofuran TLC thin-layer chromatography tr retention time xiv Acknowledgments First, I would like to thank my supervisor, Dr. Stephen Bearne, for his guidance and supervision, for his extremely helpful editing, and for occasionally ridiculing my "extreme leftism".
Recommended publications
  • Elevated Hydrogen Peroxide and Decreased Catalase and Glutathione
    Sullivan-Gunn and Lewandowski BMC Geriatrics 2013, 13:104 http://www.biomedcentral.com/1471-2318/13/104 RESEARCH ARTICLE Open Access Elevated hydrogen peroxide and decreased catalase and glutathione peroxidase protection are associated with aging sarcopenia Melanie J Sullivan-Gunn1 and Paul A Lewandowski2* Abstract Background: Sarcopenia is the progressive loss of skeletal muscle that contributes to the decline in physical function during aging. A higher level of oxidative stress has been implicated in aging sarcopenia. The current study aims to determine if the higher level of oxidative stress is a result of increased superoxide (O2‾ ) production by the NADPH oxidase (NOX) enzyme or decrease in endogenous antioxidant enzyme protection. Methods: Female Balb/c mice were assigned to 4 age groups; 6, 12, 18 and 24 months. Body weight and animal survival rates were recorded over the course of the study. Skeletal muscle tissues were collected and used to measure NOX subunit mRNA, O2‾ levels and antioxidant enzymes. Results: Key subunit components of NOX expression were elevated in skeletal muscle at 18 months, when sarcopenia was first evident. Increased superoxide dismutase 1 (SOD1) activity suggests an increase in O2‾ dismutation and this was further supported by elevated levels of hydrogen peroxide (H2O2) and decline in catalase and glutathione peroxidase (GPx) antioxidant protection in skeletal muscle at this time. NOX expression was also higher in skeletal muscle at 24 months, however this was coupled with elevated levels of O2‾ and a decline in SOD1 activity, compared to 6 and 12 months but was not associated with further loss of muscle mass.
    [Show full text]
  • Dr. Martin St. Maurice's Publications
    Dr. Martin St. Maurice’s Publications 2013 Lin, Y., and St. Maurice, M. 2013. The structure of allophanate hydrolase from Granulibacter bethesdensis provides insights into substrate specificity in the amidase signature family. Biochemistry. 52: 690-700. 2012 Waldrop, G.L., Holden, H.M., and St. Maurice, M. 2012. The enzymes of biotin dependent CO2 metabolism: What structures reveal about their reaction mechanisms. Protein Science 21(11):1597-1619. Adina-Zada, A., Sereeruk, C., Jitrapakdee, S., Zeczycki, T.N., St. Maurice, M., Cleland, W.W., Wallace, J.C., and Attwood, P.V. 2012. Roles of Arg427 and Arg472 in the binding and allosteric effects of acetyl CoA in pyruvate carboxylase. Biochemistry 51(41): 1597-1619. 2011 Adina-Zada, A., Hazra, R., Sereeruk, C., Jitrapakdee, S., Zeczycki, T.N., St. Maurice, M., Cleland, W.W., Wallace, J.C., and Attwood, P.V. 2011. Probing the allosteric activation of pyruvate carboxylase using 2′,3′-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate as a fluorescent mimic of the allosteric activator acetyl CoA. Arch. Biochem. Biophys. 117-126. Zeczycki, T.N., Menefee, A.L., Jitrapakdee, S., Wallace, J.C., Attwood, P.V., St. Maurice, M. and Cleland, W.W. 2011. Activation and inhibition of pyruvate carboxylase from Rhizobium etli. Biochemistry. 9694-9707. Lietzan, A.D., Menefee, A.L., Zeczycki, T.N., Kumar, S., Attwood, P.V., Wallace, J.C., Cleland, W.W. and St. Maurice, M. 2011. Interaction between the biotin carrier domain and the biotin carboxylase domain in the structure of Rhizobium etli pyruvate carboxylase. Biochemistry. 9708-9723. Zeczycki, T.N., Menefee, A.L., Adina-Zada, A., Surinya, K.H., Wallace, J.C., Attwood, P.V., St.
