Photobiological Production of Hydrogen (Fact Sheet)

Total Page:16

File Type:pdf, Size:1020Kb

Photobiological Production of Hydrogen (Fact Sheet) Photobiological Production of Hydrogen A researcher works on a novel way to use green algae to produce hydrogen directly from water and sunlight. PIX14581 Highlights What do these things have in common: a few minutes’ lag before algae can Certain algae and cyanobacteria start making sugar from photosynthetic energy; narrowing passageways photoproduce hydrogen for short within an enzyme; and a Mexican restaurant in Denver? times as a way to get rid of excess energy before starting up the The answer is that they all are related in some way to efforts by National Renewable photosynthetic carbon fixation Energy Laboratory (NREL) scientists to develop technology for photobiological produc- process. tion of hydrogen —allowing the direct capture of renewable energy as an ideal, nonpol- luting, non-greenhouse-gas-producing transportation fuel. In one of nature’s quirks, NREL researchers have successfully certain algae and cyanobacteria photoproduce hydrogen for short times as a way to get developed a bacterial system for rid of excess energy. NREL researchers are seeking to turn that quirk into technology synthesis of a key enzyme— for directly converting solar energy to transportation fuel—by overcoming the oxygen- hydrogenase—that is responsible sensitivity trigger that shuts off the hydrogen production process in green algae, by doing for photosynthetic hydrogen the same for cyanobacteria, and by directing green algae toward the process by depriving evolution in green algae. them of the nutrition needed for normal photosynthesis. They are now focusing on enzyme Hydrogen use in fuel cells produces only water vapor and electricity at the point of use. engineering to block the access of Also, hydrogen can be stored to match energy production to energy demand. These make oxygen, which can stop hydrogen the use of hydrogen highly attractive as an energy carrier in addition to, or instead of, production, to the catalytic site of electricity. As an energy carrier rather than a basic energy source, however, hydrogen is the hydrogenase. only as “good” as the energy used to make it. Nearly all current U.S. and most of the Photobiological production of world’s hydrogen production involves steam reformation of natural gas. This, of course, hydrogen has potential to be one uses an increasingly scarce fossil fuel that can be used directly for electrical production of the most cost effective ways to to meet peak demand and also has home heating as a high-priority use. Hydrogen could produce hydrogen from renewable also be made by reforming gasified biomass or using renewably generated energy to energy. power water electrolysis. But in the long run, the highest efficiencies should be achieved with technologies such as photoelectrochemistry or photobiochemistry, which can produce hydrogen directly from solar energy. National Renewable Energy Laboratory Innovation for Our Energy Future Hydrogen is essentially an minutes in the carbon-fixing reaction energy carrier rather than a before light activates the enzymes for primary fuel. Although the carbon fixation. Electrons produced by most abundant element, the water splitting would harm or destroy it cannot be mined. It rarely the organism if the excess energy were not exists in elemental form, somehow dissipated. The algae evolved an instead being bound up in alternative second reaction that combines water or other compounds. the protons and electrons to form hydro- It does, however, some- gen molecules, thus getting rid of the times exist in nature, most excess energy. It is this temporary alterna- notably within certain tive process—which normally only lasts algae and photosynthetic for a few minutes—that we would like to bacteria that produce it as tap. Once enough oxygen builds up from a way to dissipate excess the water-splitting reaction, the algae are energy. If we can effectively forced to shut off hydrogen production manipulate those microor- and go to carbon fixation to the starch that Visualization of the oxygen-diffusion channels (red ganism processes, we can capture solar provides their food source. and yellow ribbons) in the hydrogenase enzyme energy directly in a form that is an ideal structure. The oxygen-sensitive FeS catalytic centers Thus, algal hydrogen production is natu- transportation fuel. NREL scientists are are indicated in green, yellow and red, and the rally inhibited by the presence of oxygen. backbone of the protein is shown in gray. researching these hydrogen production Overcoming that inhibition is a major focus processes to find ways to keep them turned of photobiological hydrogen production on instead of being only temporary, as they research. The algal hydrogen-production are naturally. Two main current research process is driven by enzymes known as paths involve taking advantage of the [Fe-Fe] hydrogenase, because of the hydrogen-production process in green presence of a unique 2Fe2S (iron and algae by either overcoming oxygen inhibi- sulfur) metallo-cluster in the catalytic tion of the process or by using nutrient center of the core of the proteins. deprivation to manipulate the algae into Researchers have found that the shut-off using the process. A third research avenue of hydrogen production is due to inhibi- seeks to overcome oxygen inhibition in a tion of the enzyme by oxygen. The inhibi- cyanobacterium. tion depends on oxygen physically Overcoming Oxygen Inhibition diffusing into the enzyme’s catalytic center in Green Algae and irreversibly binding to it, thus halting further catalytic activity. NREL scientists Algal photosynthesis and hydrogen and research partners have built computer production are sister processes. Both start models of the [Fe-Fe]-hydrogenase from with the same solar-energy-activated the bacterium Clostridium pasteurianum splitting of water to oxygen, (not photosynthetic, but with a structure electrons, and protons; protons If we can effectively manipulate those very similar to that of the hydrogenase of and electrons then go to a second the green alga Chlamydomonas reinhardtii enzymatic reaction. In one case, microorganism processes, we can upon which NREL research centers: the “normal” second reaction fixes Clostridium’s crystal structure is known; capture solar energy directly in a form carbon dioxide to produce sugar, Chlamydomonas’ structure has not yet been and in the other, an alternative that is an ideal transportation fuel. solved). This model allowed them to reaction produces hydrogen conduct highly sophisticated simulations molecules. Picture a population of gas movement in and out of the enzyme. of algae at the bottom of a pond at night. They found that, although hydrogen may The organisms have been respiring and move out of the enzyme by additional not photosynthesizing, so conditions have pathways, there are just two main ones by become largely anaerobic. When light first which oxygen molecules could make their hits, the water-splitting reaction starts up way into the enzyme. right away. But there is a lag time of a few With this knowledge, NREL researchers NREL’s development of this technique were able to model amino-acid substitu- has already progressed through several tions and other potential mutations advances. Initial operation with the algae and combinations of mutations along the in simple suspension could be maintained pathways to identify promising ones for for 3-4 days. The cycle was repeated at preventing oxygen from reaching the least three times by alternating with enzyme center. They then proceeded to periods of providing sulfate for normal actually enzyme engineer some of those photosynthesis to allow the algae to mutations, express them in the industrial provide energy for themselves and avoid bacterium E. coli (again, not itself photo- other problems from sulfur deprivation. synthetic) and then test the oxygen sensi- The next level of development used tivity and hydrogen productivity of the a chemostat-based system that cultivated recombinant enzymes. Thus far, although the algae with adequate nutrients in one one of many attempted mutations along reactor. The algae were then transferred one enzyme pathway yielded modest to a second, sulfate-deprived reactor improvement, others did not, proving in which they produced hydrogen. detrimental for both oxygen sensitivity Finally, in the continuous flow system, and hydrogen productivity. Hydrogenase the algae are used as feedstock for engineering efforts for the enzyme con- fermentative processes or gasified. tinue, as this holds great promise as the This system cut costs to one-third as key to overcoming oxygen inhibition. An much as simple batch processing and analysis projects that this could lead to hydrogen production with as high as 10% was run continuously for 6 months. efficiency in the conversion of solar energy. The next improvement came with Inactivating Algal immobilization of the algal cultures Photosynthesis by Nutrient on either glass fibers or alginate Deprivation films. Because the immobilized algae were no longer swimming around An alternative approach to sustaining or performing other functions, they algal hydrogen production artificially is needed less energy (algae live par- to partially inactivate the normal photo- tially off stored starch while in the synthetic process. NREL scientists have hydrogen-producing state) and the been able to do this by depriving an algal culture could be maintained for 25 culture of sulfate, which is necessary for days in batch operation. An alternate protein synthesis and particularly for the version of the immobilization tech- production of a key enzyme for photosyn- nique that provides enough nutrients thesis that has an especially fast turnover for minimal starch production, but time. As the sulfate is used up, photo- not enough to shut off the hydrogen synthesis slows. After about a day, photo- production, was operated continu- synthesis produces less oxygen than ously for 3 months. respiration consumes, and the culture becomes anaerobic and switches from Because nutrient deprivation inher- A set of bioreactors used for photobiological carbon fixation to a combination of ently limits the productivity of the algae, hydrogen production by green algae.