    [Show full text]
  • Catalase and Oxidase Test
    CATALASE TEST Catalase is the enzyme that breaks hydrogen peroxide (H 2O2) into H 2O and O 2. Hydrogen peroxide is often used as a topical disinfectant in wounds, and the bubbling that is seen is due to the evolution of O 2 gas. H 2O2 is a potent oxidizing agent that can wreak havoc in a cell; because of this, any cell that uses O 2 or can live in the presence of O 2 must have a way to get rid of the peroxide. One of those ways is to make catalase. PROCEDURE a. Place a small amount of growth from your culture onto a clean microscope slide. If using colonies from a blood agar plate, be very careful not to scrape up any of the blood agar— blood cells are catalase positive and any contaminating agar could give a false positive. b. Add a few drops of H 2O2 onto the smear. If needed, mix with a toothpick. DO NOT use a metal loop or needle with H 2O2; it will give a false positive and degrade the metal. c. A positive result is the rapid evolution of O 2 as evidenced by bubbling. d. A negative result is no bubbles or only a few scattered bubbles. e. Dispose of your slide in the biohazard glass disposal container. Dispose of any toothpicks in the Pipet Keeper. OXIDASE TEST Basically, this is a test to see if an organism is an aerobe. It is a check for the presence of the electron transport chain that is the final phase of aerobic respiration.
    [Show full text]
  • Myeloperoxidase Mediates Cell Adhesion Via the Αmβ2 Integrin (Mac-1, Cd11b/CD18)
    Journal of Cell Science 110, 1133-1139 (1997) 1133 Printed in Great Britain © The Company of Biologists Limited 1997 JCS4390 Myeloperoxidase mediates cell adhesion via the αMβ2 integrin (Mac-1, CD11b/CD18) Mats W. Johansson1,*, Manuel Patarroyo2, Fredrik Öberg3, Agneta Siegbahn4 and Kenneth Nilsson3 1Department of Physiological Botany, University of Uppsala, Villavägen 6, S-75236 Uppsala, Sweden 2Microbiology and Tumour Biology Centre, Karolinska Institute, PO Box 280, S-17177 Stockholm, Sweden 3Department of Pathology, University of Uppsala, University Hospital, S-75185 Uppsala, Sweden 4Department of Clinical Chemistry, University of Uppsala, University Hospital, S-75185 Uppsala, Sweden *Author for correspondence (e-mail: [email protected]) SUMMARY Myeloperoxidase is a leukocyte component able to to αM (CD11b) or to β2 (CD18) integrin subunits, but not generate potent microbicidal substances. A homologous by antibodies to αL (CD11a), αX (CD11c), or to other invertebrate blood cell protein, peroxinectin, is not only integrins. Native myeloperoxidase mediated dose- a peroxidase but also a cell adhesion ligand. We demon- dependent cell adhesion down to relatively low concen- strate in this study that human myeloperoxidase also trations, and denaturation abolished the adhesion mediates cell adhesion. Both the human myeloid cell line activity. It is evident that myeloperoxidase supports cell HL-60, when differentiated by treatment with 12-O- adhesion, a function which may be of considerable tetradecanoyl-phorbol-13-acetate (TPA) or retinoic acid, importance for leukocyte migration and infiltration in and human blood leukocytes, adhered to myeloperoxi- inflammatory reactions, that αMβ2 integrin (Mac-1 or dase; however, undifferentiated HL-60 cells showed only CD11b/CD18) mediates this adhesion, and that the αMβ2 minimal adhesion.
    [Show full text]
  • Transcriptomic Characterization of Bradyrhizobium Diazoefficiens
    International Journal of Molecular Sciences Article Transcriptomic Characterization of Bradyrhizobium diazoefficiens Bacteroids Reveals a Post-Symbiotic, Hemibiotrophic-Like Lifestyle of the Bacteria within Senescing Soybean Nodules Sooyoung Franck 1, Kent N. Strodtman 1 , Jing Qiu 2 and David W. Emerich 1,* 1 Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA; [email protected] (S.F.); [email protected] (K.N.S.) 2 Applied Economics and Statistics, University of Delaware, Newark, DE 19716, USA; [email protected] * Correspondence: [email protected]; Tel: +1-573-882-4252 Received: 8 October 2018; Accepted: 28 November 2018; Published: 7 December 2018 Abstract: The transcriptional activity of Bradyrhizobium diazoefficens isolated from soybean nodules was monitored over the period from symbiosis to late plant nodule senescence. The bacteria retained a near constant level of RNA throughout this period, and the variation in genes demonstrating increased, decreased, and/or patterned transcriptional activity indicates that the bacteria are responding to the changing environment within the nodule as the plant cells progress from an organized cellular structure to an unorganized state of internal decay. The transcriptional variation and persistence of the bacteria suggest that the bacteria are adapting to their environment and acting similar to hemibiotrophs, which survive both as saprophytes on live plant tissues and then as necrophytes on decaying plant tissues. The host plant restrictions of symbiosis make B. diazoefficiens a highly specialized, restricted hemibiotroph. Keywords: bradyrhizobium diazoefficiens; soybean; Glycine max; nitrogen fixation; senescence; transcriptomics; hemibiotroph 1. Introduction Soybean nodules are symbiotic organs that are formed on roots by the complex interaction between soybean plants and rhizobia, nitrogen-fixing bacteria, under nitrogen-limiting conditions.