Recommended publications
  • Photoelectrochemical Water Splitting: a Road from Stable Metal Oxides to Protected Thin Film Solar Cells
    Journal of Materials Chemistry A View Article Online REVIEW View Journal | View Issue Photoelectrochemical water splitting: a road from stable metal oxides to protected thin film solar cells Cite this: J. Mater. Chem. A, 2020, 8, 10625 Carles Ros, *a Teresa Andreu ab and Joan R. Morante ab Photoelectrochemical (PEC) water splitting has attracted great attention during past decades thanks to the possibility to reduce the production costs of hydrogen or other solar fuels, by doing so in a single step and powered by the largest source of renewable energy: the sun. Despite significant efforts to date, the productivities of stable semiconductor materials in contact with the electrolyte are limited, pushing a growing scientific community towards more complex photoelectrode structures. During the last decade, several groups have focused on the strategy of incorporating state of the art photovoltaic absorber materials (such as silicon, III–V compounds and chalcogenide-based thin films). The stability of these devices in harsh acidic or alkaline electrolytes has become a key issue, pushing transparent, conductive and protective layer research. The present review offers a detailed analysis of PEC devices from metal oxide electrodes forming a semiconductor–liquid junction to protected and catalyst- Received 9th March 2020 decorated third generation solar cells adapted into photoelectrodes. It consists of a complete overview Accepted 7th May 2020 of PEC systems, from nanoscale design to full device scheme, with a special focus on disruptive DOI: 10.1039/d0ta02755c advances enhancing efficiency and stability. Fundamental concepts, fabrication techniques and cell rsc.li/materials-a schemes are also discussed, and perspectives and challenges for future research are pointed out.
    [Show full text]
  • Energy and the Hydrogen Economy
    Energy and the Hydrogen Economy Ulf Bossel Fuel Cell Consultant Morgenacherstrasse 2F CH-5452 Oberrohrdorf / Switzerland +41-56-496-7292 and Baldur Eliasson ABB Switzerland Ltd. Corporate Research CH-5405 Baden-Dättwil / Switzerland Abstract Between production and use any commercial product is subject to the following processes: packaging, transportation, storage and transfer. The same is true for hydrogen in a “Hydrogen Economy”. Hydrogen has to be packaged by compression or liquefaction, it has to be transported by surface vehicles or pipelines, it has to be stored and transferred. Generated by electrolysis or chemistry, the fuel gas has to go through theses market procedures before it can be used by the customer, even if it is produced locally at filling stations. As there are no environmental or energetic advantages in producing hydrogen from natural gas or other hydrocarbons, we do not consider this option, although hydrogen can be chemically synthesized at relative low cost. In the past, hydrogen production and hydrogen use have been addressed by many, assuming that hydrogen gas is just another gaseous energy carrier and that it can be handled much like natural gas in today’s energy economy. With this study we present an analysis of the energy required to operate a pure hydrogen economy. High-grade electricity from renewable or nuclear sources is needed not only to generate hydrogen, but also for all other essential steps of a hydrogen economy. But because of the molecular structure of hydrogen, a hydrogen infrastructure is much more energy-intensive than a natural gas economy. In this study, the energy consumed by each stage is related to the energy content (higher heating value HHV) of the delivered hydrogen itself.
    [Show full text]
  • Hydrogen from Biomass Gasification
    Hydrogen from biomass gasification Biomass harvesting, Photo: Bioenergy2020+ IEA Bioenergy: Task 33: December 2018 Hydrogen from biomass gasification Matthias Binder, Michael Kraussler, Matthias Kuba, and Markus Luisser Edited by Reinhard Rauch Copyright © 2018 IEA Bioenergy. All rights Reserved ISBN, 978-1-910154-59-5 Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Executive Summary Hydrogen will be an important renewable secondary energy carrier for the future. Today, hydrogen is predominantly produced from fossil fuels. Hydrogen production from biomass via gasification can be an auspicious alternative for future decarbonized applications, which are based on renewable and carbon-dioxide-neutral produced hydrogen. This study gives an overview of possible ways to produce hydrogen via biomass gasification. First, an overview of the current market situation is given. Then, hydrogen production based on biomass gasification is explained. Two different hydrogen production routes, based on biomass gasification, were investigated in more detail. Hydrogen production was investigated for steam gasification and sorption enhanced reforming. Both routes assessed, appear suitable for hydrogen production. Biomass to hydrogen efficiencies (LHV based) of up to 69% are achieved and a techno-economic study shows, hydrogen selling prices of down to 2.7 EUR·kg-1 (or 79 EUR·MWh-1). Overall it can be stated, that governmental support and subsidies are necessary for successful implementation of hydrogen production based on biomass gasification technologies.
    [Show full text]
  • Artificial Photosynthesis Challenges: Water Splitting at Nanostructured Interfaces
    Artificial Photosynthesis Challenges: Water Splitting at Nanostructured Interfaces Marcella Bonchio a ITM-CNR, University of Padova, Department of Chemical Sciences, via Marzolo 1, Padova I- 35131, Italy [email protected] Solar-powered water oxidation can be exploited for hydrogen generation by direct photocatalytic water splitting. A recent breakthrough in the field of artificial photosynthesis is the discovery of innovative oxygen evolving catalysts taken from the pool of the nano-sized, water soluble, molecular metal oxides, the so-called polyoxometalates (POMs). These catalysts provide a unique mimicry of the oxygen evolving centre in photosynthetic II enzyme (PSII), sharing a common functional-motif, i.e., a redox-active tetranuclear {M4(m-O)4} core, and effecting H2O oxidation to IV O2 with unprecedented efficiency. In this scenario, the tetra-ruthenium based POM [Ru 4(m- 10- OH)2(m-O)4(H2O)4(g-SiW10O36)2] , Ru4(SiW10)2, displays fast kinetics, exceptionally light-driven performance and electrocatalytic activity powered by carbon nanotubes.1-2 Research in the field of artificial photosynthesis for the conversion of water to fuel has recently come to the awakening turning-point that a key issue is the design of efficient catalytic routines that can operate with energy and rates commensurate with the solar flux at ground level. A factual solution to this need implies the mastering of the electron transfer distance, junctions and potential gradients at the molecular level and within a nano-structured environment. Our vision points to a careful choice/design of the nano-structured support, and to a precise positioning of the catalytic domain on such templates, by tailored synthetic protocols.
    [Show full text]
  • Hydrogen Energy Storage: Grid and Transportation Services February 2015
    02 Hydrogen Energy Storage: Grid and Transportation Services February 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy EfficiencyWorkshop Structure and Renewable / 1 Energy, operated by the Alliance for Sustainable Energy, LLC. Hydrogen Energy Storage: Grid and Transportation Services February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources Board Sacramento, California, May 14 –15, 2014 M. Melaina and J. Eichman National Renewable Energy Laboratory Prepared under Task No. HT12.2S10 Technical Report NREL/TP-5400-62518 February 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 www.nrel.gov NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Metal Oxides Applied to Thermochemical Water-Splitting for Hydrogen Production Using Concentrated Solar Energy
    chemengineering Review Metal Oxides Applied to Thermochemical Water-Splitting for Hydrogen Production Using Concentrated Solar Energy Stéphane Abanades Processes, Materials, and Solar Energy Laboratory, PROMES-CNRS, 7 Rue du Four Solaire, 66120 Font Romeu, France; [email protected]; Tel.: +33-0468307730 Received: 17 May 2019; Accepted: 2 July 2019; Published: 4 July 2019 Abstract: Solar thermochemical processes have the potential to efficiently convert high-temperature solar heat into storable and transportable chemical fuels such as hydrogen. In such processes, the thermal energy required for the endothermic reaction is supplied by concentrated solar energy and the hydrogen production routes differ as a function of the feedstock resource. While hydrogen production should still rely on carbonaceous feedstocks in a transition period, thermochemical water-splitting using metal oxide redox reactions is considered to date as one of the most attractive methods in the long-term to produce renewable H2 for direct use in fuel cells or further conversion to synthetic liquid hydrocarbon fuels. The two-step redox cycles generally consist of the endothermic solar thermal reduction of a metal oxide releasing oxygen with concentrated solar energy used as the high-temperature heat source for providing reaction enthalpy; and the exothermic oxidation of the reduced oxide with H2O to generate H2. This approach requires the development of redox-active and thermally-stable oxide materials able to split water with both high fuel productivities and chemical conversion rates. The main relevant two-step metal oxide systems are commonly based on volatile (ZnO/Zn, SnO2/SnO) and non-volatile redox pairs (Fe3O4/FeO, ferrites, CeO2/CeO2 δ, perovskites).
    [Show full text]
  • Hydrogen Production by Photoprocesses
    SERifTP• -230:3418 UC Category: 241 DE88001198 Hydrogen Production by Photoprocesses Stanley R. Bull October 1988 Prepared for the International Renewable Energy Conference Honolulu, Hawaii September 19-23, 1988 Prepared under Task No. 1 050.2300 Solar Energy Research Institute A Division of Midwest Research Institute 1617 Cole Boulevard Golden, Colorado 80401-3393 Prepared for the U.S. Department of Energy Contract No. DE-AC02-83CH1 0093 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com­ pleteness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily con­ stitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Printed in the United States of America Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Microfiche A01 Printed Copy A02 Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issue of the following publications which are generally available in most libraries: Energy Research Abstracts (ERA); Govern­ ment ReportsAnnouncements and Index ( GRA and I); Scientific and Technical Abstract Reports(STAR); and publication NTIS-PR-360 available from NTIS at the above address.