    [Show full text]
  • Francisella Tularensis 6/06 Tularemia Is a Commonly Acquired Laboratory Colony Morphology Infection; All Work on Suspect F
    Francisella tularensis 6/06 Tularemia is a commonly acquired laboratory Colony Morphology infection; all work on suspect F. tularensis cultures .Aerobic, fastidious, requires cysteine for growth should be performed at minimum under BSL2 .Grows poorly on Blood Agar (BA) conditions with BSL3 practices. .Chocolate Agar (CA): tiny, grey-white, opaque A colonies, 1-2 mm ≥48hr B .Cysteine Heart Agar (CHA): greenish-blue colonies, 2-4 mm ≥48h .Colonies are butyrous and smooth Gram Stain .Tiny, 0.2–0.7 μm pleomorphic, poorly stained gram-negative coccobacilli .Mostly single cells Growth on BA (A) 48 h, (B) 72 h Biochemical/Test Reactions .Oxidase: Negative A B .Catalase: Weak positive .Urease: Negative Additional Information .Can be misidentified as: Haemophilus influenzae, Actinobacillus spp. by automated ID systems .Infective Dose: 10 colony forming units Biosafety Level 3 agent (once Francisella tularensis is . Growth on CA (A) 48 h, (B) 72 h suspected, work should only be done in a certified Class II Biosafety Cabinet) .Transmission: Inhalation, insect bite, contact with tissues or bodily fluids of infected animals .Contagious: No Acceptable Specimen Types .Tissue biopsy .Whole blood: 5-10 ml blood in EDTA, and/or Inoculated blood culture bottle Swab of lesion in transport media . Gram stain Sentinel Laboratory Rule-Out of Francisella tularensis Oxidase Little to no growth on BA >48 h Small, grey-white opaque colonies on CA after ≥48 h at 35/37ºC Positive Weak Negative Positive Catalase Tiny, pleomorphic, faintly stained, gram-negative coccobacilli (red, round, and random) Perform all additional work in a certified Class II Positive Biosafety Cabinet Weak Negative Positive *Oxidase: Negative Urease *Catalase: Weak positive *Urease: Negative *Oxidase, Catalase, and Urease: Appearances of test results are not agent-specific.
    [Show full text]
  • Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity
    International Journal of Molecular Sciences Review Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity Yannick Das, Daniëlle Swinkels and Myriam Baes * Lab of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; [email protected] (Y.D.); [email protected] (D.S.) * Correspondence: [email protected] Abstract: Peroxisomes are multifunctional organelles, well known for their role in cellular lipid homeostasis. Their importance is highlighted by the life-threatening diseases caused by peroxisomal dysfunction. Importantly, most patients suffering from peroxisomal biogenesis disorders, even those with a milder disease course, present with a number of ocular symptoms, including retinopathy. Patients with a selective defect in either peroxisomal α- or β-oxidation or ether lipid synthesis also suffer from vision problems. In this review, we thoroughly discuss the ophthalmological pathology in peroxisomal disorder patients and, where possible, the corresponding animal models, with a special emphasis on the retina. In addition, we attempt to link the observed retinal phenotype to the underlying biochemical alterations. It appears that the retinal pathology is highly variable and the lack of histopathological descriptions in patients hampers the translation of the findings in the mouse models. Furthermore, it becomes clear that there are still large gaps in the current knowledge on the contribution of the different metabolic disturbances to the retinopathy, but branched chain fatty acid accumulation and impaired retinal PUFA homeostasis are likely important factors. Citation: Das, Y.; Swinkels, D.; Baes, Keywords: peroxisome; Zellweger; metabolism; fatty acid; retina M. Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity.