    [Show full text]
  • H2O(G)⇔ H2 + 1 2 Because of the Small Equilibrium Constant of This
    HYDROGEN PRODUCTION BY HIGH-TEMPERATURE WATER SPLITTING USING MIXED OXYGEN ION-ELECTRON CONDUCTING MEMBRANES T. H. Lee, S. Wang, S. E. Dorris, and U. Balachandran Energy Technology Division Argonne National Laboratory Argonne, IL 60439, USA ABSTRACT Hydrogen production from water splitting at high temperatures has been studied with novel mixed oxygen ion-electron conducting cermet membranes. Hydrogen production rates were investigated as a function of temperature, water partial pressure, membrane thickness, and oxygen chemical potential gradient across the membranes. The hydrogen production rate increased with both increasing moisture concentration and oxygen chemical potential gradient across the membranes. A maximum hydrogen production rate of 4.4 cm3/min-cm2 (STP) was obtained with a 0.10-mm-thick membrane at 900°C in a gas containing 50 vol.% water vapor in the sweep side. Hydrogen production rate also increased with decreasing membrane thickness, but surface kinetics play an important role as membrane thickness decreases. INTRODUCTION Water dissociates into oxygen and hydrogen at high temperatures, and the dissociation increases with increasing temperature: ⇔ + 1 H2O(g ) H2 O2 . 2 Because of the small equilibrium constant of this reaction, the concentrations of generated hydrogen and oxygen are very low even at relatively high temperatures, i.e., 0.1 and 0.042% for hydrogen and oxygen, respectively, at 1600°C (1). However, significant amounts of hydrogen or oxygen could be generated at moderate temperatures if the equilibrium were shifted toward dissociation by removing either oxygen or hydrogen using a mixed-conducting membrane. While hydrogen can also be produced by high-temperature steam electrolysis, the use of mixed-conducting membranes offers the advantage of requiring no electric power or electrical circuitry.
    [Show full text]
  • Summary of Hydrogen Production and Storage Systems
    Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The view and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. An Overview of Hydrogen Production and Storage Systems with Renewable Hydrogen Case Studies May 2011 Prepared by: Timothy Lipman, PhD 1635 Arrowhead Drive Oakland, California 94611 (510) 339-1449 [email protected] Prepared for: Clean Energy States Alliance 50 State Street, Suite 1 Montpelier, VT 05602 Conducted under US DOE Grant DE-FC3608GO18111 A000, Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Program This page intentionally blank Summary Hydrogen is already widely produced and used, but it is now being considered for use as an energy carrier for stationary power and transportation markets. Approximately 10-11 million metric tonnes of hydrogen are produced in the US each year, enough to power 20-30 million cars or 5-8 million homes.1 Major current uses of the commercially produced hydrogen include oil refining (hydro-treating crude oil as part of the refining process to improve the hydrogen to carbon ratio of the fuel), food production (e.g., hydrogenation), treating metals, and producing ammonia for fertilizer and other industrial uses.
    [Show full text]
  • A Consortium on Advanced Water Splitting Materials H.N
    HydroGEN Overview: A Consortium on Advanced Water Splitting Materials H.N. Dinh, G. Groenewold, E. Fox, A. McDaniel, T. Ogitsu, A. Weber Presenter: Huyen Dinh, NREL Date: 5/20/2020 Venue: 2020 DOE Annual Merit Review Project ID # P148 This presentation does not contain any proprietary, confidential, or otherwise restricted information. HydroGEN Overview Timeline and Budget Partners • Start date (launch): June 2016 • FY17 DOE funding: $3.5M • FY18 DOE funding: $9.9M • FY19 DOE funding: $8.4M • FY20 planned DOE funding: $10.6M • Total DOE funding received to date: $30M Barriers • Cost • Efficiency • Durability HydroGEN: Advanced Water Splitting Materials 2 Collaboration: HydroGEN Steering Committee Huyen Dinh Adam Weber Anthony McDaniel (Director) (Deputy Director) (Deputy Director) Richard Boardman Tadashi Ogitsu Elise Fox Ned Stetson and Katie Randolph, DOE-EERE-FCTO HydroGEN: Advanced Water Splitting Materials 3 H2@Scale Energy System Vision Relevance and Impact Transportation and Beyond Large-scale, low-cost hydrogen from diverse domestic resources enables an economically competitive and environmentally beneficial future energy system across sectors Materials innovations are key to enhancing performance, durability, and cost of hydrogen generation, storage, distribution, and utilization technologies key to H2@Scale *Illustrative example, not comprehensive Hydrogen at Scale (H2@Scale): Key to a Clean, Economic, and Sustainable Energy System, Bryan Pivovar, Neha Rustagi, https://energy.gov/eere/fuelcells/h2-scale Sunita Satyapal, Electrochem.
    [Show full text]
  • Joint Center for Artificial Photosynthesis: Corrosion Protection Schemes to Enable Durable Solar Water Splitting Devices
    II.G.11 Joint Center for Artificial Photosynthesis: Corrosion Protection Schemes to Enable Durable Solar Water Splitting Devices enable the development of a new generation of robust Principal Investigator: Carl Koval integrated devices for efficient solar water splitting. California Institute of Technology, Pasadena, CA Abstract Team Members • Ian Sharp ([email protected], Team Lead), Jinhui Yang, Fabrication of overall water splitting devices requires Yongjing Lin, Ali Javey, Joel Ager (Project Lead) the incorporation of all elements - catalysts, light absorbers, Lawrence Berkeley National Laboratory membranes, and interfacial layers - into an integrated system • Shu Hu, Michael Lichterman, Nate Lewis (Scientific in which all materials are stable under identical conditions. Director and Project Lead) Durability and compatibility of materials remain critical California Institute of Technology hurdles in the field. In addition to the discovery of new materials, a primary strategy for overcoming this limitation DOE Program Manager: Gail McLean is aimed at utilizing thin film surface coatings for preventing Phone: (301) 903-7807 corrosion of photoelectrodes, while also allowing efficient Email: [email protected] charge transfer between the semiconductor light absorber and catalysts. Here, we present a series of case examples highlighting approaches for thin film corrosion protection Objectives that enable sustained operation of both photocathodes and photoanodes. Each of these examples represents a significant The mission of the Joint Center for Artificial technical advancement and provides complimentary insight Photosynthesis (JCAP) is to produce fundamental scientific into the important roles of interfacial energetics, physical discoveries and major technological breakthroughs to enable and chemical structure, photon management, and defect the development of energy-efficient, cost-effective, and engineering.
    [Show full text]
  • Production of Hydrogen
    Production of Hydrogen RJ Allam Air Products Why Hydrogen? H2 + ½ O2 → H2O ∆H -57.8 kcal/mole z H2 is an energy vector, is converted to water which has minimal environmental impact. z H2 is a non-polluting fuel for transportation vehicles and power production z Currently road vehicles emit about the same quantity of CO2 as power production. z H2 can be produced from fossil fuels with CO2 capture and storage or from renewables 3 Production of Hydrogen Options Method Characteristics Photolysis catalytic-water splitting Electrolysis water Power for electrolyser ambient → high temperature ambient → high pressure Thermal splitting water high temperature ≡m conc as function of temp freeze equilibrium Fossil fuel Conversion Heat, water, oxygen, catalytic Far Future Non fossil fuel alternatives based on sunlight, renewables and nuclear Present Fossil fuels 4 Carbon Containing Fuels Coal Lignite → Anthracite Natural gas Refined Hydrocarbons Ethane → Fuel Oil Heavy refinery waste Tar → Petcoke Biomass 5 Reactions Reforming With Steam - Catalytic Natural gas and light CH4 + H2O ↔ CO + 3H2 + ∆H hydrocarbons CO + H2O ↔ H2 + CO2 - ∆H Partial Oxidation - Non Catalytic Any hydrocarbon or C + ½O2 → CO - ∆H carbonaceous feedstock CO + H2O ↔ CO2 + H2 - ∆H Thermal Decomposition Only limited application as co- CH4 → 2H2 + C +∆H product in carbon black manufacture 6 General Arrangement For CO2- free Hydrogen Production Steam Export Steam CO2 Fuel Syngas Heat Shift H2 purification / Oxygen H2 Generation Recovery reactors CO2 separation Waste Fuel Gas 7 CO2 Separation
    [Show full text]