    [Show full text]
  • Colletotrichum Graminicola</Em>
    University of Kentucky UKnowledge Plant Pathology Faculty Publications Plant Pathology 3-8-2016 A Colletotrichum graminicola Mutant Deficient in the Establishment of Biotrophy Reveals Early Transcriptional Events in the Maize Anthracnose Disease Interaction Maria F. Torres University of Kentucky, [email protected] Noushin Ghaffari Texas A&M University Ester A. S. Buiate University of Kentucky, [email protected] Neil Moore University of Kentucky, [email protected] Scott chS wartz Texas A&M University FSeoe nelloxtw pa thige fors aaddndition addal aitutionhorsal works at: https://uknowledge.uky.edu/plantpath_facpub Part of the Bioinformatics Commons, Genomics Commons, Integrative Biology Commons, and Right click to open a feedback form in a new tab to let us know how this document benefits oy u. the Plant Pathology Commons Repository Citation Torres, Maria F.; Ghaffari, Noushin; Buiate, Ester A. S.; Moore, Neil; Schwartz, Scott; Johnson, Charles D.; and Vaillancourt, Lisa J., "A Colletotrichum graminicola Mutant Deficient in the Establishment of Biotrophy Reveals Early Transcriptional Events in the Maize Anthracnose Disease Interaction" (2016). Plant Pathology Faculty Publications. 53. https://uknowledge.uky.edu/plantpath_facpub/53 This Article is brought to you for free and open access by the Plant Pathology at UKnowledge. It has been accepted for inclusion in Plant Pathology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Maria F. Torres, Noushin Ghaffari, Ester A. S. Buiate, Neil Moore, Scott chS wartz, Charles D. Johnson, and Lisa J. Vaillancourt A Colletotrichum graminicola Mutant Deficient in the Establishment of Biotrophy Reveals Early Transcriptional Events in the Maize Anthracnose Disease Interaction Notes/Citation Information Published in BMC Genomics, v.17, 202, p.
    [Show full text]
  • Kinetic Approaches to Measuring Peroxiredoxin Reactivity
    Mol. Cells 2016; 39(1): 26-30 http://dx.doi.org/10.14348/molcells.2016.2325 Molecules and Cells http://molcells.org Established in 1990 Kinetic Approaches to Measuring Peroxiredoxin Reactivity Christine C. Winterbourn*, and Alexander V. Peskin Peroxiredoxins are ubiquitous thiol proteins that catalyse demonstrated surprisingly low reactivity with thiol reagents such the breakdown of peroxides and regulate redox activity in as iodoacetamide and other oxidants such as chloramines the cell. Kinetic analysis of their reactions is required in (Peskin et al., 2007) and it is clear that the low pKa of the active order to identify substrate preferences, to understand how site thiol is insufficient to confer the high peroxide reactivity. In molecular structure affects activity and to establish their fact, typical low molecular weight and protein thiolates react -1 -1 physiological functions. Various approaches can be taken, with H2O2 with a rate constant of 20 M s whereas values of including the measurement of rates of individual steps in Prxs are 105-106 fold higher (Winterbourn and Hampton, 2008). the reaction pathway by stopped flow or competitive kinet- An elegant series of structural and mutational studies (Hall et al., ics, classical enzymatic analysis and measurement of pe- 2010; Nakamura et al., 2010; Nagy et al., 2011) have shown roxidase activity. Each methodology has its strengths and that to get sufficient rate enhancement, it is necessary to acti- they can often give complementary information. However, vate the peroxide. As discussed in detail elsewhere (Hall et al., it is important to understand the experimental conditions 2010; 2011), this involves formation of a transition state in of the assay so as to interpret correctly what parameter is which hydrogen bonding of the peroxide to conserved Arg and being measured.
    [Show full text]
  • Understanding the Structure and Function of Catalases: Clues from Molecular Evolution and in Vitro Mutagenesis
    PERGAMON Progress in Biophysics & Molecular Biology 72 (1999) 19±66 Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis Marcel Za mocky *, Franz Koller Institut fuÈr Biochemie and Molekulare Zellbiologie and Ludwig Boltzmann Forschungsstelle fuÈr Biochemie, Vienna Biocenter, Dr. Bohr-Gasse 9, A-1030 Wien, Austria Abstract This review gives an overview about the structural organisation of dierent evolutionary lines of all enzymes capable of ecient dismutation of hydrogen peroxide. Major potential applications in biotechnology and clinical medicine justify further investigations. According to structural and functional similarities catalases can be divided in three subgroups. Typical catalases are homotetrameric haem proteins. The three-dimensional structure of six representatives has been resolved to atomic resolution. The central core of each subunit reveals a chracteristic ``catalase fold'', extremely well conserved among this group. In the native tetramer structure pairs of subunits tightly interact via exchange of their N- terminal arms. This pseudo-knot structures implies a highly ordered assembly pathway. A minor subgroup (``large catalases'') possesses an extra ¯avodoxin-like C-terminal domain. A r25AÊ long channel leads from the enzyme surface to the deeply buried active site. It enables rapid and selective diusion of the substrates to the active center. In several catalases NADPH is tightly bound close to the surface. This cofactor may prevent and reverse the formation of compound II, an inactive reaction intermediate. Bifunctional catalase-peroxidases are haem proteins which probably arose via gene duplication of an ancestral peroxidase gene. No detailed structural information is currently available. Even less is know about manganese catalases.
    [Show full text]
  • University of London Thesis
    REFERENCE ONLY UNIVERSITY OF LONDON THESIS Degree Year^^0^ Name of Author C O P Y R IG H T This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below. COPYRIGHT DECLARATION I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author. LOANS Theses may not be lent to individuals, but the Senate House Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: Inter-Library Loans, Senate House Library, Senate House, Malet Street, London WC1E 7HU. REPRODUCTION University of London theses may not be reproduced without explicit written permission from the Senate House Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines. A. Before 1962. Permission granted only upon the prior written consent of the author. (The Senate House Library will provide addresses where possible). B. 1962- 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration. C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration. D. 1989 onwards. Most theses may be copied.
    [Show full text]
  • 257 Absolute Configuration 39, 75 – of L-(+)-Alanine 83
    257 Index a L-aminoacylase 246 absolute configuration 39, 75 amount of substance 12 –ofL-(+)-alanine 83 asymmetric atom 39 – by anomalous dispersion effect in X-ray asymmetric disequilibrating transformation crystallography 78 151 – by chemical correlation 79 asymmetric induction 143 – correlation strategies 80 – of second kind 151 – by direct methods 78 asymmetric synthesis 139 – extended sense of 77 asymmetric transformation –ofD-glyceraldehyde 39 – of second kind 151 –ofD-(+)-glyceraldehyde 77 asymmetric transformation of the second kind – by indirect methods 79 173 –ofD-(–)-lactic acid 81 atropisomer 44, 73 – methods of determination 78 atropisomerism 24, 71 – of natural glucose 78, 82 autocatalysis – by predictive calculation of chiroptical data – a special case of organocatalysis 234 79 autocatalytic effect –of(R,R)-(+)-tartaric acid 78, 82 – of a zinc complex 238 achiral bidentate reagent Avogadro constant 12 – purification of enantiomers with 149 axial chirality 39, 44 achiral stationary phase 95 achirality, achiral 24, 29 b aci form 113 Baeyer–Villiger oxidation acylase I 161 – enanatiotope selective 253 AD-mix- 229 – enzymatic 253 AD-mix- 229 – microbial 166 alcohol dehydrogenases – regio- and enanatiomer selective 253 – Prelog’s rule 252 baker’s yeast aldol reactions – regio-, enantiotope and diastereotope – catalyzed with chiral ionic liquid 238 selective reduction with 186 – catalytic, double enantiotope selective 238 bidentate achiral reagent 90 – completely syn diastereoselective 238 Bijvoet, J. M. 78 – stereoselctive 209 BINAL-H 212 allene 44 BINAP amide-imido acid tautomerism 112 – ruthenium complex of 214 amino acids biocatalysis 244 enantiopure, D-andL- 250 – advantages of 245 D-amino acid oxidase 100 – disadvantages of 245 Stereochemistry and Stereoselective Synthesis: An Introduction, First Edition.
    [Show full text]